SUPPLEMENTARY INFORMATION FOR

Synthesis and Chiroptical Properties of Ferrocene[4]Helicenequinones: Kinetic Resolution of a Planar-Chiral Diene

Alfonso Latorre, Antonio Urbano,* M. Carmen Carreño*

Experimental Procedures

General. Melting points were obtained in open capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 300 and 75 MHz , respectively. UV/Vis spectra were recorded on a Hewlett-Packard 8453 spectrophotometer. The spectra were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a quartz cuvette $(1 \mathrm{~cm})$ at $298{ }^{\circ} \mathrm{K}$. Circular dichroism spectra were measured with a JASCO J-810 spectropolarimeter. All reactions were monitored by thin layer chromatography that was performed on pre-coated sheets of silica gel 60 , and flash column chromatography was done with silica gel 60 (230-400 mesh) of Merck. Eluting solvents are indicated in the text. The apparatus for inert atmosphere experiments was dried by flaming in a stream of dry argon. Ethyl ether, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF and $\mathrm{CH}_{3} \mathrm{CN}$ were dried over $4 \AA$ molecular sieves. All other reagent quality solvents were used without further purification. For routine workup, hydrolysis was carried out with water, extractions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and solvent drying with MgSO_{4}.
(\pm)-3,4-Ferrocene-1-trifluoromethanesulphonyloxycyclohexene (7).

To a solution of 3,4-ferrocenecyclohexanone (rac) $\mathbf{- 1}^{1}(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and N-phenylbis(trifluoromethanesulfonimide) ($23 \mathrm{~g}, 0.06 \mathrm{mmol}$) in dry THF $(2.5 \mathrm{~mL})$ was slowly added a solution of KHMDS 0.5 M in THF $(155 \mu \mathrm{~L}, 0.078 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, under argon. The mixture was stirred for 1 h and quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$. After warming to room temperature, workup and flash chromatography with silica deactivated with 10% of water (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $1: 4$), enol triflate (rac)-7 was obtained as an orange oil, in 65% yield: ${ }^{1} \mathrm{H}$ NMR $\delta 2.47-2.93(\mathrm{~m}, 4 \mathrm{H}), 4.17$ (broad s, 8H), $6.30(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.8,27.8,65.9,66.7,67.4,69.8,76.4,82.4$, 117.7, 146.5; MS (ESI): m/z (\%) 253 (22), 282 (15), 386 (M^{+}, 15); HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{FeS}\left(\mathrm{M}^{+}\right)$386.1671, found 386.9881.
(\pm)-3,4-Ferrocene-1-vinylcyclohexene (2).

To a mixture of enol triflate (rac)-7 ($55 \mathrm{mg}, 0.142 \mathrm{mmol}$), $\mathrm{LiCl}(28 \mathrm{mg}, 0.71 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($9 \mathrm{mg}, 5 \% \mathrm{~mol}$) in THF (1.4 mL), vinyltributylstannane ($44 \mu \mathrm{~L}, 0.142 \mathrm{mmol}$) was added, under argon. The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 45 min , filtered over celite and washed with water. After workup and flash chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 2:1), diene (rac)-2 was obtained as a red oil, in 58% yield; ${ }^{1} \mathrm{H}$ NMR $\delta 2.31-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.74(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 5 \mathrm{H})$, $4.13(\operatorname{broad} \mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(b r o a d ~ \mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{dd}$, $J=10.8$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.3,23.4,64.6,66.3,66.4,69.5,79.9,85.1,109.9,126.7$, 134.9, 139.2; MS (ESI): m/z (\%) $264\left(\mathrm{M}^{+}, 55\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Fe}\left(\mathrm{M}^{+}\right) 264.0601$ found 264.0595 .

Representative Procedure for Kinetic Resolutions

To a solution of diene (rac)-2 (33 mg, 0.12 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, a solution of (SS)-5-methyl-2-(p-tolylsulfinyl)-1,4-benzoquinone (3) ${ }^{2}$ (see Table for conditions) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.6 \mathrm{~mL}$)

[^0]
S-3

was rapidly added under argon. The reaction was slowly warmed up to room temperature and the solvent eliminated. After flash chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), unreacted optically active diene $(\mathrm{p} R)-\mathbf{2}$ (see Table for yields and optical purities) and tetracyclic ferrocene ($\mathrm{p} S, S, P$) $\mathbf{4}$ (see Table for yields and optical purities), were respectively obtained.

entry	T $\left({ }^{\circ} \mathrm{C}\right)$	$(\mathrm{SS})-\mathbf{3}$ (equiv)	$(\mathrm{p} R)-2$ $(\%$ yield $/ \% \mathrm{ee})$	$(\mathrm{pS}, S, P)-4$ $(\%$ yield $/ \% \mathrm{ee})$
1	-78 to rt	2.0		$(56 / 55)$
2	-78 to rt	0.5	$(50 / 63)$	$(34 / \mathbf{9 3})$
3	-78 to rt	0.9	$(28 / \mathbf{9 9)}$	$(46 / 73)$
4	-10	0.5	$(32 / 47)$	$(\mathbf{4 5} / \mathbf{9 7)}$

(p R)-3,4-Ferrocene-1-vinylcyclohexene (2).

Compound (pR)-2 (99\%ee) $)^{3}$ was obtained from kinetic resolution of diene (rac)-2 with 0.9 equiv of (SS)-4 (entry 3), as a red oil, in 28\% yield: $[\alpha]_{\mathrm{D}}{ }^{20}=-1455\left(c 0.022, \mathrm{CHCl}_{3}\right)$.

[^1]
(pS,10aS,P)-9,10-Ferrocene-3-methyl-5,7,8,10a-tetrahydrophenantrene-1,4-quinone (4)

Compound (pS,10aS,P)-4 $(97 \% e e)^{4}$ was obtained from kinetic resolution of diene (rac)-2 with 0.5 equiv of (SS) -3 at $-10{ }^{\circ} \mathrm{C}$ for 3 h , as a dark blue solid, in 45% yield: m.p. $270{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.04(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.37-2.54 (m, 2H), 2.68-2.89 (m, 2H), 2.94-3.15 (m, 2H), 3.68 (broad s, 1H), 3.91 (dd, $J=2.4$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 5 \mathrm{H}), 4.9(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(b r o a d \mathrm{~s}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 15.7,25.2,28.4,32.5,36.0,65.2,66.0,66.8,70.3,84.4,88.0$, $114.6,133.3,136.1,136.5,138.7,140.6,145.1,188.0$ (2C).

(pR)-Dimethyl 7,8-ferrocene-5,6-dihydronaphthalene-1,2-dicarboxylate (5).

To a solution of diene (pR) $-2(99 \% ~ e e, ~ 15 \mathrm{mg}, 0.056 \mathrm{mmol})$ in toluene (1.5 mL), dimethyl acetylenedicarboxylate ($40 \mu \mathrm{~L}, 6 \mathrm{mmol}$) was added. The reaction mixture was heated to $110^{\circ} \mathrm{C}$ for 3 h and the solvent evaporated. The residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ and DDQ $(10 \mathrm{mg}, 0.045$ mmol) was added. The reaction mixture was stirred for 15 min and washed with a saturated aqueous solution of sodium bicarbonate. After workup and flash chromatography (eluent hexane/EtOAc 1:1), pure tricyclic ferrocenyl diester $(\mathrm{pR})-5$ was obtained as a yellow solid, in 63% yield: $\mathrm{mp} 134-135^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+283\left(c 0.012, \mathrm{CHCl}_{3}\right), 99 \% e e ;{ }^{5} \mathrm{H}$ NMR $\delta 2.34(\mathrm{ddd}, J=5.4,14.1$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (ddd, $J=2.0,14.1$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{ddd}, J=2.0,5.4$ and $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.32(\mathrm{ddd}, J=6.5$, 14.1 and $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 5 \mathrm{H}), 4.30-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.51(b r o a d ~ s, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.3,31.8,52.3,52.6,63.1,67.7,68.0$,

[^2]69.9, $77.2,88.2,125.9,127.2,129.1,131.3,133.7,142.4,166.1,170.9 ;$ MS (ESI): m/z (\%) $404\left(\mathrm{M}^{+}\right.$, 100), $405\left(\mathrm{M}^{+}+1,18\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Fe}\left(\mathrm{M}^{+}\right) 404.0712$, found 404.0711.
(pS,M)-9,10-Ferrocene-3-methyl-7,8-dihydrophenantrene-1,4-quinone (6).

To a solution of tetrahydroaromatic ferrocene (pS,10aS,P)-(4) (97\% ee, $12 \mathrm{mg}, 0.031 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at room temperature, $\mathrm{DDQ}(7 \mathrm{mg}, 0.031 \mathrm{mmol})$ was added. The reaction mixture was stirred for 15 min and washed with a saturated aqueous solution of sodium bicarbonate. After workup and flash chromatography, pure dihydroaromatic helical ferrocene ($\mathrm{p} S, M$) -6 was obtained as a dark green solid, in 72% yield: $\mathrm{mp} 270{ }^{\circ} \mathrm{C} ;\left\{[\alpha]_{\mathrm{D}}{ }^{20}=+1704\left(c=0.001\right.\right.$ in CHCl_{3}), $97 \% e e ;{ }^{6}{ }^{1} \mathrm{H}$ NMR $\delta 2.14(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{dt}, J=5.4$ and $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=1.9,6.6$ and 14.0 $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}, J=1.9,5.4$ and $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 15.7,22.0,32.5,67.6,67.8,67.9,70.2$, $77.7,90.7,124.4,130.0,132.3,133.0,138.0,138.7,145.1,145.2,185.4,186.5 ; \mathrm{MS}$ (ESI): m/z (\%) $382\left(\mathrm{M}^{+}, 24\right), 383\left(\mathrm{M}^{+}+1,39\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{FeO}_{2}\left(\mathrm{M}^{+}\right) 382.2328$, found 382.0650 .

Bis-(-)-camphanate ($\mathrm{p} S, M$)-8.

[^3]$\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added to a mixture of dihydroaromatic helical ferrocene $(\mathrm{pS}, M)-6(7.7 \mathrm{mg}, 0.02 \mathrm{mmol})$, activated $\mathrm{Zn}(17 \mathrm{mg}, 0.25 \mathrm{mmol})$, (-)-camphanoyl chloride (22 mg , 0.1 mmol) and DMAP ($1.15 \mathrm{mg}, 0.01 \mathrm{mmol}$), under argon. The mixture was refluxed 1.5 h and filtrated through celite, aided by several ethyl acetate washes, to remove remaining Zn . The organic solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}, 2 \% \mathrm{HCl}$ and water. After workup and flash chromatography (hexane/EtOAc 2:1), the corresponding pure bis-(-)-camphanate (pS,M)-8 was obtained as a red solid, in 48% yield; m.p. decomposes over $220{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-400(c=0.028$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$, $1.46-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.73$ $(\mathrm{m}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=4.8$ and $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 5 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.32$ (broad s, 1H), $5.00(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.31$ and $7.59(\mathrm{AB}$ System, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 9.7,9.8,16.4,16.6,16.7,17.0,17.2,20.2,20.8,24.5,29.0,29.1,30.4,31.5,33.5$, $43.7,53.8,54.4,54.5,55.0,55.1,55.2,90.6,91.1,118.4,121.2,123.3,125.3,128.1,128.5,130.9$, 142.3, 143.8, 170.0, 172.7, 178.0, 178.5. MS (ESI): m/z (\%) $744\left(\mathrm{M}^{+}, 61\right), 745\left(\mathrm{M}^{+}+1,100\right)$; HRMS (ESI) calcd. for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Fe}(\mathrm{M}+$) 744.6497, found 744.2380.
($\mathrm{p} R, P$)-9,10-Ferrocene-3-methyl-7,8-dihydrophenantrene-1,4-quinone (6).

To a solution of diene $(\mathrm{pR})-2(95 \%$ ee, $8.5 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a solution of (\pm)-5-methyl-2-(p-tolylsulfinyl)-1,4-benzoquinone (rac) $-3^{2}(17 \mathrm{mg}, 0.062 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was rapidly added, under argon. After stirring for 2 h , DDQ ($7.2 \mathrm{mg}, 0.032 \mathrm{mmol}$) was added and the resulting solution was stirred for 15 min and washed with a saturated solution of sodium bicarbonate. After workup and flash chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), helical ferrocene ($\mathrm{p} R, P$) $\mathbf{6}$ was obtained as a dark green solid, in 68% yield: $[\alpha]_{\mathrm{D}}{ }^{20}=-1660\left(c=0.001\right.$ in $\left.\mathrm{CHCl}_{3}\right), 95 \%$ ee. ${ }^{7}$

[^4]
CHIRAL HPLC

Analysis Method : C:\CHEM32\1\DATA \DEF_LC 2009-12-16 13-52-07\IA-0,8-10-15.M
Last changed : 10/9/2008 4:59:22 PM by Alfonso
DAD1 A, Sig=254,4 Ref=360,100 (DEF_LC 2009-12-16 13-52-070060-0201.D)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	10.681	MM	0.2725	23.89025	1.46137	1.3402
2	11.821	MM	0.2665	1758.75159	109.97760	98.6598
Total	3 :			1782.64184	111.43897	

Signal 1: DAD1 A, Sig=254, 4 Ref=360, 100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	10.561	MM	0.2383	3435.99194	240.27887	97.3762
2	11.725	MM	0.2549	92.58223	6.05382	2.6238
Totals	3 :			3528.57417	246.33269	

Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	10.315	MM	0.3401	9337.07129	457.60422	36.9791
2	14.799	MM	0.4884	1.59125 e 4	542.99731	63.0209
Total	3 :			2.52496 e 4	1000.60153	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	14.113	MM	0.4367	2.59920 e 4	991.9937	00.0000
Total	s :			2.59920 e 4	991.9937	

[^0]: (1) S. Siegel, H. G. Schmalz, Angew. Chem., Int. Ed. Engl., 1997, 36, 2456-2458.
 (2) M. C. Carreño, J. L. García Ruano, A. Urbano, Synthesis, 1992, 651-653.

[^1]: (3) The enantiomeric excess of optically active diene $(\mathrm{p} R)-2$ was determined from optical purity of tricyclic ferrocenyl diester $(\mathrm{p} R)-5$ (see below).

[^2]: (4) Chiral HPLC: Daicel Chiralpak IA, hexane/2-propanol 90:10; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=7.3 \mathrm{~min}, T=25^{\circ} \mathrm{C}$.
 (5) Chiral HPLC: Daicel Chiralpak AS-H, hexane/2-propanol 90:10; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=13.3 \mathrm{~min}, T=25^{\circ} \mathrm{C}$

[^3]: (6) Chiral HPLC: Daicel Chiralpak IA, hexane/2-propanol 90:10; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=11.6 \mathrm{~min}, T=25^{\circ} \mathrm{C}$.

[^4]: (7) Chiral HPLC: Daicel Chiralpak IA, hexane/2-propanol 90:10; $0.8 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}, R_{\mathrm{t}}=10.5 \mathrm{~min}, T=25^{\circ} \mathrm{C}$

