2,5-cis-2,3,5-Trisubstituted tetrahydrofurans from the diastereomixture of 2,4-disubstituted 1,3-dioxepines via stereomutation

Ozora Kubo, Kenzo Yahata, Tomohiro Maegawa, and Hiromichi Fujioka*
Graduate School of Pharmaceutical Sciences, Osaka University
1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
Fax: (+81)-6-6879-8229
E-mail: fujioka@phs.osaka-u.ac.jp

General Techniques

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured by JEOL JNM-LA 500 or JEOL JNM-ECS 400 or JEOL JNM-AL 300 spectrometers with tetramethylsilane as an internal standard at $20-25{ }^{\circ} \mathrm{C}$. IR spectra were recorded by Shimadzu FTIR 8400 using a diffuse reflectance measurement of samples dispersed in KBr powder. HRMS spectra were recorded by JEOL LMS-D 300 spectrometers. Merck silica gel 60 was used for column chromatography.

1a: (\pm)-CSA ($1.26 \mathrm{~g}, 5.43 \mathrm{mmol}$) was added to a solution of dodecanal $(5.0 \mathrm{~g}, 27.13 \mathrm{mmol})$ and allylalcohol $(9.2 \mathrm{~mL}, 136.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27$ mL) at room temperature under N_{2}. The mixture was stirred at the same temperature for 21 h . The mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. $\mathrm{EtOH}(100 \mathrm{~mL})$ was added to the residue and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}(1.0 \mathrm{~g}, 26.43$ mmol) was added to a solution. The mixture was stirred at the same temperature for 1 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/AcOEt $=40 / 1$) to give $\mathbf{1 a}(2.87 \mathrm{~g}, 37 \%)$. colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.26-1.38(18 \mathrm{H}, \mathrm{m})$, $1.62-1.67(2 \mathrm{H}, \mathrm{m}), 3.98-4.12(4 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 5.15-5.18(2 \mathrm{H}, \mathrm{m}), 5.26-5.32$ $(2 \mathrm{H}, \mathrm{m}), 5.88-5.97(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,22.7,24.7,29.32,29.34$, 29.42, 29.44, 29.5, 29.6, 31.9, 33.3, 66.0, 102.1, 116.6, 134.8; IR (KBr): 2924, 2855, 2249, 1466, $1038 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 282.2559$ found 282.2541.

General Procedure for Preparation of Mixed Allylacetal 2a-2d.

TMSOTf (2.0 equiv) was added dropwise to a solution of $2,4,6$-collidine (3.0 equiv) and an acetal 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at the same temperature. After checking disappearance of $\mathbf{1}$ on TLC, an allyalcohol 6 (3.0-5.0 equiv) was added to the resulting mixture, and the solution was stirred at rt. After disappearance of the polar component on TLC, the mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography using neutralized SiO_{2} [purchased from KANTO CHEMICAL CO., INC.; Silica Gel 60 N (spherical, neutral)] to give a mixed allylacetal. $\mathbf{1 b}^{1}, \mathbf{6 b}^{2}, \mathbf{1 2}^{3}$ and (R)-1-(benzyloxy)but-3-en-2-ol ${ }^{4}$ are known compounds. $\mathbf{6 a}, \mathbf{6 c}$, 13a, 13b and $\mathrm{RuHCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ are commercially available.

$\mathbf{2 a}:$ According to the general procedure, $\mathbf{2 a}(801.2 \mathrm{mg}, 79 \%)$ was obtained as 4:5 (= cis : trans) of diastereomeric mixture from 1a ($811.9 \mathrm{mg}, 2.87 \mathrm{mmol}$), TMSOTf ($1.00 \mathrm{~mL}, 5.74 \mathrm{mmol}$), 2,4,6-collidine ($1.14 \mathrm{~mL}, 8.62 \mathrm{mmol}$), and 10 1-octene-2-ol (6a) ($1.30 \mathrm{~mL}, 8.62 \mathrm{mmol}$). Eluent: hexane/benzene= $1 / 1$ to AcOEt. The relative stereochemistry of $\mathbf{2 a}$ was determined by NOE experiments after transformation of 2a into 4a.
cis-2a; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.88(6 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.26-1.50(26 \mathrm{H}$, $\mathrm{m}), 1.57-1.64(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}), 3.92-3.97(1 \mathrm{H}, \mathrm{m}), 4.07-4.12(1 \mathrm{H}, \mathrm{m}), 4.55$ $(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 5.10-5.28(4 \mathrm{H}, \mathrm{m}), 5.75-5.94(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 14.0, 14.1, 22.6, 22.7, 24.6, 24.8, 29.3, 29.57, 29.61, 31.8, 31.9, 34.1, 35.3, 66.1, 78.1, 101.8, 115.5, 116.4, 134.9, 139.8; IR (KBr): 2926, 2855, 1466, 1115, $1028 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 352.3341$, found 352.3346 .
trans-2a; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.88(6 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.25-1.66$ $(28 \mathrm{H}, \mathrm{m}), 3.97-4.03(3 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 5.13-5.18(3 \mathrm{H}, \mathrm{m}), 5.26-5.31(1 \mathrm{H}, \mathrm{m})$, 5.58-5.67 ($1 \mathrm{H}, \mathrm{m}$), 5.87-5.97 ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.0,14.1,22.6,22.7$, $24.7,25.0,29.3,29.4,29.5,29.56,29.60,29.62,31.7,31.9,33.8,35.6,64.5,77.5,99.9,116.1$, 116.9, 135.1, 139.2 ; IR (KBr): 2924, 2855, 1464, 1115, $1026 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 352.3341$, found 352.3339 .

2b : According to the general procedure, 2b ($390 \mathrm{mg}, 48 \%$) was obtained as $3: 4$ of diastereomeric mixture from 1b $(613.0 \mathrm{mg}, 2.91 \mathrm{mmol})$, TMSOTf ($1.1 \mathrm{~mL}, 5.82 \mathrm{mmol}$), 2,4,6-collidine ($1.1 \mathrm{~mL}, 8.73 \mathrm{mmol}$), and 1-octene-2-ol (6a) ($1.3 \mathrm{~mL}, 8.73 \mathrm{mmol}$). Eluent: hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 0.87-0.91(3 \mathrm{H}, \mathrm{m}), 1.03-1.77$ $(17 \mathrm{H}, \mathrm{m}), 1.89-2.03(2 \mathrm{H}, \mathrm{m}), 3.88-4.15(3 \mathrm{H}, \mathrm{m}), 4.32(3 / 7 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.42(4 / 7 \mathrm{H}, \mathrm{d}, J=$ $6.9 \mathrm{~Hz}), 5.00-5.17(3 \mathrm{H}, \mathrm{m}), 5.32(3 / 7 \mathrm{H}, \mathrm{dq}, J=15.1,1.8 \mathrm{~Hz}), 5.37(4 / 7 \mathrm{H}, \mathrm{dq}, J=15.1,1.8$ $\mathrm{Hz}), 5.59-5.68(4 / 7 \mathrm{H}, \mathrm{m}), 5.79-5.98(10 / 7 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,22.6$, 24.8, 25.0, 25.8, 25.87, 25.94, 26.4, 26.5, 27.6, 28.0, 28.4, 28.5, 31.80, 31.83, 35.2, 35.6, 40.8, $41.4,65.2,66.3,77.8,79.0,103.2,105.1,115.7,116.2,116.4,117.2,135.0,135.2,139.3$, 139.9 ; IR (KBr): 2928, 2855, 2251, 1645, 1466, 1452, $1379 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 303.2300$, found 303.2318.

2c : According to the general procedure, $\mathbf{2 c}(233.3 \mathrm{mg}, 68 \%)$ was obtained as 5:6 of diastereomeric mixture from 1a ($297.0 \mathrm{mg}, 1.05 \mathrm{mmol}$), TMSOTf ($0.38 \mathrm{~mL}, 2.10 \mathrm{mmol}$), 2,4,6-collidine ($0.42 \mathrm{~mL}, 3.15 \mathrm{mmol}$), and $\mathbf{6 b}^{2}$ (526.4 $\mathrm{mg}, 5.26 \mathrm{mmol})$. Eluent: hexane/benzene $=1 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.86-0.96(9 \mathrm{H}, \mathrm{m}), 1.27-1.37(18 \mathrm{H}, \mathrm{m}), 1.59-1.64(2 \mathrm{H}, \mathrm{m}), 1.72-1.83(1 \mathrm{H}$, $\mathrm{m}), 3.57-3.60(5 / 11 \mathrm{H}, \mathrm{m}), 3.72(6 / 11 \mathrm{H}, \mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}), 3.91-4.11(2 \mathrm{H}, \mathrm{m}), 4.53(5 / 11 \mathrm{H}, \mathrm{t}$, $J=5.3 \mathrm{~Hz}), 4.58(6 / 11 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 5.11-5.30(4 \mathrm{H}, \mathrm{m}), 5.57-5.66(6 / 11 \mathrm{H}, \mathrm{m}), 5.74-5.96$ $(16 / 11 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,17.9,18.3,18.6,18.7,22.7,24.6,24.7$, 29.3, 29.47, 29.55, 29.57, 29.61, 29.64, 31.9, 32.4, 32.6, 33.8, 34.1, 64.5, 66.3, 82.6, 83.6, $99.8,102.1,116.2,116.4,116.8,118.2,135.0,135.3,137.2,137.7$; IR (KBr): 2924, 2855, 2247, 1645, $1468 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 324.3028$, found 324.3048.

2d : According to the general procedure, $\mathbf{2 d}(243.2 \mathrm{mg}, 47 \%)$ was obtained as 7:8 of diastereomeric mixture from $\mathbf{1 a}(408.6 \mathrm{mg}, 1.45 \mathrm{mmol})$, TMSOTf ($0.52 \mathrm{~mL}, 2.89 \mathrm{mmol}$), 2,4,6-collidine ($0.57 \mathrm{~mL}, 4.34 \mathrm{mmol}$), and $\mathbf{6 c}(0.57$ $\mathrm{mL}, 4.34 \mathrm{mmol})$. Eluent: hexane/benzene $=1 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.22-1.38(18 \mathrm{H}, \mathrm{m}), 1.60-1.69(2 \mathrm{H}, \mathrm{m}), 3.89-3.94$ ($8 / 15 \mathrm{H}, \mathrm{m}$), $3.99-4.04(22 / 15 \mathrm{H}, \mathrm{m}), 4.52(7 / 15 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 4.75$ ($8 / 15 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}$), 5.07-5.33 ($5 \mathrm{H}, \mathrm{m}$), 5.79-6.06 ($2 \mathrm{H}, \mathrm{m}$), 7.24-7.38 ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 14.1, 22.7, 24.6, 24.7, 29.3, 29.37, 29.43, 29.49, 29.53, 29.57, 29.61, 29.63, 31.9, 33.68, 33.72, $65.05,65.10,78.3,78.5,100.6,100.7,115.3,116.5,116.7,126.7,127.3,127.4,127.6,128.3$, $128.4,134.9,135.0,138.6,139.3,140.9,141.4$; IR (KBr): 2924, 2853, 1643, 1454, $1115 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 358.2872$, found 358.2898.

General Procedure A for Preparation of 2,4-disubstituted-1,3-dioxepin 4a-4d.

Grubbs' $2^{\text {nd }}$ cat. ($1 \mathrm{~mol} \%$) was added to a solution of mixed allylacetal 2 in benzene (0.05 $\mathrm{M})$ at room temperature under N_{2}. The mixture was stirred at $40{ }^{\circ} \mathrm{C}$. After checking disappearance of 2 and completion of RCM on $\mathrm{TLC}, \mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(4 \mathrm{~mol} \%)$ was added to the resulting mixture, and the solution was stirred at $80^{\circ} \mathrm{C}$. After disappearance of RCM product on TLC, the mixture was evaporated in vacuo. The residue was purified by flash column chromatography using neutralized SiO_{2} [purchased from KANTO CHEMICAL CO., INC.; Silica Gel 60 N (spherical, neutral)] to give a 2,4-disubstituted-1,3-dioxepin 4. The relative stereochemistry of 2,4-disubstituted-1,3-dioxepin 4 between $\mathrm{H}-2$ and $\mathrm{H}-4$ was determined by NOE experiments.

$\mathbf{4 a}$: According to the general procedure, $\mathbf{4 a}(149.0 \mathrm{mg}, 76 \%)$ was obtained as 1:1 (= cis : trans) of diastereomeric mixture from $\mathbf{2 a}(212.9 \mathrm{mg}, 0.604 \mathrm{mmol})$, Grubbs' $2^{\text {nd }}$ cat. ($5.2 \mathrm{mg}, 0.0061 \mathrm{mmol}$), $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(23.0 \mathrm{mg}, 0.024$ $\mathrm{mmol})$. Eluent: hexane/benzene $=3 / 2$.
cis-4a; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.86-0.91$ ($6 \mathrm{H}, \mathrm{m}$), 1.26-1.48 ($25 \mathrm{H}, \mathrm{m}$), $1.57-1.64(1 \mathrm{H}, \mathrm{m}), 1.71-1.76(2 \mathrm{H}, \mathrm{m}), 2.10-2.29(2 \mathrm{H}, \mathrm{m}), 3.23-3.29(1 \mathrm{H}, \mathrm{m}), 4.49(1 \mathrm{H}, \mathrm{t}, J=$ $5.7 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{td}, J=7.6,2.6 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=7.6,2.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 14.05,14.13,22.6,22.7,24.7,25.9,29.4,29.59,29.64,29.7,31.7,31.9,35.7,35.86$, $35.91,80.2,106.1,106.3,145.8$; IR (KBr): 2924, 2855, 1653, 1466, $1123 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 324.3028$, found 324.3053.
trans-4a; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.86-0.90(6 \mathrm{H}, \mathrm{m}), 1.19-1.46(25 \mathrm{H}, \mathrm{m})$, 1.51-1.66 (3H, m), 2.02-2.10 ($1 \mathrm{H}, \mathrm{m}$), 2.50-2.59 ($1 \mathrm{H}, \mathrm{m}$), 4.24-4.31 ($1 \mathrm{H}, \mathrm{m}$), $4.67(1 \mathrm{H}, \mathrm{td}, J=$ $7.2,3.6 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 14.05,14.13,22.6,22.7,24.5,25.2,29.38,29.40,29.6,29.65,29.68,30.8,31.8$, $31.9,35.3,36.1,77.9,99.9,103.9,146.5$; IR (KBr): 2924, 2855, 1651, 1466, $1258 \mathrm{~cm}^{-1}$; HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 324.3028$, found 324.3033.

$\mathbf{4 b}$: According to the general procedure, $\mathbf{4 b}(218.0 \mathrm{mg}, 73 \%)$ was obtained as 1:1 (= cis : trans) of diastereomeric mixture from $\mathbf{2 b}$ ($334.7 \mathrm{mg}, 1.19$ mmol), Grubbs' $2^{\text {nd }}$ cat. ($10.1 \mathrm{mg}, 0.0119 \mathrm{mmol}$), $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(45.3$ $\mathrm{mg}, 0.048 \mathrm{mmol}$). Eluent: hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.87-0.91(3 \mathrm{H}, \mathrm{m}), 0.99-1.90(21 \mathrm{H}, \mathrm{m}), 2.00-2.08(1 / 2 \mathrm{H}, \mathrm{m}), 2.13(1 / 2 \mathrm{H}$, ddd, $J=16.5,7.8,2.7 \mathrm{~Hz}$), 2.20-2.28 ($1 / 2 \mathrm{H}, \mathrm{m}$), 2.51-2.59 ($1 / 2 \mathrm{H}, \mathrm{m}$), 3.20-3.26 ($1 / 2 \mathrm{H}, \mathrm{m}$), $4.22(1 / 2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.24-4.31(1 / 2 \mathrm{H}, \mathrm{m}), 4.62-4.72(1 \mathrm{H}, \mathrm{m}), 5.17(1 / 2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, $6.23(1 / 2 \mathrm{H}, \mathrm{dd}, J=6.6,2.1 \mathrm{~Hz}), 6.33(1 / 2 \mathrm{H}, \mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 14.0,22.6,25.2,25.87,25.90,26.5,27.60,27.62,27.7,28.4,30.7,31.7,31.8,35.91$, 35.95, 36.3, 42.6, 43.2, 78.2, 80.2, 102.4, 103.4, 105.9, 109.3, 145.9, 146.5; IR (KBr): 2926, 1651, 1452, $1263 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 275.1987, found 275.1977.

4e: According to the general procedure, $\mathbf{4 e}(168.6 \mathrm{mg}, 89 \%)$ was obtained as 5:6 (= cis : trans) of diastereomeric mixture from $\mathbf{2 c}(206.4 \mathrm{mg}, 0.64 \mathrm{mmol})$, Grubbs' $2^{\text {nd }}$ cat. ($5.3 \mathrm{mg}, 0.0062 \mathrm{mmol}$), $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(24.2 \mathrm{mg}, 0.025$ $\mathrm{mmol})$. Eluent: hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=4 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.86-0.99$ $(9 \mathrm{H}, \mathrm{m}), 1.26-1.43(18 \mathrm{H}, \mathrm{m}), 1.62-1.67(1 \mathrm{H}, \mathrm{m}), 1.71-1.80(2 \mathrm{H}, \mathrm{m}), 1.97(6 / 11 \mathrm{H}, \mathrm{ddd}, J=$ $17.3,8.1,2.6 \mathrm{~Hz}), 2.14-2.31(10 / 11 \mathrm{H}, \mathrm{m}), 2.57-2.65(6 / 11 \mathrm{H}, \mathrm{m}), 2.98-3.03(5 / 11 \mathrm{H}, \mathrm{m})$, $4.07-4.12(6 / 11 \mathrm{H}, \mathrm{m}), 4.49(5 / 11 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 4.65-4.74(1 \mathrm{H}, \mathrm{m}), 5.47(6 / 11 \mathrm{H}, \mathrm{t}, J=5.3$ $\mathrm{Hz}), 6.24(6 / 11 \mathrm{H}, \mathrm{dd}, J=6.4,2.3 \mathrm{~Hz}), 6.31(5 / 11 \mathrm{H}, \mathrm{dd}, J=7.3,2.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 14.1,17.9,18.3,18.8,19.5,22.7,24.5,24.6,27.0,29.3,29.38,29.39,29.5,29.61$, $29.64,31.9,32.8,33.1,33.2,35.2,35.7,83.0,85.4,100.2,103.6,105.9,106.4,145.4,146.4$; IR (KBr): 2955, 2924, 2855, 1653, $1466 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 297.2794, found 297.2783.

4f: According to the general procedure, $\mathbf{4 f}(158.5 \mathrm{mg}, 76 \%)$ was obtained as $1: 1$ (= cis : trans) of diastereomeric mixture from $\mathbf{2 d}(225.7 \mathrm{mg}, 0.63$ mmol), Grubbs' $2^{\text {nd }}$ cat. ($5.4 \mathrm{mg}, 0.0064 \mathrm{mmol}$), $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(23.8$ $\mathrm{mg}, 0.025 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=3 / 1$ to hexane $/ \mathrm{AcOEt}=10 / 1$; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.86-0.89(3 \mathrm{H}, \mathrm{m}), 1.24-1.47$ ($18 \mathrm{H}, \mathrm{m}$), $1.69-1.85(2 H, ~ m), 2.27(1 / 2 H, ~ d d d, ~ J=17.5,7.7,2.4 \mathrm{~Hz}), 2.41(1 / 2 \mathrm{H}, \mathrm{ddd}, J=16.6,7.9,2.4$ Hz), 2.55-2.63 ($1 / 2 \mathrm{H}, \mathrm{m}$), 2.87-2.95 ($1 / 2 \mathrm{H}, \mathrm{m}$), $4.38(1 / 2 \mathrm{H}, \mathrm{dd}, J=11.0,2.3 \mathrm{~Hz}), 4.69(1 / 2 \mathrm{H}, \mathrm{t}$, $J=5.3 \mathrm{~Hz}), 4.78-4.87(1 \mathrm{H}, \mathrm{m}), 5.40(1 / 2 \mathrm{H}, \mathrm{dd}, J=10.5,2.7 \mathrm{~Hz}), 5.61(1 / 2 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz})$, $6.36(1 / 2 \mathrm{H}, \mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}), 6.43(1 / 2 \mathrm{H}, \mathrm{dd}, J=7.3,2.7 \mathrm{~Hz}), 7.26-7.40(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,22.7,24.5,24.6,29.3,29.4,29.49,29.55,29.6,31.9,33.2$, 35.2, 35.7, 37.7, 37.9, 79.8, 81.8, 101.3, 104.6, 106.3, 106.4, 125.8, 126.2, 127.4, 127.5, 128.2, 128.4, 142.3, 142.5, 146.4, 147.4; IR (KBr): 3034, 2924, 2853, 2251, $1651 \mathrm{~cm}^{-1}$; HRMS
(FAB): Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 331.2637 , found 331.2660.

General Procedure B for Preparation of 2,4-disubstituted-1,3-dioxepin 4e and 4f.

14a: PPTS ($21.2 \mathrm{mg}, 0.084 \mathrm{mmol}$)) was added to a solution of $\mathbf{1 2}^{3}$ (64.3
 $\mathrm{mg}, 0.41 \mathrm{mmol})$ and benzaldehyde (13a) ($0.21 \mathrm{~mL}, 2.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ at room temperature under N_{2}. The mixture was stirred at the same temperature for 12.5 h . The mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. $\mathrm{MeOH}(10 \mathrm{~mL})$ was added to the residue and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}(77.8 \mathrm{mg}, 2.06 \mathrm{mmol})$ was added to a solution. The mixture was stirred at the same temperature for 15 min . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/ $\mathrm{AcOEt}=$ 10/1) to give $\mathbf{1 4 a}(76.5 \mathrm{mg}, 76 \%)$ as $7: 4$ of diastereomeric mixture; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.80(12 / 11 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.92(21 / 11 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 0.99-1.80(8 \mathrm{H}$, $\mathrm{m}), 4.03-4.07(7 / 11 \mathrm{H}, \mathrm{m}), 4.30-4.34(1 \mathrm{H}, \mathrm{m}), 4.43-4.55(15 / 11 \mathrm{H}, \mathrm{m}), 5.58-5.77(2 \mathrm{H}, \mathrm{m}), 5.87$ $(7 / 11 \mathrm{H}, \mathrm{s}), 5.92(4 / 11 \mathrm{H}, \mathrm{s}), 7.32-7.39(3 \mathrm{H}, \mathrm{m}), 7.54-7.57(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 13.9,14.0,22.5,22.6,25.0,25.3,31.4,31.7,35.3,35.7,62.2,66.6,69.7,77.1$, $100.7,101.6,126.4,126.6,127.9,128.1,128.2,128.3,129.2,129.8,134.2,134.6,139.0$, 139.2; IR (KBr): 2932, 2859, 1450, 1346, $1207 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right):$ 247.1698, found 247.1706.

14b: PPTS ($103.9 \mathrm{mg}, 0.41 \mathrm{mmol}$) was added to a solution of $\mathbf{1 2}^{\mathbf{3}}$ ($327.8 \mathrm{mg}, 2.07 \mathrm{mmol}$) and cinnamaldehyde ($\mathbf{1 3 b}$) ($1.3 \mathrm{~mL}, 10.35$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ at room temperature under N_{2}. The mixture was stirred at the same temperature for 17 h . The mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. $\mathrm{MeOH}(21 \mathrm{~mL}$) was added to the residue and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}(391.9 \mathrm{mg}, 10.36 \mathrm{mmol})$ was added to a solution. The mixture was stirred at the same temperature for 30 min . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/AcOEt $=15 / 1$) to give $\mathbf{1 4 b}(258.0 \mathrm{mg}, 43 \%)$ as $6: 7$ of diastereomeric mixture; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.84(18 / 13 \mathrm{H}, \mathrm{t}, J=6.9$ $\mathrm{Hz}), 0.90(21 / 13 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.26-1.74(8 \mathrm{H}, \mathrm{m}), 4.05-4.11(7 / 13 \mathrm{H}, \mathrm{m}), 4.35-4.54$ $(32 / 13 \mathrm{H}, \mathrm{m}), 5.45(7 / 13 \mathrm{H}, \mathrm{dd}, J=4.0,1.2 \mathrm{~Hz}), 5.50(6 / 13 \mathrm{H}, \mathrm{dd}, J=4.0,1.2 \mathrm{~Hz}), 5.59-5.75$ $(2 \mathrm{H}, \mathrm{m}), 6.21-6.28(1 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{t}, J=16.0 \mathrm{~Hz}), 7.23-7.43(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 14.0,14.1,22.58,22.60,25.27,25.33,31.6,31.7,35.4,35.6,62.2,66.7,70.0,77.1$, $100.3,101.3,126.0,126.1,126.7,126.8,127.95,128.00,128.5,128.6,129.3,129.8,132.6$, 133.0, 134.1, 134.6, 136.2; IR (KBr): 2930, 2857, 1449, 1346, $1138 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): 273.1855$, found 273.1853.

$\mathbf{4 c}$: According to the general procedure A, $\mathbf{4 c}(55.9 \mathrm{mg}, 77 \%)$ was obtained as 2:1 (= cis : trans) of diastereomeric mixture from $\mathbf{1 4 a}(72.2 \mathrm{mg}, 0.29$ $\mathrm{mmol})$ and $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(11.0 \mathrm{mg}, 0.024 \mathrm{mmol})$. Eluent: hexane/benzene $=2 / 1$. The relative stereochemistry of $\mathbf{4 c}$ was determined by NOE experiments; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.86-0.90(3 \mathrm{H}, \mathrm{m})$, 1.19-1.77 ($8 \mathrm{H}, \mathrm{m}$), 2.17-2.29 ($1 \mathrm{H}, \mathrm{m}$), 2.35-2.43 ($2 / 3 \mathrm{H}, \mathrm{m}$), 2.62-2.71 ($1 / 3 \mathrm{H}, \mathrm{m}$), 3.45-3.55 $(2 / 3 \mathrm{H}, \mathrm{m}), 4.43-4.50(1 / 3 \mathrm{H}, \mathrm{m}), 4.83(1 / 3 \mathrm{H}, \mathrm{td}, J=7.1,3.2 \mathrm{~Hz}), 4.89(2 / 3 \mathrm{H}, \mathrm{td}, J=7.7,2.6$ $\mathrm{Hz}), 5.51(2 / 3 \mathrm{H}, \mathrm{s}), 6.40-6.42(2 / 3 \mathrm{H}, \mathrm{m}), 6.49(2 / 3 \mathrm{H}, \mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}), 7.30-7.40(3 \mathrm{H}, \mathrm{m})$, 7.50-7.56 ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.0,22.6,25.3,26.0,31.0,31.7,31.8$, $35.8,35.86,35.89,78.0,80.7,99.4,104.6,105.2,107.1,126.0,126.2,128.1,128.2,128.4$, 128.6, 138.9, 139.2, 145.9, 146.7; IR (KBr): 2930, 1651, 1452, 1277, $1115 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): 247.1698$, found 247.1680.

4d: According to the general procedure A, 4d ($24.9 \mathrm{mg}, 59 \%$) was obtained as 5:3 (= cis : trans) of diastereomeric mixture from 14b (42.4 $\mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(5.6 \mathrm{mg}, 0.0059 \mathrm{mmol})$. Eluent: hexane/benzene= $1 / 1$. The relative stereochemistry of $\mathbf{4 d}$ was determined by NOE experiments; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , ACETONE-D ${ }_{6}$) δ : $0.73-0.78(3 \mathrm{H}, \mathrm{m}), 1.16-1.54(8 \mathrm{H}, \mathrm{m}), 2.12-2.31(13 / 8 \mathrm{H}, \mathrm{m}), 2.61-2.69(3 / 8 \mathrm{H}, \mathrm{m}), 3.43-3.50$ $(5 / 8 \mathrm{H}, \mathrm{m}), 4.28-4.35(3 / 8 \mathrm{H}, \mathrm{m}), 4.76-4.84(1 \mathrm{H}, \mathrm{m}), 5.17(5 / 8 \mathrm{H}, \mathrm{dd}, J=4.4,1.1 \mathrm{~Hz}), 6.07$ ($3 / 8 \mathrm{H}, \mathrm{dd}, J=5.0,0.9 \mathrm{~Hz}$), $6.24-6.31(1 \mathrm{H}, \mathrm{m}), 6.37(1 \mathrm{H}, \mathrm{td}, J=7.7,3.2 \mathrm{~Hz}), 6.79(1 \mathrm{H}$, dd like, $J=15.3,14.0 \mathrm{~Hz}), 7.26-7.37(3 \mathrm{H}, \mathrm{m}), 7.47-7.50(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, ACETONE-D $_{6}$) $\delta: 14.3,23.2,26.0,26.5,31.9,32.4,32.5,36.5,36.7,78.4,81.0,99.5,105.0$, 105.6, 107.3, 127.5, 127.8, 128.8, 129.5, 132.5, 132.9, 137.18, 137.24, 146.3, 146.8; IR (KBr): 2930, 2859, 1651, $1265 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right):$ 273.1855, found 273.1826.

General Procedure for Preparation of 2,3,5-trisubstituted-THF 5aA-5fA.

TfOH (0.5 equiv) was added dropwise to a solution of 1,3 -dioxepin (1.0 equiv) in DMF $(0.05 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at room temperature. After checking disappearance of 1,3 -dioxepin on TLC, the mixture was quenched with saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. AcOEt and $\mathrm{Et}_{2} \mathrm{O}$ were added to the mixture, which was washed by water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography to give a $2,3,5-$ trisubstituted-THF.
The diastereomeric ratio was determined by integration value of α-proton of aldehyde in ${ }^{1} \mathrm{H}$ NMR.

The relative stereochemistry between H 2 and H 5 was determined by NOE experiments.
The relative stereochemistry between H 2 and H 3 was determined by DBU-mediated isomerization.

$\mathbf{5 a A}$ and 5aB: According to the general procedure, $\mathbf{5 a A}$ and $\mathbf{5 a B}(52.2 \mathrm{mg}$, 89%) were obtained as $95: 5$ of diastereomeric mixture from $\mathbf{4 a}(58.7 \mathrm{mg}$, 0.181 mmol) and TfOH ($8.0 \mu \mathrm{~L}, 0.091 \mathrm{mmol}$). Eluent: hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.86-0.91(7 \mathrm{H}, \mathrm{m}), 1.25-1.75(29 \mathrm{H}, \mathrm{m}), 2.16$ (1 H , ddd, $J=14.3,7.7,5.6 \mathrm{~Hz}$), 2.87-2.94 ($1 \mathrm{H}, \mathrm{m}$), 3.78-3.85 ($1 \mathrm{H}, \mathrm{m}$), 3.91-3.96 ($1 \mathrm{H}, \mathrm{m}$), $9.61(2 / 100 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$ for minor isomer of $5 \mathbf{5 B}), 9.65(88 / 100 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$ for major isomer of $\mathbf{5 a A}), 9.67(7 / 100 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 a A}), 9.74(3 / 100 \mathrm{H}, \mathrm{d}, J=$ 3.7 Hz for major isomer of $\mathbf{5 a B}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.0,14.1,22.6,22.7,25.9$, 26.7, 29.3, 29.4, 29.5, 29.6, 31.2, 31.86, 31.89, 32.3, 35.5, 53.9, 79.3, 81.4, 203.0; IR (KBr): 2926, 2855, 1722, 1466, $1261 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NaO}_{2}\left(\mathrm{M}_{+} \mathrm{Na}^{+}\right)$: 347.2926, found 347.2915 .

$\mathbf{5 b A}$ and 5bB: According to the general procedure, $\mathbf{5 b A}$ and $\mathbf{5 b B}(15.5 \mathrm{mg}$, 88%) were obtained as $90: 10$ of diastereomeric mixture from $\mathbf{4 b}(17.7 \mathrm{mg}$, $0.070 \mathrm{mmol})$ and $\mathrm{TfOH}(3.1 \mu \mathrm{~L}, 0.035 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=$ 4/1; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ : 0.78-1.72 $(23 \mathrm{H}, \mathrm{m}), 2.21-2.26(1 \mathrm{H}, \mathrm{m})$, $2.49-2.55(1 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}), 3.48-3.55(1 \mathrm{H}, \mathrm{m}), 9.27(3 / 100 \mathrm{H}, \mathrm{d}, J=3.9$ Hz for minor isomer of $\mathbf{5 b B}), 9.30(10 / 100 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 b A}), 9.57$ $(80 / 100 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}$ for major isomer of $\mathbf{5 b A}), 9.60(7 / 100 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$ for major
isomer of $\mathbf{5 b B}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 14.2,23.0,25.78,25.84,26.4,26.7,29.2,31.4$, 32.2, 32.4, 36.0, 38.8, 52.8, 78.7, 86.6, 201.2; IR (KBr): 2924, 2853, 1721, 1466, 1458, 1449 cm^{-1}; HRMS (FAB): Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): 253.2168$, found 253.2164 .

$\mathbf{5 c A}$ and $\mathbf{5 c B}$: According to the general procedure, $\mathbf{5 c A}$ and $\mathbf{5 c B}$ (26.7 $\mathrm{mg}, 95 \%$) were obtained as $96: 4$ of diastereomeric mixture from $\mathbf{4 c}$ (28.0 $\mathrm{mg}, 0.114 \mathrm{mmol})$ and $\mathrm{TfOH}(5.0 \mu \mathrm{~L}, 0.057 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=$ 8/1; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.90-0.93(3 \mathrm{H}, \mathrm{m})$, $1.33-1.56(6 \mathrm{H}, \mathrm{m}), 1.65-1.73(1 \mathrm{H}, \mathrm{m}), 1.80-1.90(1 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}$, ddd, $J=14.2,7.8,5.3$ $\mathrm{Hz}), 2.22(1 \mathrm{H}$, ddd, $J=14.2,7.8,5.3 \mathrm{~Hz}), 3.23-3.29(1 \mathrm{H}, \mathrm{m}), 3.99-4.06(1 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.24-7.36(5 \mathrm{H}, \mathrm{m}), 9.07(90 / 100 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$ for major isomer of $\mathbf{5 c A}), 9.17$ $(3 / 100 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$ for major isomer of $\mathbf{5 c B}), 9.78(1 / 100 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 c B}$), $9.81(6 / 100 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 c A}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.0,22.6,25.9,31.9,32.1,35.1,55.5,79.7,81.5,126.1,127.9,128.6,137.5,201.7$; IR (KBr): 2955, 2930, 2859, 1724, $1454 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 247.1698, found 247.1708.

5dA and 5dB: According to the general procedure, 5dA and 5dB ($21.1 \mathrm{mg}, 94 \%$) were obtained as $89: 11$ of diastereomeric mixture from $4 d(22.4 \mathrm{mg}, 0.078 \mathrm{mmol})$ and $\mathrm{TfOH}(3.4 \mu \mathrm{~L}, 0.039 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=8 / 1$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta: 0.89-0.93(3 \mathrm{H}$, m), 1.31-1.92 ($9 \mathrm{H}, \mathrm{m}$), 2.13-2.20 ($1 \mathrm{H}, \mathrm{m}$), 3.18-3.25 ($1 \mathrm{H}, \mathrm{m}$), 3.88-3.95 ($1 \mathrm{H}, \mathrm{m}$), 4.69-4.73 $(1 \mathrm{H}, \mathrm{m}), 6.30(1 \mathrm{H}, \mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=15.6,0.9 \mathrm{~Hz}), 7.24-7.44(5 \mathrm{H}, \mathrm{m})$, $9.61(78 / 100 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$ for major isomer of $\mathbf{5 d A}), 9.66(4 / 100 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 d B}), 9.69(7 / 100 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$ for major isomer of $\mathbf{5 b B}), 9.69(11 / 100 \mathrm{H}, \mathrm{d}, J=$ 2.3 Hz for minor isomer of $\mathbf{5 d A}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.0,22.6,25.9,31.8,32.1$, $35.4,55.5,79.8,80.6,125.1,126.6,128.0,128.5,132.8,136.1,201.7$; IR (KBr): 2957, 2932, 2861, 1722, $970 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 273.1855, found 273.1804.

5eA and 5eB: According to the general procedure, 5eA and 5eB
 ($19.0 \mathrm{mg}, 85 \%$) were obtained as $92: 8$ of diastereomeric mixture from $\mathbf{4 e}$ $(22.4 \mathrm{mg}, 0.076 \mathrm{mmol})$ and $\mathrm{TfOH}(3.4 \mu \mathrm{~L}, 0.038 \mathrm{mmol})$. Eluent: hexane/ $\mathrm{AcOEt}=30 / 1$ to $20 / 1$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.86-0.90(3 H, m), 0.92(3 H, d, J=6.4 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.25-1.37(21 \mathrm{H}, \mathrm{m})$, $1.73-1.82(1 \mathrm{H}, \mathrm{m}), 1.83-1.90(1 \mathrm{H}, \mathrm{m}), 2.04-2.11(1 \mathrm{H}, \mathrm{m}), 2.89-2.95(1 \mathrm{H}, \mathrm{m}), 3.48-3.54(1 \mathrm{H}$, m), $3.93-3.98(1 \mathrm{H}, \mathrm{m}), 9.60(5 / 100 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$ for the major isomer of $\mathbf{5 e B}), 9.64$ $(82 / 100 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$ for major isomer of $\mathbf{5 e A}), 9.67(8 / 100 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}$ for the minor isomer of $\mathbf{5 e A}$), $9.75(5 / 100 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 e B}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta: 14.1,18.4,19.6,22.7,26.6,29.3,29.4,29.52,29.54,29.6,29.9,31.3,31.9,33.1$, 53.8, 81.1, 84.6, 202.9; IR (KBr): 2957, 2926, 2853, 1724, $1468 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 297.2794, found 297.2783 .

$\mathbf{5 f} \mathbf{A}$ and 5fB: According to the general procedure, $\mathbf{5 f A}$ and $\mathbf{5 f B}(19.2 \mathrm{mg}$, 82%) were obtained as $98: 2$ of diastereomeric mixture from $4 \mathbf{e}(23.3 \mathrm{mg}$, 0.070 mmol) and $\mathrm{TfOH}(3.1 \mu \mathrm{~L}, 0.035 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=$ $15 / 1$ to $10 / 1$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.88(3 \mathrm{H}, \mathrm{t}, J$ $=6.9 \mathrm{~Hz}), 1.26-1.46(17 \mathrm{H}, \mathrm{m}), 1.52-1.62(1 \mathrm{H}, \mathrm{m}), 1.65-1.83(1 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{ddd}, J=14.4$, 7.1, 5.2 Hz$), 2.49(1 \mathrm{H}, \mathrm{ddd}, J=14.4,7.1,5.2 \mathrm{~Hz}), 3.06-3.12(1 \mathrm{H}, \mathrm{m}), 4.14-4.20(1 \mathrm{H}, \mathrm{m}), 4.87$ ($1 \mathrm{H}, \mathrm{dd}, J=8.9,7.1 \mathrm{~Hz}), 7.26-7.40(5 \mathrm{H}, \mathrm{m}), 9.73(88 / 100 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}$ for major isomer of $\mathbf{5 f A}), 9.76(10 / 100 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}$ for minor isomer of $\mathbf{5 f A}) 9.85(2 / 100 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$ for 5fB); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 14.1,22.7,26.8,29.3,29.46,29.55,29.58,29.62,29.64$, $31.4,31.9,35.1,54.3,80.6,81.8,126.0,127.7,128.5,141.3,202.3$; IR (KBr): 2924, 2853, 1724, 1493, $1456 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 331.2637, found 331.2660 .

Experiments in Scheme 5

7: PPTS ($108.7 \mathrm{mg}, 0.433 \mathrm{mmol}$) was added to a solution of (R)-1-(benzyloxy)but-3-en-2-ol ${ }^{4} \quad(773.7 \quad \mathrm{mg}, \quad 4.34 \mathrm{mmol})$ and 2,3-dihydrofuran ($0.59 \mathrm{~mL}, 7.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ at room temperature under N_{2}. The mixture was stirred at the same temperature for 10 min . The mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $7(1.05 \mathrm{~g}, 97 \%)$ as $1: 1$ of diastereomeric mixture; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 1.35-1.45(1 \mathrm{H}$, $\mathrm{m}), 1.53-1.65(1 \mathrm{H}, \mathrm{m}), 1.71-1.93(2 \mathrm{H}, \mathrm{m}), 3.36-3.49(3 / 2 \mathrm{H}, \mathrm{m}), 3.58-3.71(3 / 2 \mathrm{H}, \mathrm{m})$, 3.80-3.91 ($1 \mathrm{H}, \mathrm{m}$), $4.33(1 \mathrm{H}, \mathrm{s}), 4.40(1 \mathrm{H}, \mathrm{s}), 4.50-4.57(1 \mathrm{H}, \mathrm{m}), 5.07-5.13(1 \mathrm{H}, \mathrm{m}), 5.26-5.31$ $(1 \mathrm{H}, \mathrm{m}), 5.38(1 / 2 \mathrm{H}, \mathrm{dt}, J=17.4,1.8 \mathrm{~Hz}), 5.53(1 / 2 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 5.74-5.94(1 \mathrm{H}, \mathrm{m})$, 7.07-7.19 (3H, m), 7.26-7.32 ($2 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 23.21,23.24,32.0$, $32.4,66.5,66.8,72.7,72.8,73.0,75.2,75.9,100.7,103.5,115.6,117.9,127.27,127.33,128.1$, 128.2, 135.4, 136.6, 138.1, 138.3; IR (KBr): 2930, 2359, 2340, 1454, $1186 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right):$ 249.1491, found 249.1479.

8: According to the literature ${ }^{5}$, TESOTf ($0.63 \mathrm{~mL}, 2.800 \mathrm{mmol}$) and 2,4,6-collidine ($0.55 \mathrm{~mL}, 4.200 \mathrm{mmol}$) were added to a solution of 7 (347.7 $\mathrm{mg}, 1.400 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. After 0.5 h stirring
at the same temperature, allylalcohol $(0.48 \mathrm{ml}, 7.00 \mathrm{mmol})$ was added to the mixture which was then stirred at the same temperature for 2 h . The mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to the residue then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($971.0 \mathrm{mg}, 7.02 \mathrm{mmol}$) was added to a solution. The mixture was stirred at the same temperature for $1 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}(963.0 \mathrm{mg}, 6.97 \mathrm{mmol})$ was added to a solution again and stirred for another 1 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/ $\mathrm{AcOEt}=2 / 1$) to give $\mathbf{8}$ ($368.6 \mathrm{mg}, 86 \%$ over 2 steps) as $1: 1$ of diastereomeric mixture; colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.61-1.87(5 \mathrm{H}, \mathrm{m}), 3.45-3.67(4 \mathrm{H}, \mathrm{m}), 3.94-4.16(2 \mathrm{H}, \mathrm{m}), 4.22-4.34(1 \mathrm{H}, \mathrm{m})$, $4.55-4.57(2 \mathrm{H}, \mathrm{m}), 4.67(1 / 2 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.76(1 / 2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 5.12-5.35(4 \mathrm{H}, \mathrm{m})$, 5.71-5.96 ($2 \mathrm{H}, \mathrm{m}$), 7.26-7.37 (5H, m); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.4,27.5,30.3,30.7$, $62.29,62.32,65.1,66.5,72.7,73.1,73.2,73.3,76.3,76.7,100.3,102.5,116.5,116.6,116.8$, 117.0, 118.5, 127.4, 127.5, 127.6, 128.18, 128.24, 134.4, 134.6, 135.5, 136.1, 137.9, 138.0; IR (KBr): 3406, $3383,2864,1454,1117 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 307.1909, found 307.1907.

9: $i \mathrm{Pr}_{2} \mathrm{NEt}(0.3 \mathrm{~mL}, 1.775 \mathrm{mmol})$, benzoyl chloride ($0.1 \mathrm{~mL}, 0.887 \mathrm{mmol}$) and DMAP ($11.2 \mathrm{mg}, 0.092 \mathrm{mmol}$) were successively added to a solution of $\mathbf{8}(151.2 \mathrm{mg}, 0.493 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ at room temperature under N_{2}. The mixture was stirred at the same temperature for 3.5 h . The mixture was evaporated in vacuo. The residue was purified by flash SiO_{2} column chromatography (hexane/benzene $=1 / 10$ to hexane $/ \mathrm{AcOEt}=5 / 1$) to give $9(201.3 \mathrm{mg}$, quant.) as 1:1 of diastereomeric mixture; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.77-1.87(4 \mathrm{H}$, m), 3.45-3.61 ($2 \mathrm{H}, \mathrm{m}$), 3.95-4.16 ($2 \mathrm{H}, \mathrm{m}$), 4.24-4.36 ($3 \mathrm{H}, \mathrm{m}$), $4.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.57$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.70(1 / 2 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 4.78(1 / 2 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 5.12-5.35(4 \mathrm{H}, \mathrm{m})$, 5.71-5.96 ($2 \mathrm{H}, \mathrm{m}$), 7.26-7.58 ($8 \mathrm{H}, \mathrm{m}$), $8.03\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 23.9,30.3,30.7,64.5,64.6,64.9,66.3,72.7,73.1,73.2,73.4,76.4,76.5,99.9,102.2,116.4$, 116.5, 116.8, 118.4, 127.37, 127.42, 127.44, 128.1, 128.2, 129.4, 130.18, 130.22, 132.66, $132.68,134.5,134.7,135.6,136.1,137.9,138.1,166.3$; IR (KBr): 2860, 1717, 1452, 1275, $1113 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 433.1991, found 433.1993.

10: According to the general procedure A, 10 ($21.7 \mathrm{mg}, 57 \%$) was obtained as 1:1 (= cis : trans) of diastereomeric mixture from $9(41.1 \mathrm{mg}$, $0.100 \mathrm{mmol})$, Grubbs' $2^{\text {nd }} \quad$ cat. $(3.5 \mathrm{mg}, 0.0041 \mathrm{mmol})$, $\mathrm{RuClH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(4.6 \mathrm{mg}, 0.0097 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=10 / 1$ to $8 / 1$; pale yellow oil ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.80-1.97(4 \mathrm{H}, \mathrm{m}), 2.15(1 / 2 \mathrm{H}, \mathrm{ddd}, J=17.4,8.0,3.0 \mathrm{~Hz}$), 2.21-2.31 ($1 \mathrm{H}, \mathrm{m}$), 2.70-2.78 ($1 / 2 \mathrm{H}, \mathrm{m}$), 3.44-3.63 ($5 / 2 \mathrm{H}, \mathrm{m}$), 4.32-4.36 ($2 \mathrm{H}, \mathrm{m}$), 4.48-4.63
$(3 \mathrm{H}, \mathrm{m}), 4.71(1 / 2 \mathrm{H}, \mathrm{td}, J=7.4,2.1 \mathrm{~Hz}), 4.79(1 / 2 \mathrm{H}, \mathrm{td}, J=7.2,3.4 \mathrm{~Hz}), 5.61(1 / 2 \mathrm{H}, \mathrm{t}, J=5.0$ $\mathrm{Hz}), 6.24(1 / 2 \mathrm{H}, \mathrm{dd}, J=6.9,2.3 \mathrm{~Hz}), 6.34(1 / 2 \mathrm{H}, \mathrm{dd}, J=7.1,2.5 \mathrm{~Hz}), 7.26-7.35(5 \mathrm{H}, \mathrm{m})$, 7.41-7.45 ($2 \mathrm{H}, \mathrm{m}$), 7.52-7.57 ($1 \mathrm{H}, \mathrm{m}$), 8.03-8.05 $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 23.7, 23.9, 27.5, 31.7, 32.1, 32.2, 64.65, 64.67, 72.67, 72.75, 73.3, 73.4, 77.1, 79.1, 99.9, 103.6, 105.4, 105.9, 127.57, 127.60, 127.61, 128.28, 128.34, 129.5, 130.4, 132.8, 138.1, 145.7, 145.8, 146.3, 146.4, 166.5; IR (KBr): 2928, 1717, 1651, 1275, $1115 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right): 383.1858$, found 383.1832.

11: According 2,3,5-trisubstituted-THF, $\mathbf{1 1}(16.0 \mathrm{mg}, 55 \%)$ was obtained as $30: 1$ of diastereomeric mixture from $\mathbf{1 0}(29.2 \mathrm{mg}, 0.076 \mathrm{mmol})$ and $\mathrm{TfOH}(3.4 \mu \mathrm{l}$, $0.038 \mathrm{mmol})$. Eluent: hexane $/ \mathrm{AcOEt}=2 / 1$; pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.78-2.19(6 \mathrm{H}, \mathrm{m}), 2.93-2.99(1 \mathrm{H}, \mathrm{m}), 3.51-3.64(2 \mathrm{H}, \mathrm{m}), 4.06-4.18(2 \mathrm{H}$, $\mathrm{m})$, 4.28-4.40 ($2 \mathrm{H}, \mathrm{m}$), 4.56-4.63 ($2 \mathrm{H}, \mathrm{m}$), 7.26-7.35 ($5 \mathrm{H}, \mathrm{m}$), $7.44(2 \mathrm{H}, \mathrm{t}$ like, $J=7.3 \mathrm{~Hz}$), $7.56(1 \mathrm{H}, \mathrm{t}$ like, $J=7.3 \mathrm{~Hz}), 8.01-8.03(2 \mathrm{H}, \mathrm{m}), 9.70(97 / 100 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}$ for cis-isomer of 11) $9.77(3 / 100 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$ for trans-isomer of $\mathbf{1 1}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 26.0$, $27.8,28.8,53.4,64.4,71.9,73.4,78.0,81.2,127.66,127.71,128.3,128.4,129.5,130.2,132.9$, 138.0, 166.5, 202.5; IR (KBr): 2860, 1719, 1275, $1113 \mathrm{~cm}^{-1}$; HRMS (FAB): Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right): 383.1858$, found 383.1842.

References

1) H. O. House, J. Lubinkowski, J. J. Good, J. Org. Chem., 1975, 40, 86.
2) D. M. Hodgson, M. J. Fleming, S. J. Stanway, J. Org. Chem., 2007, 72, 4763.
3) R. W. Bates, D. Diezmartin, W. J. Kerr, J. G. Knight, S. V. Ley, A. Sakellaridis, Tetrahedron, 1990, 46, 4063.
4) A. K. Ghosh, S. Leshchenko, M. Noetzel, J. Org. Chem., 2004, 69, 7822.
5) H. Fujioka, T. Okitsu, T. Ohnaka, Y. Sawama, O. Kubo, K. Okamoto, Y. Kita, Adv. Synth. Cat., 2007, 349, 636.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Mysu

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

D2-02-2010 16:10:12
1H
single pulse
302

ふ-

$\begin{array}{lll}8 \\ 800 & 00 \\ 0000^{\circ} 0 \\ 7 \& 00^{\circ} 0\end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material（ESI）for Chemical Communications This journal is © The Royal Society of Chemistry 2011

9909＊8L $06 L 9^{\circ} 00 I \square$ $080 L^{\circ} 00 I \longrightarrow$ $660 \varepsilon^{\circ} \mathrm{GIL}$ $7767^{\circ} 9 \mathrm{II}$ $97699^{\circ} 9 \mathrm{IL}$ 6ItL＂9ZI もも0 ： CZI も87ヵ＊ CZI LLE9ㄴZI 9もZと．8ZI もL6E．82I 6モL8＇もEI ZIC6＂ EE $0779^{\circ} 8$ E 7687．6\＆ ZZL8．0もI		

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

24-02-2010 02:52:20
single_pulse.ex2
399.78 MHz

ZH LE'Z009
LOLEI

- 8.7

エ

cis-4a

<方
$\stackrel{y}{4}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
 coupled

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

 LOIEL

 - 8.7%
 ¥ U

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
 0
0
0.0
0
0
0
0
0
0
0.
2.
0
0
00
0
0

$\begin{array}{r}\text { Z } \\ \text { ZH } 98 \\ \text { ZHY } \\ \hline\end{array}$

- 8.7
I

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
C: ¥Documents and Settings¥user¥ikN 1 に入 i
3-01-2011 20:13:12
H

$\begin{array}{rl}80 \\ 0 \\ 0 \\ 0 & 0 \\ 0\end{array}$
∞

४

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	時 ${ }^{\circ}$ 76.81	
	$\text { 形 } \theta \equiv \overline{=}$ $G \Phi^{\circ} 0 \equiv$ \qquad	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

\%

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
 single pulse decoupled gated NOE
$25-08-2010$ 22:32:05
13 C

\# o d

\pm

子

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4 a}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

${ }^{1}$ H NMR of 14b

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}$
: $¥$ NMRTh ingle pulse decoupled gated NOE
7-01-2011 19:24:29
3C 0
0
0
0
0
0
0
0
0
0
0.0
0.0
6
 N

0
0
0
0

 ¥

็ㅗㄴ

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011

2-03-2010 16:56:04
$1 H$

$\stackrel{N}{N}$

I U

$\stackrel{\infty}{5}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011

ingle pulse decoupled gated NOE
$11-08-201000: 11: 14$

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications
This jourrad is © The Royal Society of Chemistry 2011

This journoll is © The Royal Society of Chemistry 2011

${ }^{1} \mathrm{H} N M R$ of $\mathbf{5 e} \mathbf{A}$ and $\mathbf{5 e B}$

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 f A}$ and $\mathbf{5 f B}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
 single pulse decoupled gated NOE 0
0
0
0
0
0
0
0
0
0
0.0
0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

single-_pulse $12-10-2010$ 00:45:55 $1 H$ single pulse.ex2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material（ESI）for Chemical Communications
This joural is © The Royal Society of Chemistry 2011
D：$\because N M R$ データ保存用 $¥ k u b o \neq k u b o$ NMR¥Or

zh IE
LOI ZOL

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

pled gated NOE

