Solid Phase Synthesis of Selectively Deuterated Arenes

Sylvia Vanderheiden ${ }^{\text {a,b }}$, Bekir Bulat ${ }^{\text {a,b }}$, Thomas Zevaco ${ }^{c}$, Nicole Jung ${ }^{\text {a,b* }}$, Stefan Bräse ${ }^{\text {a* }}$

a) Prof. Dr. Stefan Bräse, Institute of Organic Chemistry, KIT-Campus Süd
Fritz-Haber-Weg 6, D-76131 Karlsruhe (Germany)
Fax (+49) 721-608-48581
E-Mail: braese@kit.edu
b) Dr. Nicole Jung, Sylvia Vanderheiden, Bekir Bulat IOC-ComPlat, KIT-Campus Nord
Hermann von Helmholtz Platz 1
D-76344 Eggenstein-Leopoldshafen (Germany)
E-Mail: nicole.jung@kit.edu
c) Dr. Thomas Zevaco

Institute of Catalysis Research and -Technology,
KIT- Campus North
Hermann von Helmholtz Platz 1,
76344 Eggenstein-Leopoldshafen (Germany).

Content

page
Instrumentation and reagents 2
General remarks 3
Synthesis of diisopropyl triazenes in solution: 4
Suzuki coupling in solution 5
Generation of $\mathrm{D}_{3} \mathrm{CO}$-derivatives in methanol (in solution) 5
N-Benzylaminomethyl polystyrene and Immobilization of anilines as triazene resin 6
Derivation of resin-bound triazenes 6
Procedures and analytical data of precursors 7
Procedures and analytical data of resins 1a-1z 9
Deuterating cleavage from the solid support in THF-d ${ }_{8}$ and methanol- d_{4} 16
Procedures and analytical data of compounds $\mathbf{3 a} \mathbf{a z}$ 16
Generation of $\mathrm{D}_{3} \mathrm{CO}$-derivatives in methanol 22
Procedures and analytical data of compounds 4I-4z 22
Procedures and analytical data of compounds 4aa and 4ab 25
Procedure and analytical data of compound $\mathbf{4 z}$ 26
Additional references 27

Experimental Section

Instrumentation and reagents: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AM 250 (250 $\mathrm{MHz})$, Bruker AM $400(400 \mathrm{MHz})$ and Bruker AM $500(500 \mathrm{MHz})$ spectrometers. Chemical shifts are expressed in parts per million (δ / ppm) downfield from tetramethylsilane (TMS) and are referenced to chloroform (7.26 ppm) or methanol $\left[\mathrm{d}_{4}\right]$ (3.31 ppm) as internal standard. All coupling constants are absolute values and J values are expressed in Hertz (Hz). The description of signals include: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{bd}=$ broad doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. The spectra were analyzed according to first order. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AM 250 (62.5 MHz), Bruker AM 400 (100 MHz) and Bruker AM $500(125 \mathrm{MHz})$ spectrometers. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to $\mathrm{CDCl}_{3}(77.4 \mathrm{ppm})$ or methanol[$\left.\mathrm{d}_{4}\right]$ (49.1 ppm) as internal standard. For measurement of ${ }^{13} \mathrm{C}$ NMR-Gel-Spectra, $60-100 \mathrm{mg}$ of the resin were swollen in a NMR-tube with the appropriate amount of solvent. All ${ }^{13} \mathrm{C}$ NMR signals are given except of those that derive from the polystyrene resin. Some of the expected signals of the attached molecules are superimposed by the polystyrene core and can therefore not be clearly attributed. The NMR-spectrometer was run with pulse program zgpg30 (relaxation delay D1 $=0.2$ seconds, linebroadening LB $=9.0 \mathrm{~Hz}, 5120$ scans). MS (EI) (electron impact mass spectrometry): Finnigan MAT $90(70 \mathrm{eV})$. The molecular fragments are quoted as the relation between mass and charge (m / z), the intensities as a percentage value relative to the intensity of the base signal (100\%). The abbreviation $\left[\mathrm{M}^{+}\right]$refers to the molecule ion. IR (infrared spectroscopy): FTIR Bruker IFS 88. IR spectra of solids were recorded in KBr , and as thin films on KBr for oils and liquids. ATR spectra were recorded by diamond crystal on Bruker ALPHA-IR. Raman spectra were recorded on Bruker Optics MultiRam (30 scans, 1064 nm, 100-150 mW). The deposit of the absorption band was given in wave numbers in cm^{-1}. The intensity of the bands were characterized as follows: vs = very strong 0-10\% T, $\mathrm{s}=$ strong $11-40 \% \mathrm{~T}, \mathrm{~m}$ = medium 41-70\% T, w = weak 71-90\% T, vw = very weak 91-100\% T. Routine monitoring of reactions was performed using silica gel coated aluminium plates (Merck, silica gel 60, F_{254}) which were analyzed under UV-light at 254 nm and/or dipped into a solution of molybdato phosphate (5% phosphor molybdic acid in ethanol, dipping solution) and heated with a heat gun. Solvent mixtures are understood as volume/volume. Solid materials were powdered. Solvents, reagents and chemicals were purchased from Aldrich, Fluka, ABCR and Acros. Solvents, reagents and chemicals were used as purchased unless stated otherwise. Merrifield Resin was purchased from Polymer Laboratories (PL-CMS resin $0.995 \mathrm{mmol} / \mathrm{g}$, 75-150 $\mu \mathrm{m}$, CMS 191). If not stated otherwise, vials from Macherey-Nagel were used for all
reactions beyond room temperature (size 20-20 and 20-10, in combination with N20 oA and N20 TB/oA-M septa).

General remarks:

$-{ }^{13} \mathrm{C}$ NMR signals:

The intensities of carbon signals are very low for carbons that are directly connected to deuterium owing to the lower sensitivity compared to 1 H (disadvantageous gyromagnetic ratio: $\gamma\left({ }^{1} \mathrm{H}\right) / \gamma\left({ }^{2} \mathrm{H}\right) \sim 6.5$ and accordingly ${ }^{1}\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right) \approx 6.5 \cdot{ }^{1} \mathrm{~J}\left({ }^{13} \mathrm{C},{ }^{2} \mathrm{H}\right)$.) and the lack of Nuclear Overhauser Enhancement from the proton broad-band decoupling. Due to the occurrence of these signals as broad triplet (C-D) or septet $\left(\mathrm{OCD}_{3}\right)$, they are often hard to detect The signals of the deuterated carbons are not given in here because of this disadvantage of deuterated compounds (compound 4z: to prove the twofold deuteration all ${ }^{13} \mathrm{C}$ signals are given, including C-D and OCD_{3}). In all cases we supply complete analytic datasets that identify all compounds doubtlessly.

-Deuteration

If not otherwise stated, all purities were determined by mass spectroscopy

GP 1: Synthesis of diisopropyl triazenes in solution:

1.00 equiv. of aniline was dissolved in abs. THF (4 mL of THF for 1 mmol of aniline) at room temperature and 4.00 equiv. of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were added. The mixture was cooled to $-20^{\circ} \mathrm{C}$ and stirring constantly, 3.50 equiv. of isoamyl nitrite were added dropwise. After 1 h at $-20^{\circ} \mathrm{C}$ the precipitate was filtered off, washed with cold diethyl ether, dissolved in acetonitrile, and then added to a solution of diisopropyl amine (1.00 equiv.), acetonitrile (5 mL MeCN for 1 mmol diisopropylamine) and pyridine (0.5 mL of pyridine for 1 mmol of diisopropyl amine) at -20 ${ }^{\circ} \mathrm{C}$. After stirring for 48 h at room temperature water was added and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure and the crude product was purified by column chromatography.

1-(4-Iodophenyl)-3,3-diisopropyltriaz-1-ene (precursor for triazene 1aa): Following GP 1,
 2.86 g (13.1 mmol) of 4-iodoaniline were reacted with 1.83 mL (13.1 mmol) of diisopropylamine. Column chromatography (cyclohexane/ethyl acetate, $99: 1$) gave $1.53 \mathrm{~g}(4.63 \mathrm{mmol})$ of the product as an orange solid in 35% yield. $-\mathrm{R}_{f}=0.62$ (cyclohexane/ethyl acetate, 20:1)._- ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.30$ (bs, 12 H), 3.62-4.44 (bs, 1 H$), 4.79-5.58$ (bs, 1 H$)$,
7.13-7.19 (m, 2 H), 7.58-7.63 (m, 2 H). $-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=19.3-25.3$ (bs, 4 C), 39.7-52.4 (bs, 2 C), 88.5, 122.3, 137.6, 151.4. - IR (DRIFT, v): 2975, 2931, 2632, 1898, 1648, 1580, 1474, 1422, 1367, 1299, 1227, 1194, 1163, 1099. - EI (m/z): 331 (67) [${ }^{+}$], 231 (95), 203 (100), 100 (60), 76 (47). - EA ($\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3}$)): calc. C 43.52, H 5.48, N 12.69; found C 43.98, H 5.43, N 12.60.

GP 2: Suzuki coupling in solution

1.00 equiv. of the triazene was dissolved in DMF and 1.50 equiv. of boronic acid, 1.50 equiv. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as well as 0.044 equiv. of tetrakis triphenylphosphine palladium and 1.50 mL of $\mathrm{H}_{2} \mathrm{O}$ were added. After stirring for 12 h at $80^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ were added, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the organic layer was dried over MgSO_{4} and the crude product was purified by column chromatography.

1-(Biphenyl-4-yl)-3,3-diisopropyltriaz-1-ene (1aa): According to GP 2, 350 mg of 1-(4-
 iodophenyl)-3,3-diisopropyltriaz-1-ene ($1.06 \mathrm{mmol}, 1.00$ equiv.) were reacted with 200 mg ($1.50 \mathrm{mmol}, 1.50$ equiv.) of phenylboronic acid. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $131 \mathrm{mg}(0.46 \mathrm{mmol})$ of the target compound in 43% yield. $-\mathrm{R}_{f}=0.48$ (cyclohexane/ethyl acetate, 20:1)._ - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.34\left(\mathrm{bd},{ }^{3} \mathrm{~J}=5.7\right.$ $\mathrm{Hz}, 12 \mathrm{H}$), 3.66-4.54 (bs, 1 H), 4.76-5.68 (bs, 1 H), 7.31-7.64 (m, 9 H$).-{ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=20.0-24.9\left(\mathrm{bs}, \mathrm{CH}_{3}\right), 44.9-50.1$ (bs, CH), 120.6 (CH), 126.7 (CH), 126.8 (CH), 127.5 (CH), 128.7 (CH), 137.4 (C), 141.2 (C), 151.0 (C). - EI (m/z): 281 (41) [${ }^{+}$], 181 (31), 152 (100), 100 (35). - IR (ATR, च̃): 2974, 2930, 1599, 1511, 1482, 1449, 1396, 1379, 1364, 1306, 1270, 1224, 1162, 1147, 1130, 1027, 1005, 914, 844, 769, 758, 700 cm^{-1}. - EA ($\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3}$): calc. C 76.83, H 8.24, N 14.93; found C 76.65, H 8.07, N 14.62.
t-Butyl-3-(2-(3,3-diisopropyltriaz-1-en-1-yl)phenyl)acrylate (1ab): To a solution of 324 mg
 (978 mmol) of 1-(2-iodopheny)-3,3-diisopropyltriaz-1-ene in 5 mL of abs. THF were added 0.10 mL ($72.6 \mathrm{mg}, 0.73$ equiv.) of triethylamine, 56.5 mg ($4.89 \mathrm{mmol}, 0.05$ equiv.) of palladiumtetrakistriphenylphosphine and 128 mg ($1.96 \mathrm{mmol}, 2.00$ equiv.) of tert-butyl acrylate. The mixture was stirred for 14 h at $120^{\circ} \mathrm{C}$, then water was added, the aqueous layer was extracted three times with each 15 mL of ethyl
acetate, and the organic phase was dried over magnesium sulfate. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $146 \mathrm{mg}(0.441 \mathrm{mmol})$ of the target compound in 45% yield. $-\mathrm{R}_{f}=0.27$ (cyclohexane/ethyl acetate, 20:1). $-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=$ 1.31 (bs, 6 H), 1.38 (bs, 6 H), 1.54 (s, 9 H), 4.02 (bs, 1 H), 5.24 (bs, 1 H), 6.39 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=$ 16.2 Hz), 7.10 (ddd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}$), $7.26-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.44$ (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}$), $7.60\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}\right.$), $8.42\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=16.2\right.$ Hz). $-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=19.3$ (2 C), 23.8 (2 C), 28.2 (3 C), 46.8, 49.5, 79.8, 117.3, 119.5, 124.7, 126.7, 128.3, 130.3, 140.9, 149.9, 166.8. - IR (DRIFT, v): 3067, 2977, 2929, 1697, 1619, 1595, 1568, 1477, 1456, 1409, 1379, 1362, 1299, 1254, 1227, 1197, 1157, 1127, 1103, 1036, 1003, 980, 890, 838, 785, 760, $740 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 331$ (13) [$\left.\mathrm{M}^{+}\right], 231$ (1), 147 (9), 119 (34), 100 (24), 91 (14), 57 (18), 43 (100). - HRMS ($\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$): calc. 331.2260, found 331.2258 .

GP 3: Generation of $D_{3} C O$-derivatives in methanol

In a Crimptop vial the triazene is first evacuated and then flushed with nitrogen. Then methanol ($1.0 \mathrm{~mL} / 10 \mathrm{mg}$ of triazene) and deuterated TFA ($10 \mu \mathrm{~L} / 10 \mathrm{mg}$ of resin) are added. The vial is sealed, agitated for 14 h at $80^{\circ} \mathrm{C}$, and then water is added and the aqueous phase extracted with ethyl acetate three times. The organic phase is concentrated in vacuo and the residue is purified by column chromatography.

General washing procedure for resins:

Using acetone the resins were transferred into a filter and subsequently washed according to the following procedure: $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}\right) 3 \times$ successive treatment, $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}\right) 2 \times$ successive treatment, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
N-Benzylaminomethyl polystyrene: 40.0 g (loading: $0.995 \mathrm{mmol} / \mathrm{g}=39.8 \mathrm{mmol}, 1.00$
 equiv.) of Merrifield resin were swollen in 250 mL of abs. DMF. Then, $6.64 \mathrm{~g}(40.0 \mathrm{mmol}, 1.00$ equiv.) of KI and $43.7 \mathrm{~mL}(400 \mathrm{mmol}, 10.0$ equiv.) of benzyl amine were added. The mixture was shaken for 12 h at $80^{\circ} \mathrm{C}$. The resin was filtered off the supernatant and then washed (according to washing procedure). After removal of the solvent in vacuo 39.7 g of benzylamine resin were obtained in quantitative yield ($0.925 \mathrm{mmol} / \mathrm{g}$). $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=53.2,125.8,140.5$. IR (DRIFT, v): 3647, 3618, 3324, 3161, 3032, 2846, 2603, 2336, 2311, 1944, 1871, 1803, 1746,

1721, 1669, 1601, $1494 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{83} \mathrm{H}_{84} \mathrm{~N}$): calc. C 90.99, H 7.73, N 1.28; found C 89.78, H 7.62, N 1.10.

GP 4: Immobilization of anilines as triazene resin

The aniline (5.00 equiv.) was dissolved in THF, cooled to $-20^{\circ} \mathrm{C}$ and 7.50 equiv. of boron trifluoride diethyl etherate were added. Isoamyl nitrite (7.50 equiv.) was added under vigorous stirring and the mixture was stirred for another 2 h at $-20^{\circ} \mathrm{C}$. The residue was filtered off, washed with cold diethyl ether, dissolved in acetonitrile and added to the previously swollen N-benzylaminomethyl resin (1.00 equiv.) in THF/pyridine (9:1). The resin was allowed to warm slowly to room temperature and was shaken for 2 h at room temperature. The supernatant was filtered off, the resin was washed according to the general washing procedure, and was afterwards dried in vacuo.

Derivation of resin-bound triazenes:

GP 5: Generation of o-diaryl ethers on solid supports

Under a nitrogen atmosphere 1.00 equiv. of the triazene resin, 5.00 equiv. of copper (I) bromide dimethyl sulfide complex and 6.00 equiv. of sodium carbonate were suspended in acetonitrile and pyridine, then 5.00 equiv. of the phenol were added. The vial was sealed and the mixture was shaken at $75^{\circ} \mathrm{C}$ for 48 h . After cooling down to room temperature the resin was first washed with water and then alternating with a solution of 5% of cupral (diethylaminodithiocarbamate in DMF) and acetone until the filtrate remained colorless. Then washing was continued following the general washing procedure and the resin was dried in high vacuum.

GP 6: Sonogashira coupling of immobilized aryl halogenides

The aryl halogen resin (1.00 equiv.) was suspended in abs. DMF under a nitrogen atmosphere and was shaken for 30 minutes. Then at least 7.46 equiv. of the alkyne, 1.49 equiv. of $\mathrm{NEt}_{3}, 0.746$ equiv. of Cul as well as 0.0149 equiv. of tetrakis(triphenylphosphine) palladium were added. The mixture was degassed for 10 min , the vial was sealed and was shaken at $80^{\circ} \mathrm{C}$ for 48 h . The solvent was filtered off, the resin was washed according to the general washing procedure and was then dried in high vacuum.

3-Benzyl-(3-methylpolystyrene)-1-(2-iodophenyl)triaz-1-ene: According to GP 4, 2-
 iodoaniline was immobilized on 3.00 g of N-benzylaminomethyl resin $(2.78 \mathrm{mmol})$. After drying under high vacuum $3.95 \mathrm{~g}(2.78 \mathrm{mmol}, 0.702$ $\mathrm{mmol} / \mathrm{g}$) of the resin were obtained in quantitative yield. ${ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=48.7,57.2,97.0,118.1,139.4,145.0$. -IR (DRIFT, v): $3583,3034,2856,2337,2312,1945,1878,1805,1748,1723,1600,1529,1494$, $1349 \mathrm{~cm}^{-1}$. Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3055, 2905, 2853, 1603, 1580, 1461, 1411, 1323, 1283, 1259, 1219, 1202, 1183, 1156, 1032, 1002, $796,757,622 \mathrm{~cm}^{-1}$. - EA ($\left.\mathrm{C}_{90} \mathrm{H}_{88} \mathrm{~N}_{3} \mathrm{I}\right)$: calc. C 80.71, H 6.62, N 3.15; found C 80.54, H 6.7,3, N 2.63 .

3-Benzyl-(3-methylpolystyrene)-1-(2-bromophenyl)triaz-1-ene: According to GP 4, 2-
 bromoaniline was immobilized on 6.00 g of N -benzylaminomethyl resin (5.55 mmol). After drying in high vacuum $6.90 \mathrm{~g}(4.94 \mathrm{mmol}, 0.717$ $\mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 89% yield. $-{ }^{13} \mathrm{C}$ Gel NMR (100 MHz , $\mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=48.8,57.3,118.9,133.3$, 148.1. - Raman ($60 \mathrm{~mW}, 1064$ $n m): 3057,2907,2853,1677,1602,1476,1443,1413,1327,1236,1216,1183,1156,1033$, 1002, 843, 796, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{90} \mathrm{H}_{88} \mathrm{~N}_{3} \mathrm{Br}$): calc. C 83.66, H 6.86, N 3.27; found C 83.91, H 6.97, N 2.73.

3-Benzyl-(3-methylpolystyrene)-1-(2,4-dibromophenyl)triaz-1-ene: According to GP 4,
 2,4-dibromoaniline was immobilized on 3.00 g of N-benzylaminomethyl resin (2.78 mmol). After drying in high vacuum $3.54 \mathrm{~g}(2.06 \mathrm{mmol}, 0.581$ $\mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 74% yield. - ${ }^{13} \mathrm{C}$ Gel NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=48.9,57.4,118.7,119.8,125.8,135.4,147.2$ - IR (ATR, ṽ): 3059, 3025, 2918, 2849, 1601, 1492, 1449, 1375, 1347, 1153, 1076, 1028, 905, 816, 754, 695, $539 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3056, 2914, 1603, 1573, 1461, 1447, 1417, 1376, 1251, 1223, 1185, 1133, 1082, 1033, 1003, $798 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{91} \mathrm{H}_{90} \mathrm{~N}_{3} \mathrm{Br}\right)$: calc. C 83.68, H 6.94, N 3.23; found C 84.40, H 7.42, N 2.77.

3-Benzyl-(3-methylpolystyrene)-1-(2-bromo-4-methylphenyl)triaz-1-ene: According to GP 4, 2-bromo-4-methylaniline was immobilized on 3.00 g of N benzylaminomethyl resin (2.78 mmol). After drying in high vacuum 3.23 g $(1.19 \mathrm{mmol}, 0.367 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 43% yield. $-{ }^{13} \mathrm{C}$

Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=20.8$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3055, 2908, 2848, 1602, 1584, 1483, 1449, 1426, 1389, 1264, 1225, 1184, 1155, 1031, 1003, $794 \mathrm{~cm}^{-1} .-\mathrm{IR}$ (ATR, $\tilde{\text { I }}$: 3059, 3024, 2919, 2849, 1601, 1492, 1449, 1347, 1152, 1075, 1028, 981, 905, 818, $752,695,537 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{91} \mathrm{H}_{90} \mathrm{~N}_{3} \mathrm{Br}$): calc. C 83.68, H 6.94, N 3.23; found C 84.40, H 7.42, N 2.77.

3-Benzyl-(3-methylpolystyrene)-1-(4-iodophenyl)triaz-1-ene: According to GP 4, 4-
 iodoaniline was immobilized on 6.00 g of N-benzylaminomethyl resin (5.55 mmol). After drying in high vacuum 6.57 g ($2.48 \mathrm{mmol}, 0.377$ $\mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 45% yield.

According to GP 4, 4-iodoaniline was immobilized on 9.00 g of N benzylaminomethyl resin (8.33 mmol). After drying in high vacuum 10.3 g ($5.75 \mathrm{mmol}, 0.557 \mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 69% yield.
$-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=25.8,57.1,68.1,90.1,113.7,122.9,138.0$, 145.5, 150.3. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3055, 2906, 2853, 1603, 1582, 1479, 1447, 1425, 1391, 1322, 1268, 1218, 1182, 1162, 1057, 1031, 1002, 905, 842, 795, $622 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{90} \mathrm{H}_{89} \mathrm{~N}_{3}\right)$: calc. C 80.69, H 6.70, N 3.14; found C 80.99, H 6.74, N 2.68.

3-Benzyl-(3-methylpolystyrene)-1-(2-fluoro-4-bromophenyl)triaz-1-ene: According to GP

4, 2-fluoro-4-bromoaniline was immobilized on 9.00 g of N benzylaminomethyl resin (8.33 mmol). After drying in high vacuum 10.0 $\mathrm{g}(5.18 \mathrm{mmol}, 0.516 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 62% yield. ${ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=48.5,57.2,118.2,120.1$, 120.5, 125.9, 138.1, 155.2, 157.7. - IR (DRIFT, v): 3650, 3650, 3589, 3029, 2903, 2337, 1944, 1873, 1804, 1746, 1721, 1670, 1602, 1542, 1492, 1156, 1114, 1068, 1029, 985, 942, 906, 855, 816, $708 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3055, 2901, 2852, 1596, 1481, 1448, 1425, 1400, 1323, 1251, 1226, 1202, 1183, 1156, 1116, 1068, 1031, 1002, $905,798,622 \mathrm{~cm}^{-1}$. - EA ($\left.\mathrm{C}_{90} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{FBr}\right)$: calc. C 82.50, H 6.69, N 3.22; found C 81.77, H 6.73, N 2.64 .

3-Benzyl-(3-methylpolystyrene)-1-(2-fluoro-4-iodophenyl)triaz-1-ene: According to GP 4,
 2-fluoro-4-iodoaniline was immobilized on 2.34 g of N -benzylaminomethyl resin (2.17 mmol). After drying in high vacuum $2.78 \mathrm{~g}(1.76 \mathrm{mmol}, 0.634$
$\mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 81% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=$ $48.5,57.4,88.4,120.9,125.8,133.4,138.8,155.1$ - IR (DRIFT, v): 3651, 3576, 3028, 2848 , 2337, 2312, 1944, 1873, 1805, 1746, 1721, 1668, 1602, 1494, 1328, 1173, 1116, 1065, 1029, 907, 817, $708 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{90} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{IF}$): calc. C $79.63, \mathrm{H} 6.46, \mathrm{~N} 3.11$; found C $80.35, \mathrm{H}$ 6.64, N 2.51 .

Resin 1a: According to GP 5, 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-
 iodophenyl)triaz-1-ene ($0.702 \mathrm{mmol} / \mathrm{g}, 351 \mu \mathrm{~mol}$) were reacted with 1 -methoxy-4-methylphenol in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the product resin ($0.697 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=21.2,56.1,56.8,113.5,121.1,126.4,136.7,142.2$. $-\operatorname{IR}(A T R$, v): $3025,2917,2108,1600,1508,1492,1450,1266,1230,1151,1100,1074,1028,905$, $748,695 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{98} \mathrm{H}_{97} \mathrm{~N}_{3} \mathrm{O}\right)$: calc. C 88.31, H 7.34, N 3.15; found C 84.05, H 6.95, N 2.56.

Resin 1b: According to GP 5, 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-
 bromophenyl)triaz-1-ene ($0.717 \mathrm{mmol} / \mathrm{g}, 359 \mu \mathrm{~mol}$) were reacted with pyrocatechol monoethyl ether in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the product resin ($0.689 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=48.6,57.2,118.9,125.9,126.7,133.3,148.1 .-\operatorname{IR}(\mathrm{DRIFT}, \mathrm{v})=3651$, 3027, 2908, 2847, 2630, 2361, 2337, 1944, 1872, 1804, 1746, 1721, 1602, 1543, 1493, 1327, 1156, 1076, 1028, 984, 940, 907, 842, 762, $708 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{97} \mathrm{H}_{95} \mathrm{~N}_{3} \mathrm{O}_{2}$): calc. C 87.28, H 7.17, N 3.15; found C 85.16, H 7.11, N 2.48.

Resin 1c: According to GP 5, 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-
 iodophenyl)triaz-1-ene ($0.702 \mathrm{mmol} / \mathrm{g}, 351 \mu \mathrm{~mol}$) were reacted with 3-hydroxybenzaldehyde, 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing
procedure and was dried in high vacuum to give the product resin ($0.696 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel $\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=47.8,57.1,116.5,118.8$, 122.7, 125.7, 137.5, 142.8, 147.9, 191.7. - IR (ATR, v): 3025, 2920, 1703, 1585, 1493, 1481, 1451, 1434, 1355, 1251, 1220, 1152, 1095, 1027, 841, 745, $694 \mathrm{~cm}^{-1} .-E A\left(\mathrm{C}_{96} \mathrm{H}_{91} \mathrm{~N}_{3} \mathrm{O}\right)$: calc. C 87.43, H 6.96, N 3.19; found C 83.25, H 6.80, N 2.62 .

Resin 1d: According to GP 5, 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-
 bromophenyl)triaz-1-ene ($0.717 \mathrm{mmol} / \mathrm{g}, 359 \mu \mathrm{~mol}$) were reacted with 3-methoxyphenol in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the product resin ($0.695 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=55.2,56.8,119.4,122.7,160.8$. $\operatorname{IR}(A T R, ~ v): 3024,2918$, 1601, 1491, 1450, 1349, 1264, 1228, 1203, 1137, 1099, 1074, 1027, 904, 842, 749, 694, 622, $535 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{96} \mathrm{H}_{93} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: calc. C 87.30, H 7.10, N 3.18; found C 81.71, H 6.74, N 2.53.

Resin 1e: According to GP 5, 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2,4-
 dibromophenyl)triaz-1-ene ($0.581 \mathrm{mmol} / \mathrm{g}, 291 \mu \mathrm{~mol}$) were reacted with 2isopropylphenol in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the product resin ($0.563 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=23.9,34.0,47.8,56.7,115.4,120.4,125.7,141.8,150.3,158.7 .-\mathrm{IR}$ (ATR, v): 3059, 3025, 2918, 2848, 1601, 1571, 1492, 1474, 1449, 1390, 1340, 1273, 1241, 1150, 1111, 1074, 1028, 982, 943, 902, 813, $754,695,537 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{98} \mathrm{H}_{96} \mathrm{~N}_{3} \mathrm{O}$): calc. C 83.38, H 6.85, N 2.98; found C 81.66, H 6.73, N 2.44 .

Resin 1f: According to GP 5, 471 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-bromo-4-
 methylphenyl)triaz-1-ene ($0.367 \mathrm{mmol} / \mathrm{g}, 173 \mu \mathrm{~mol}$) were reacted with 2 isopropylphenol in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the
product resin ($0.359 \mathrm{mmol} / \mathrm{g}$) in quantitative yield. - IR (ATR, v): 3566, 3024, 2920, 1748, 1601, 1542, 1491, 1448, 1363, 1266, 1152, 1109, 1027, 754, 694, 624, $533 \mathrm{~cm}^{-1} .-{ }^{13} \mathrm{C}$ Gel NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=21.0,23.9,34.0,56.3,113.8,115.1,118.8,119.6,122.7$, 125.6, 136.5, 140.3, 148.8, 150.3, 159.5. - EA ($\mathrm{C}_{99} \mathrm{H}_{100} \mathrm{~N}_{3} \mathrm{O}$): calc. C 88.24, H 7.48, N 3.10; found C 79.10, H 6.59, N 2.35 .

Resin 1g: According to GP 5, 490 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-bromo-4-
 methylphenyl)triaz-1-ene ($0.367 \mathrm{mmol} / \mathrm{g}, 180 \mu \mathrm{~mol}$) were reacted with 2-phenylphenol in 4 mL of acetonitrile and 2 ml of pyridine. The resin was washed according to the washing procedure for diaryl ethers followed by the general washing procedure and was dried in high vacuum to give the product resin $(0.355 \mathrm{mmol} / \mathrm{g})$ in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=21.1,57.1,116.9,119.0$, 123.2, 126.7, 136.6, 140.6. - IR (ATR, v): 3059, 3025, 2919, 2848, 1601, 1492, 1449, 1349, 1247, 1152, 1109, 1075, 1028, 906, 818, 757, 730, 695, $537 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{102} \mathrm{H}_{98} \mathrm{~N}_{3} \mathrm{O}$): calc. C 88.67, H 7.15, N 3.02; found C 87.09, H 7.00, N 2.52.

Resin 1h: According to GP 4, 2-phenoxyaniline was immobilized on 6.01 g of N -
 benzylaminomethyl resin (5.56 mmol). After drying in high vacuum $6.88 \mathrm{~g}(4.44 \mathrm{mmol}, 0.6463 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 80% yield. For upscaling, resynthesis of 3.02 g of N-benzylaminomethyl resin gave 3.38 g of the product resin in 65% yield $(0.536 \mathrm{mmol} / \mathrm{g})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=56.8,116.7,119.4,121.6,122.7,125.9,126.7,129.4$, 143.1, 149.2, 159.6. - IR (KBr, v): 3059, 3025, 2918, 2848, 1601, 1491, 1451, 1347, 1238, 1151, 1100, 1074, 1027, 748, 695, $538 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3057, 2905, 2852, 1678, 1602, 1483, 1445, 1416, 1323, 1269, 1238, 1206, 1183, 1155, 1032, 1002, 797, 795, 755, $622 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{96} \mathrm{H}_{93} \mathrm{~N}_{3} \mathrm{O}\right)$: calc. C 88.35, H 7.18, N 3.23; found C 87.53, H 7.27, N 2.79 .

Resin 1i: According to GP 4, 5-chloro-2-phenoxyaniline was immobilized on 3.01 g of N -
 benzylaminomethyl resin (2.78 mmol). After drying in high vacuum the resin was obtained in quantitative yield ($0.754 \mathrm{mmol} / \mathrm{g}$). - ${ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=48.2,57.2,116.6,119.1,122.0$,
126.2, 143.9, 159.3. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3057, 3055, 2906, 2853, 1603, 1586, 1481, 1449, 1418, 1399, 1327, 1285, 1238, 1208, 1183, 1157, 1075, 1032, 1003, 796, 622 cm^{-1}. - IR (ATR, v): 3059, 3025, 2918, 2847, 1600, 1491, 1479, 1450, 1346, 1251, 1153, 1109, 1073, 1027, 983, 906, 844, $750,695,537 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{96} \mathrm{H}_{92} \mathrm{~N}_{3} \mathrm{CIO}$): calc. C 86.07, H 6.92, N 3.15 ; found C 85.46, H $6.86, ~ N ~ 2.51 . ~$

Resin 1j: According to GP 4, 2-methoxy-4-nitroaniline was immobilized on 2.00 g of N -
 benzylaminomethyl resin (1.85 mmol). After drying in high vacuum 2.20 g $(0.99 \mathrm{mmol}, 0.45 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 53% yield. $-{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=48.8,56.5,107.7,117.1,118.0,125.8$, 153.2. - IR (ATR, v): 3058, 3025, 2920, 2848, 1601, 1583, 1516, 1492, 1450, 1396, 1332, 1251, 1153, 1121, 1091, 1027, 906, 865, 799, 746, 695, $537 \mathrm{~cm}^{-1}$.- Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3055, 2906, 2858, 1603, 1584, 1488, 1446, 1422, 1399, 1334, 1253, 1183, 1157, 1094, 1032, 1002, 802, $622 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{91} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{3}\right)$: calc. C 84.85, H 7.04, N 4.37; found C 84.87, H 7.04, N 3.47.

Resin 1k: According to GP 4, 4-phenoxyaniline was immobilized on 6.18 g of N -
 benzylaminomethyl resin (5.72 mmol). After drying in high vacuum 6.83 g ($3.31 \mathrm{mmol}, 0.484 \mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 56% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=56.5,115.8,119.8,122.1,123.0$, 125.8, 129.8, 146.7, 155.0, 157.9. - Raman (60 mW , 1064 nm): 3056, 2905, 2853, 1604, 1585, 1497, 1450, 1407, 1324, 1214, 1183, 1152, 1032, 1003, 796, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{96} \mathrm{H}_{93} \mathrm{~N}_{3} \mathrm{O}$): calc. C 88.35, H 7.18, N 3.23; found C 86.96, H 7.30, N 2.68 .

Resin 1I: According to GP 4, 1-amino-4-bromonaphthalene was immobilized on 5.86 g of N -
 benzylaminomethyl resin (5.42 mmol). After drying in high vacuum 6.80 g $(4.05 \mathrm{mmol}, 0.595 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 75% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=49.1,57.7,112.6,119.6,124.3$, 125.8. - IR (ATR, $\tilde{\text { v }}$): 3058, 3024, 2917, 1601, 1492, 1450, 1319, 1276, 1171, 1139, 1024, 925, 826, $756,695,537 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{94} \mathrm{H}_{90} \mathrm{~N}_{3} \mathrm{Br}$): calc. C 84.12, H 6.76, N 3.14; found C 83.96, H 6.85, N 2.73 .

Resin 1m: 1.00 g of 3-benzyl-(3-methylpolystyrene)-1-(4-iodophenyl)triaz-1-ene (0.516
 $\mathrm{mmol} / \mathrm{g}, 0.516 \mu \mathrm{~mol}$) were swollen in DMF and 765 mg ($5.00 \mathrm{mmol}, 10.1$ equiv.) of 4-methoxyphenylboronic acid, 530 mg ($5.00 \mathrm{mmol}, 10.1$ equiv.) of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 40.0 \mathrm{mg}$ (34.6 $\mu \mathrm{mol}, 0.067$ equiv.) of tetrakis(triphenylphosphine) palladium and 2 mL of $\mathrm{H}_{2} \mathrm{O}$ were added. After shaking for 12 h at $120{ }^{\circ} \mathrm{C}$ the resin was washed according to the washing procedure and was dried in high vacuum ($0.521 \mathrm{mmol} / \mathrm{g}$). - ${ }^{13} \mathrm{C}$ Gel NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=47.9,55.3,56.8,114.2,122.8,125.7,137.8,149.3,150.2$. IR (ATR, $\left.\tilde{v}\right):$ 3059, 3024, 2920, 2847, 1601, 1492, 1449, 1346, 1246, 1175, 1143, 1074, 1028, 1001, 904, 823, 753, 695, $536 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{96} \mathrm{H}_{94} \mathrm{~N}_{3} \mathrm{O}$): calc. C 88.30, H 7.26, N 3.22; found C 83.75, H 6.75, N 2.71 .

Resin 1n: 500 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-fluoro-4-bromophenyl)triaz-1-ene
 ($0.516 \mathrm{mmol} / \mathrm{g}, 258 \mu \mathrm{~mol}$) were swollen in DMF and $184 \mathrm{mg} \quad(1.20 \mathrm{mmol}, 2.33$ equiv.) of 4methoxyphenylboronic acid, $80.0 \mathrm{mg}(755 \mu \mathrm{~mol}, 1.46$ equiv.) of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 20 \mathrm{mg}(17.3 \mu \mathrm{~mol})$ of tetrakis(triphenylphosphine) palladium and 1.00 mL of $\mathrm{H}_{2} \mathrm{O}$ were added. After shaking for 12 h at $120{ }^{\circ} \mathrm{C}$ the resin was washed according to the washing procedure and was dried in high vacuum ($0.509 \mathrm{mmol} / \mathrm{g}$). $-{ }^{13} \mathrm{C}$ Gel NMR (100 MHz, $\mathrm{CDCl}_{3,} \mathrm{ppm}$), $\delta=48.5,55.5,57.2,114.4,118.1,120.5,138.1,155.2$. Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3057, 2909, 2856, 1609, 1481, 1447, 1425, 1400, 1317, 1252, 1225, 1205, 1182, 1032, 1002, 901, 781, $622 \mathrm{~cm}^{-1}$. - IR (ATR, $\tilde{\mathrm{v}}$): 3058, 3025, 2921, 2848 , 1601, 1491, 1449, 1397, 1347, 1249, 1152, 1113, 1074, 1027, 906, 818, 756, 729, 695, 538 cm^{-1}. - EA ($\mathrm{C}_{96} \mathrm{H}_{93} \mathrm{FN}_{3} \mathrm{O}$): calc. C 87.13, H 7.08, N 3.16; found C 76.03, H 6.14, N 2.39.

Resin 10: According to GP 6, 512 mg of 3-benzyl-(3-methylpolystyrene)-1-(4-
 iodophenyl)triaz-1-ene ($0.377 \mathrm{mmol} / \mathrm{g}, 193 \mu \mathrm{~mol}$) were reacted with phenylacetylene in 8 mL of DMF. The resin was washed following the general washing procedure and was dried in high vacuum to yield 502 mg of the product resin ($0.381 \mathrm{mmol} / \mathrm{g}$). - ${ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=57.2,90.1,121.0,125.8,132.5,150.4 .-\operatorname{IR}(A T R, v):=3025$,

2918, 1600, 1493, 1449, 1399, 1346, 1148, 1072, 1028, 905, 839, $753,695,536,408 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3060, 2923, 2855, 2215, 1595, 1428, 1401, 1224, 1163, 1137, 1031, $1002 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{98} \mathrm{H}_{93} \mathrm{~N}_{3}\right)$: calc. C 89.65, H 7.14, N 3.21; found C $87.03, \mathrm{H} 7.00, \mathrm{~N}$ 2.49 .

Resin 1p: According to GP 6, 504 mg of 3-benzyl-(3-methylpolystyrene)-1-(2-fluoro-4-
 iodophenyl)triaz-1-ene ($0.634 \mathrm{mmol} / \mathrm{g}, 320 \mu \mathrm{~mol}$) were reacted with phenylacetylene in 8 mL of DMF. The resin was washed following the general washing procedure and was dried in high vacuum to yield 483 mg of the product resin ($0.600 \mathrm{mmol} / \mathrm{g}$). - IR (ATR, v): = 3025, 2920, 2851, 1601, 1492, 1449, 1399, 1347, 1145, 1074, 1028, 904, 840, 754, 695, $539 \mathrm{~cm}^{-1} .-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=48.4,57.4,119.5$, 121.1, 125.8, 131.7, 139.0, 154.9. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3055, 2920, 2211, 1609, 1599, 1498, 1428, 1405, 1325, 1252, 1216, 1100, 1032, 1002, 809, 746 cm^{-1}. - EA ($\mathrm{C}_{98} \mathrm{H}_{92} \mathrm{~N}_{3} \mathrm{~F}$): calc. C 88.43, H 6.96, N 3.17; found C 88.31, H 7.13, N 2.53.

Resin 1q: According to GP 6, 507 mg of 3-benzyl-(3-methylpolystyrene)-1-(4-
 iodophenyl)triaz-1-ene ($0.377 \mathrm{mmol} / \mathrm{g}, 191 \mu \mathrm{~mol}$) were reacted with 4methoxyphenylacetylene in 8 mL of DMF. The resin was washed following the general washing procedure and was dried in high vacuum to yield 501 mg of the product resin ($0.376 \mathrm{mmol} / \mathrm{g}$). ${ }^{13}{ }^{13} \mathrm{C}$ Gel NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=43.6,44.9,54.9,113.6,120.2,125.3,131.8,132.6$, 149.7, 159.1. - IR (ATR, v): 3025, 2918, 2848, 2161, 1602, 1512, 1492, 1448, 1399, 1286, 1247, 1172, 1146, 1073, 1028, 904, 831, 754, 695, $533 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3055, 2920, 2214, 1598, 1515, 1445, 1428, 1401, 1318, 1221, 1164, 1137, 1032, 1002, 779, $622 \mathrm{~cm}^{-1} .-\mathrm{EA}\left(\mathrm{C}_{99} \mathrm{H}_{95} \mathrm{~N}_{3} \mathrm{O}\right)$: calc. C 88.53, H 7.13, N 3.14; found C 85.64, H 6.97, N 2.46.

Resin 1r: 1.06 g of 3-benzyl-(3-methylpolystyrene)-1-(4-iodophenyl)triaz-1-ene ($400 \mu \mathrm{~mol}$,
 $0.377 \mathrm{mmol} / \mathrm{g}$) were swollen in DMF. Then 420 mg (3.44 mmol) of phenylboronic acid, $183 \mathrm{mg}(1.73 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 4.62 \mathrm{mg}$ $(4.00 \mu \mathrm{~mol})$ of tetrakis(triphenylphosphine) palladium and 1.50 mL of $\mathrm{H}_{2} \mathrm{O}$ were added. After shaking for 12 h at $120^{\circ} \mathrm{C}$
the resin was washed according to the washing procedure and was dried in high vacuum $(0.400 \mathrm{mmol} / \mathrm{g}) .-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.5,57.0,114.4,123.0,138.0$. - IR (ATR, च̃): 3059, 3024, 2920, 2848, 1601, 1492, 1450, 1400, 1347, 1144, 1074, 1027, $905,841,755,694,534 \mathrm{~cm}^{-1} . ~-~ R a m a n ~(60 \mathrm{~mW}, 1064 \mathrm{~nm}$): 3057, 2910, 2851, 1602, 1583, 1455, 1436, 1284, 1166, 1032, 1003, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{96} \mathrm{H}_{93} \mathrm{~N}_{3}$): calc. C 89.45, H 7.27, N 3.27; found C 86.64, H 7.03, N 2.49 .

Resin 1s: According to GP 4, 2-aminobiphenyl was immobilized on 9.00 g of N -
 benzylaminomethyl resin (8.33 mmol). After drying in high vacuum 10.2 g ($6.90 \mathrm{mmol}, 0.674 \mathrm{mmol} / \mathrm{g}$) of the resin were obtained in 83% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=57.1,117.8,125.9,130.5,136.8$, 140.2, 147.6. - IR (DRIFT, v): 3646, 3591, 2631, 2337, 2312, 1944, 1873, 1804, 1721, 1702, 1601, 1542, $1495 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{96} \mathrm{H}_{94} \mathrm{~N}_{3}$): calc. C 89.44, H 7.27, N 3.29; found C 89.17, H 7.24, N 2.69.

Resin 1t: According to GP 4, 3-aminobenzylalcohol was immobilized on 6.41 g of N -
 benzylaminomethyl resin (5.93 mmol). After drying in high vacuum 7.03 $\mathrm{g}(4.64 \mathrm{mmol}, 0.660 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 78% yield. ${ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=65.4,124.4,125.9,151.0$. Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3056, 2908, 2853, 1602, 1487, 1453, 1421, 1402, 1322, 1214, 1196, 1135, 1093, 1032, 1002, 797, $622 \mathrm{~cm}^{-1} .-E A\left(\mathrm{C}_{91} \mathrm{H}_{91} \mathrm{~N}_{3} \mathrm{O}\right)$: calc. C 87.93, H 7.38, N 3.40; found C 87.06, H 7.45, N 3.03.

Resin 1u: According to GP 4, 3-methoxyaniline was immobilized on 9.00 g of N -
 benzylaminomethyl resin (8.33 mmol). After drying in high vacuum 10.2 g ($8.32 \mathrm{mmol}, 0.816 \mathrm{mmol} / \mathrm{g}$) of the resin were obtained in quantitative yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.4,105.9,112.0$, 152.2, 160.3. - IR (DRIFT, v): 3575, 3027, 2908, 2847, 2629, 2337, 1945, 1873, 1806, 1748, 1720, 1603, 1493, 1450, 1329, 907, 845, $762 \mathrm{~cm}^{-1}$. - Raman (60 mW, 1064 nm): 3055, 2906, 2854, 1603, 1585, 1452, 1414, 1322, 1265, 1196, 1183, 1156, 1032, 1002, 796, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{93} \mathrm{H}_{96} \mathrm{~N}_{3} \mathrm{O}$): calc. C 87.81, H 7.61, N 3.32; found C 84.22, H 7.14, N 2.21.

Resin 1v: According to GP 4, 3-chloro-2-methylaniline was immobilized on 6.00 g of N -
 benzylaminomethyl resin (5.55 mmol). After drying in high vacuum 6.75 g $(4.96 \mathrm{mmol}, 0.725 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 77% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=14.4,45.9,57.5,115.5,135.3$, 150.0. - IR (DRIFT, v): 3589, 3024, 2904, 2337, 1944, 1871, 1803, 1722, 1672, 1602, 1494, 1424, 1349, 1154, 1076, 1005, 909, 844, cm ${ }^{-1}$. Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3055, 2909, 2852, 1603, 1585, 1453, 1413, 1324, 1283, 1236, 1205, 1183, 1156, 1075, 1032, 1003, 800, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{91} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{Cl}$): calc. C 86.64, H 7.19, N 3.35; found C 85.45, H 7.29, N 2.84 .

Resin 1w: According to GP 4, methyl 3-amino-4-methylbenzoate was immobilized on 3.02 g
 of N -benzylaminomethyl resin (2.79 mmol). After drying in high vacuum $3.36 \mathrm{~g}(1.91 \mathrm{mmol}, 0.570 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 69% yield. $-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=18.2,52.0,57.5,117.9,167.0$. - IR (ATR, च̃): 3025, 2918, 2848, 1718, 1602, 1493, 1450, 1284, 1260, 1154, 1120, 1091, 1028, 1004, 758, 695, $542 \mathrm{~cm}^{-1}$. - Raman (1064 nm, $103 \mathrm{~mW}, \mathrm{v}): 3056,2909,2853,1722,1584,1500,1450,1402,1294,1264,1210,1183$, 1157, 1032, 1003, 819, 797, 764, $622 \mathrm{~cm}^{-1}$. - EA $\left(\mathrm{C}_{93} \mathrm{H}_{93} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$: calc. C 86.92, H 7.29, N 3.28; found C 86.03, H 7.17, N 2.75 .

Resin 1x: According to GP 4, 2-aminoacetophenone was immobilized on 6.00 g of N -
 benzylaminomethyl resin (5.55 mmol). After drying in high vacuum 6.61 g $(4.16 \mathrm{mmol}, 0.630 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 75% yield. $-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=32.2,49.1,57.8,118.6,125.7$, 148.7. IR (DRIFT, v): 3650, 3022, 2904, 2339, 1945, 1872, 1806, 1680, 1601, 1439, 1349, 1234, 1153, 1110, 905, 843, $706 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3057, 2907, 2853, 1678, 1603, 1476, 1444, 1414, 1328, 1236, 1215, 1183, 1157, 1033, 1003, 796, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{92} \mathrm{H}_{91} \mathrm{~N}_{3} \mathrm{O}$): calc. C 88.05, H 7.31, N 3.36; found C 87.68, H 7.38, N 2.82 .

Resin 1y: According to GP 4, 3-iodo-4-methylaniline was immobilized on 3.05 g of N -
 benzylaminomethyl resin (2.82 mmol). After drying in high vacuum 3.61 g $(2.31 \mathrm{mmol}, 0.639 \mathrm{mmol} / \mathrm{g})$ of the resin were obtained in 82% yield. $-{ }^{13} \mathrm{C}$ Gel NMR (100 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=27.7,48.2,57.0,101.4,121.2,125.9$,
138.4, 149.6. - IR (ATR, च̃): 3025, 2920, 2849, 1601, 1492, 1449, 1347, 1151, 1073, 1025, $906,819,754,695,611,535 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3054, 2913, 2850, 1592, 1448, 1425, 1379, 1321, 1218, 1198, 1156, 1031, 1003, 790, $622 \mathrm{~cm}^{-1} .-E A\left(C_{91} H_{90} N_{3}\right)$: calc. C 80.76, H 6.70, N 3.12; found C 80.41, H 6.57, N 2.74.

3-Methoxy-4-deuteroaniline (precursor for resin 1z): 3-Methoxy-4-deuteronitrobenzene
 ($175 \mathrm{mg}, 1.13 \mathrm{mmol}$) was dissolved in 5.00 mL of methanol, 20 mg of Pd / C ($10 \% \mathrm{Pd}$) were added and the flask was evacuated and flushed with hydrogen three times. To guarantee hydrogen atmosphere the flask was equipped with a balloon filled with hydrogen and the mixture was stirred over night at room temperature. The catalyst was filtered off via syringe filter, silica gel was added to the filtrate and concentrated under reduced pressure. Column chromatography (cyclohexane/ethyl acetate/triethylamine, 5:1:0.025) yielded $97.6 \mathrm{mg}(786 \mu \mathrm{~mol}, 70 \%)$ of the desired amine. $-\mathrm{R}_{f}$. 0.20 (cyclohexane/ethyl acetate, 4:1).

Resin 1z: According to GP 4, 3-methoxy-4-deuteroaniline was immobilized on 320 mg of N -
 benzylaminomethyl resin (0.296 mmol). Due to the small amount of the aniline obtained from cleavage of resin $\mathbf{1 j}$ and subsequent reduction the number of equivalents of the aniline was reduced to two instead of five. As this might be a reason for incomplete attachment to the resin the yield of the cleavage was determined over two steps (attachment and cleavage). Theoretical loading: $0.821 \mathrm{mmol} / \mathrm{g} .-{ }^{13} \mathrm{C}$ Gel NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=$ 55.4, 111.7, 114.0, 160.3. - IR (DRIFT, v): 3060, 3025, 2916, 2847, 1600, 1493, 1450, 1400, 1345, 1252, 1135, 1075, 1028, 856, 753, 695, $541 \mathrm{~cm}^{-1}$. - Raman ($60 \mathrm{~mW}, 1064 \mathrm{~nm}, \mathrm{v}$): 3056, 2906, 2853, 1603, 1585, 1449, 1404, 1322, 1256, 1197, 1184, 1156, 1032, 1002, 984, $622 \mathrm{~cm}^{-1}$. - EA ($\mathrm{C}_{91} \mathrm{H}_{90} \mathrm{DN}_{3} \mathrm{O}$): calc. C 87.86, H 7.45, N 3.39; found C 87.46, H 7.27, N 2.90.

GP 7: Deuterating cleavage from the solid support in THF-d ${ }_{8}$

In a Crimptop vial, the resin was first heated in a drying oven ($93{ }^{\circ} \mathrm{C}$), evacuated until adjusted to room temperature and was afterwards flushed with nitrogen. Then THF-d ${ }_{8}$ (1.3 $\mathrm{mL} / 100 \mathrm{mg}$ of resin) and deuterated TFA ($50 \mu \mathrm{~L} / 100 \mathrm{mg}$ of resin) were added. The vial was sealed, agitated for 14 h at $80^{\circ} \mathrm{C}$, and then the resin was filtered off and washed with
acetone, methanol and dichloromethane. The filtrate was concentrated in vacuo and the residue was purified by column chromatography.

GP 8: Deuterating cleavage from the solid support in methanol-d ${ }_{4}$

In a Crimptop vial, the resin was first heated in a drying oven $\left(93^{\circ} \mathrm{C}\right)$, evacuated until adjusted to room temperature and afterwards flushed with nitrogen. Then methanol- d_{4} (1.3 $\mathrm{mL} / 100 \mathrm{mg}$ of resin) and deuterated TFA ($50 \mu \mathrm{~L} / 100 \mathrm{mg}$ of resin) were added. The vial was sealed, agitated for 14 h at $80^{\circ} \mathrm{C}$, and then the resin was filtered off and washed with acetone, methanol and dichloromethane. The filtrate was concentrated in vacuo and the residue was purified by column chromatography.

2-Methoxy-4-methyl-1-(2-deuterophenoxy)benzene (3a): Following GP 7, 110 mg (76.6
 $\mu \mathrm{mol})$ of resin 1a $(0.697 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $10.1 \mathrm{mg}(46.9$ $\mu \mathrm{mol}$) of the product in 61% yield. $-\mathrm{R}_{f:} 0.39$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=2.29$ (s, 3 H), 3.74 (s, 3 H), 6.64-6.67 (m, 1 H), $6.74\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}\right), 6.85\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right), 6.89\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}\right), 6.96-7.00(\mathrm{~m}$, $1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}) .-{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=21.3\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right)$, $113.7(\mathrm{CH}), 116.7(\mathrm{CH}), 121.2(\mathrm{CH}), 121.4(\mathrm{CH}), 122.1(\mathrm{CH}), 129.3(\mathrm{CH}), 129.4(\mathrm{CH}), 134.8$, 142.4, 151.2, 158.3. - IR (ATR, v): 3450, 3067, 2950, 2924, 1884, 1583, 1509, 1469, 1445, 1410, 1303, 1289, 1270, 1223, 1153, 1127, 1031, 827, 763, 742, $625 \mathrm{~cm}^{-1}$. - El (m/z): 215 (100) [M $\left.{ }^{+}\right], 214$ (19), 200 (14), 185 (23), 172 (14), 144 (10), 129 (27), 109 (7), 92 (17), 78 (34). - HRMS $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{DO}_{2}\right)$: calc. 215.1057, found 215.1056.

2-Ethoxy-2-(2-deuterophenoxy)benzene (3b): Following GP 7, 100 mg ($68.9 \mu \mathrm{~mol}$) of resin
 1b ($0.689 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $14.8 \mathrm{mg}(68.9 \mu \mathrm{~mol})$ of the product
in quantitative yield.
Cleavage of $142 \mathrm{mg}(97.8 \mu \mathrm{~mol})$ of resin $\mathbf{1 b}(0.689 \mathrm{mmol} / \mathrm{g})$ according to GP 8 gave 8.30 mg $(38.5 \mu \mathrm{~mol})$ of the product in 39% yield. - $\mathrm{R}_{\mathrm{f}} .0 .59$ (cyclohexane/ethyl acetate, $20: 1$) $-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.25\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right), 6.85-$ 7.11 (m, 6 H), 7.21-7.29 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=14.7\left(\mathrm{CH}_{3}\right), 64.6$ $\left(\mathrm{CH}_{2}\right), 114.6(\mathrm{CH}), 117.1(\mathrm{CH}), 121.2(\mathrm{CH}), 121.5(\mathrm{CH}), 122.2(\mathrm{CH}), 124.8(\mathrm{CH}), 129.2(\mathrm{CH})$, 129.3 (CH), 145.4 (C), 150.8 (C), 158.2 (C). - IR (ATR, v): 3443, 3067, 2981, 2929, 1581, 1500, 1470, 1454, 1392, 1305, 1260, 1217, 1160, 1119, 1043, 927, $872,747 \mathrm{~cm}^{-1} .-\mathrm{El}$ (m/z): 215 (100) [$\left.{ }^{+}\right]$, 214 (8), 187 (100), 170 (12), 158 (28), 129 (37), 78 (60). - HRMS $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{DO}_{2}\right)$: calc. 215.1057, found 215.1056.

3-(2-Deuterophenoxy)benzaldehyde (3c): Following GP 7, $95.0 \mathrm{mg}(66.1 \mu \mathrm{~mol})$ of resin 1c
 ($0.696 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA-d ${ }_{1}$. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $11.1 \mathrm{mg}(55.7 \mu \mathrm{~mol})$ of the product in 84% yield. $-\mathrm{R}_{f}=0.31$ (cyclohexane/ ethyl acetate, 20:1). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=7.04\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.2 \mathrm{~Hz}\right.$), 7.14-7.20(m,1 H), 7.29 (ddd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.2 \mathrm{~Hz}$), $7.35-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 2$ H), 7.59-7.63 (m, 1 H$), 9.96(\mathrm{~s}, 1 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=118.3(\mathrm{CH})$, 119.6 (CH), $124.3(\mathrm{CH}), 124.7(\mathrm{CH}), 124.8(\mathrm{CH}), 130.1(\mathrm{CH}), 130.2(\mathrm{CH}), 130.6(\mathrm{CH}), 138.2$, 158.2, 158.5, 191.8 (CH). - IR (ATR, v): 3448, 3066, 2925, 2848, 2730, 1701, 1581, 1470, 1448, 1386, 1249, 1210, 1162, 1134, 1115, 1042, 942, $883 \mathrm{~cm}^{-1}$. - El (m/z): 199 (100) $\left[\mathrm{M}^{+}\right]$, 198 (39), 181 (8), 170 (34), 142 (33), 116 (13), 78 (17). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{DO}_{2}$): calc. 199.0744, found 199.0747.

1-(3-Methoxyphenoxy)-2-deuterobenzene (3d): Following GP 7, $94.0 \mathrm{mg}(65.3 \mu \mathrm{~mol})$ of
 resin 1d ($0.695 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA-d . Column chromatography (cyclohexane/ethyl acetate, 20:1) gave 13.1 mg (65.3 $\mu \mathrm{mol}$) of the product in quantitative yield. $-\mathrm{R}_{f}=0.61$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=3.78$ (s, 3 H , OCH_{3}), 6.57-6.60 (m, 2 H), 6.64-6.67 (m, 1 H), 7.02-7.04 (m, 1 H), 7.09-7.13 (m, 1 H), 7.20-7.24 (m, 1 H), 7.31-7.38 (m, 2 H). - ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.3\left(\mathrm{CH}_{3}\right)$, 104.8 (CH), 108.8 (CH), 110.9 (CH), 119.1 (CH), 123.3 (CH), 129.6 (CH), 129.7 (CH), 130.1 (CH), 156.9, 158.5, 160.9. - IR (ATR, v): 3443, 3068, 2937, 2836, 1584, 1488, 1469, 1384,

1304, 1278, 1217, 1140, 1076, 1042, 951, 848, $765,688 \mathrm{~cm}^{-1}$. - El (m/z): 201 (100) [$\left.\mathrm{M}^{+}\right]$, 200 (6), 170 (4), 158 (26), 142 (7), 130 (13), 116 (4), 92 (10). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{DO}_{2}$): calc. 201.0900, found 201.0898.

4-Bromo-2-(3-isopropylphenoxy)-1-deuterobenzene (3e): Following GP 7, 100 mg (56.3
 $\mu \mathrm{mol})$ of resin $1 \mathbf{e}(0.563 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $13.4 \mathrm{mg}(45.8$ $\mu \mathrm{mol})$ of the product in 81% yield. - $\mathrm{R}_{f}: 0.85$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.73\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ 6.9 Hz), 2.83 (sept, $1 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}$), $6.74\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}\right.$), $6.84(\mathrm{~s}, 1 \mathrm{H})$, 6.95 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}$), 7.07-7.15 (m, 3 H), 7.15-7.22 (m, 1 H). ${ }^{13}{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=23.9\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 34.0(\mathrm{CH}), 116.6(\mathrm{CH}), 117.6(\mathrm{CH}), 121.5(\mathrm{CH}), 122.2$ (CH), 122.8 (C), 125.9 (CH), 129.7 (CH), 130.6 (CH), 151.4 (C), 156.2 (C), 158.5 (C). - IR (ATR, v): 3442, 3060, 2962, 2926, 2870, 1606, 1574, 1486, 1459, 1399, 1385, 1337, 1297, 1241, 1214, 1161, 1133, 1074, 981, 943, 883, 825, $790 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 293$ (46), 291 (100) [${ }^{+}$], 290 (4), 278 (67), 276 (67), 213 (6), 197 (43), 182 (56), 169 (32), 153 (8), 142 (11), 119 (17), 104 (24), 91 (41), 77 (48). - HRMS ($\left.\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{DOBr}\right)$: calc. 291.0369, found 291.0367.

4-Methyl-2-(3-isopropylphenoxy)-1-deuterobenzene (3f): Following GP 7, 105 mg (41.3
 $\mu \mathrm{mol})$ of resin $1 \mathrm{f}(0.395 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA-d ${ }_{1}$. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $8.70 \mathrm{mg}(38.3$ $\mu \mathrm{mol})$ of the product in quantitative yield. - $\mathrm{R}_{f}: 0.72$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.24\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ 6.9 Hz), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (sept, $1 \mathrm{H},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}$), $6.80\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}\right.$), $6.84(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.97\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.13\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.17$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right) .-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=21.4\left(\mathrm{CH}_{3}\right), 23.9\left(2 \mathrm{C}, \mathrm{CH}_{3}\right)$, $34.0(\mathrm{CH}), 116.1(\mathrm{CH}), 117.2(\mathrm{CH}), 119.4(\mathrm{CH}), 121.3(\mathrm{CH}), 123.8(\mathrm{CH}), 129.3(\mathrm{CH}), 129.4$ (CH), 139.8 (C), 151.0 (C), 157.2 (C), 157.3 (C). - IR (ATR, v): 2960, 2924, 1603, 1575, 1476, 1443, 1412, 1384, 1303, 1247, 1179, 1161, 1149, 1135, 1048, 954, 873, 824, 789, $700,626 \mathrm{~cm}^{-1}$. - El (m/z): 227 (100) [M $\left.{ }^{+}\right], 226$ (7), 196 (2), 184 (5), 169 (3), 129 (1), 119 (6), 106 (6), 91 (13), 77 (7). - HRMS ($\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{DO}$): calc. 227.1420, found 227.1418.

4-(2-Deutero-5-methylphenoxy)-1,1'-biphenyl (3g): Following GP 7, $101 \mathrm{mg}(35.7 \mu \mathrm{~mol})$ of
 resin $1 \mathrm{~g}(0.355 \mathrm{mmol} / \mathrm{g})$ were reacted with $T F A-d_{1}$. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave 9.10 mg $(34.8 \mu \mathrm{~mol})$ of the product in 98% yield. $-\mathrm{R}_{f:} 0.69$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=2.35(\mathrm{~s}, 3 \mathrm{H})$, 6.89 (s, 1 H), 6.95 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=0.7 \mathrm{~Hz}$), $7.06-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.24\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $7.6 \mathrm{~Hz}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=21.4(\mathrm{CH} 3), 119.0(2 \mathrm{C}, \mathrm{CH}), 119.7(\mathrm{CH}), 124.2(\mathrm{CH}), 126.9(2 \mathrm{C}, \mathrm{CH})$, $127.0(\mathrm{CH}), 128.4$ (2 C, CH), 128.8 (2 C, CH), 129.4 (CH), 136.1, 140.0, 140.6, 156.9, 157.0. - IR (ATR, v): 3033, 2918, 1904, 1594, 1574, 1515, 1474, 1401, 1302, 1264, 1235, 1167, 1144, 1129, 1106, 1004, 935, 880, 863, 847, 822, 768, 739, 724, 691, 623, 525, 484, 441 $\mathrm{cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 261$ (6) [M+$], 227$ (17), 212 (12), 184 (2), 119 (2), 91 (4), 77 (4), 58 (19), 43 (100). - HRMS ($\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{DO}$): calc. 261.1264, found 261.1261.

1-Deutero-2-phenoxybenzene (3h): Following GP 7, 103 mg ($66.7 \mu \mathrm{~mol}$) of resin $\mathbf{1 h}$ (0.646
 $\mathrm{mmol} / \mathrm{g}$) were reacted with $\mathrm{TFA}^{2} \mathrm{~d}_{1}$. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $7.50 \mathrm{mg}(544 \mu \mathrm{~mol})$ of the product in 66% yield. - R $\mathrm{R}_{\mathrm{f}} 0.65$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=7.01-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3 , ppm), $\delta=118.9$ (4 C, CH), 123.2 (2 C, CH), 129.6 (CH), 129.7 (2 C, CH), 157.2 (2 C, C). - IR (ATR, v): 3442, 3068, 2925, 2854, 2427, 1581, 1490, 1469, 1445, 1384, 1273, 1234, 1197, 1162, 11116, 1072, 1042, 1023, 873, 838, $798 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 171$ (100) $\left[\mathrm{M}^{+}\right], 170$ (14), 153 (42), 141 (30), 136 (16), 107 (19), 89 (15). - HRMS ($\mathrm{C}_{12} \mathrm{H}_{9} D \mathrm{DO}$): calc. 171.0794, found 171.0798

4-Chloro-2-deutero-1-phenoxybenzene (3i): Following GP 7, $101 \mathrm{mg}(61.9 \mu \mathrm{~mol})$ of resin
 $1 \mathbf{i}(0.613 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $7.10 \mathrm{mg}(34.5 \mu \mathrm{~mol})$ of the product in 56% yield. $-\mathrm{R}_{f}$: 0.59 (cyclohexane/ethyl acetate, $50: 1$). $-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=6.94\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz}\right), 6.98-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.16$ (m, 1 H), 7.27-7.39 (m, 4 H). - ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=118.9$ (2 C,), 120.0 (), 123.6 (), 128.7, 129.6, 129.7, 129.9 (2C), 155.9, 156.8. - IR (KBr, v) = 3039, 2924, 2852, 1690, 1581, 1491, 1465, 1386, 1263, 1237, 1198, 1162, 1129, 1091, 1015, 897, 877, 825,
$753,692 \mathrm{~cm}^{-1}$. - El (m/z): 205 (8) [M$\left.{ }^{+}\right], 153$ (31), 125 (27), 111 (46), 97 (64), 85 (62), 71 (80), 57 (100). - HRMS ($\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{DCIO}$): calc. 205.0405, found 205.0403.

5-Deutero-3-nitroanisole (3j): Following GP 7, $98.0 \mathrm{mg}(40.3 \mu \mathrm{~mol})$ of resin $\mathbf{1 j}$ (0.411
 $\mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $10: 1$) gave $6.20 \mathrm{mg}(40.3 \mu \mathrm{~mol})$ of the product in quantitative yield. $R_{f:} 0.25$ (cyclohexane/ethyl acetate, 10:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), δ $=3.90(\mathrm{~s}, 3 \mathrm{H}), 7.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}\right), 7.73\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}\right), 7.83(\mathrm{dd}, 1$ $\left.\mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.1 \mathrm{~Hz}\right) .-{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=56.0\left(\mathrm{CH}_{3}\right), 108.3(\mathrm{CH})$, 115.9 (CH), 128.9 (C), 130.0 (CH). 160.2 (C). - IR (ATR, v): 2922, 2853, 1740, 1654, 1522, 1465, 1263, 1101, 1023, $804 \mathrm{~cm}^{-1}$. - El (m/z): 154 (100) [M+], 153 (11), 108 (40), 93 (77), 78 (72), 65 (56). - HRMS ($\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{DNO}_{3}$): calc. 154.0489, found 154.0487.

1-Deutero-4-phenoxybenzene (3k): Following GP 7, $95.8 \mathrm{mg}(51.4 \mu \mathrm{~mol})$ of resin $\mathbf{1 k}(0.536$
 $\mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $5.00 \mathrm{mg}(29.2 \mu \mathrm{~mol})$ of the product in 57% yield. Upscaling: In a 20 mL vial $1.22 \mathrm{~g}(0.654 \mathrm{mmol})$ of resin $\mathbf{1 h}$ (loading after upscaling: 0.536 $\mathrm{mmol} / \mathrm{g}$) were first evacuated, flushed with nitrogen, and then suspended in 6 mL of methanol- d_{4}. After addition of 0.6 mL of deuterated trifluoroacetic acid the vial was sealed and the mixture was agitated for 15 h at $80^{\circ} \mathrm{C}$. After cooling down to room temperature the resin was filtered off, washed with acetone and ethyl acetate and the residue was purified by column chromatography (100% cyclohexane \rightarrow cyclohexane/ethyl acetate, $10: 1)$ to yield $67.3 \mathrm{mg}(0.394 \mathrm{mmol}, 60 \%)$ of a pale yellow oil. - $\mathrm{R}_{f} .0 .67$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=6.99-7.04$ (m, 4 H), 7.07-7.14 (m, 1 H), 7.31-7.37 (m, 4 H). - ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=118.9(4 \mathrm{C}), 123.2,129.6$ (2 C), 129.7 (2 C), 157.2 (2 C). - IR (ATR, v): 3041, 2217, 2069, 1503, 1488, 1227, 1110, 995, 870, 840, 756, $691 \mathrm{~cm}^{-1}$. - El (m/z): 171 (0.3) [M+], 142 (0.2), 107 (0.8), 77 (2), 58 (15), 43 (100). - HRMS $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{DO}\right)$: calc. 171.0794, found 171.0793.

1-Bromo-4-deuteronaphthalene (3I): Following GP 7, $152 \mathrm{mg}(90.7 \mu \mathrm{~mol})$ of resin 1 I (0.595
 $\mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $9.20 \mathrm{mg}(44.2 \mu \mathrm{~mol})$ of the product in 49% yield. $-\mathrm{R}_{f} .0 .76$ (cyclohexane/ethyl acetate, 10:1) . - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=7.29$
(d, $1 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}$), $7.47-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right), 8.21$ (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=122.8$ (C), 126.1 (CH), 126.7 (CH), 127.1 (CH), 127.3 (CH), 128.3 (CH), 129.9 (CH), 132.0 (C), 134.5 (C). - IR (ATR, v): 3448, 3054, 2925, 1720, 1580, 1560, 1497, 1376, 1361, 1251, 1204, 1182, 1156, 1134, 1083, 1022, 956, 883, 844, 778, 760, 649, $501 \mathrm{~cm}^{-1}$. - El (m/z): 207/209 (42/31), 177 (57), 149 (100), 126/128 (49/40). - HRMS ($\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{DBr}$): calc. 206.9794, found 206.9789.

4-Methoxy-4'-deutero-1,1'-biphenyl (3m): Following GP 7, $102 \mathrm{mg}(53.2 \mu \mathrm{~mol})$ of resin $\mathbf{1 m}$
 ($0.521 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, 10:1) gave $3.00 \mathrm{mg}(16.2 \mu \mathrm{~mol})$ of the product in 30% yield. - R $\mathrm{R}_{f} .0 .62$ (cyclohexane/ethyl acetate, 10:1) . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=3.86$ (s, 3 H), 6.97-6.99 (m, 2 H), 7.41-7.43 (m, 2 H), 7.52-7.57 (m, 4 H). $-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.3(\mathrm{CH} 3), 114.2(2 \mathrm{C}, \mathrm{CH}), 126.7(2$ C, CH), 128.1 ($2 \mathrm{C}, \mathrm{CH}$), 128.6 ($2 \mathrm{C}, \mathrm{CH}$), 133.8 (C), 140.8 (C), 159.1 (C). - IR (DRIFT) $=3004,2961,2925,2854,2279,1892,1786,1739,1607,1581,1522,1483,1464$, 1398, 1288, 1252, 1202, 1184, 1038, 1014, 862, 829, 810, $602 \mathrm{~cm}^{-1}$. - EI (m/z): 185 (100) $\left[\mathrm{M}^{+}\right], 184$ (7), 170 (31), 142 (30), 116 (17), 95 (3). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{DO}$): calc. 185.0951, found 185.0953 .

3-Fluoro-4'-methoxy-4-deutero-1,1'-biphenyl (3n): Following GP 7, 98.0 mg ($48.9 \mu \mathrm{~mol}$) of
 resin $1 \mathrm{n}(0.509 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA-d ${ }_{1}$. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $6.20 \mathrm{mg}(30.5 \mu \mathrm{~mol})$ of the product in 62% yield. - R $\mathrm{R}_{f} .0 .53$ (cyclohexane/ethyl acetate, 20:1) . - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{ppm}), \delta=3.86(\mathrm{~s}, 3 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.25\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=10.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3\right.$ $\mathrm{Hz}), 7.33\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}\right), 7.35-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 2 \mathrm{H})$. $-{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.4\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CH}_{3}\right), 113.5\left(\mathrm{~d}, 1 \mathrm{C},{ }^{2} \mathrm{~J}=21.8\right.$ Hz, CH), 114.3 (s, 2 C, CH), 122.2 (d, $1 \mathrm{C},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, \mathrm{CH}$), 128.1 (s, $2 \mathrm{C}, \mathrm{CH}$), 130.0 (d, 1 C, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, \mathrm{CH}$), 132.4 (s, 1 C, C), 143.1 (d, $1 \mathrm{C},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, \mathrm{C}$), 159.5 (s, $1 \mathrm{C}, \mathrm{C}$), 163.2 (d, $\left.1 \mathrm{C},{ }^{1} \mathrm{~J}=245.2 \mathrm{~Hz}, \mathrm{C}\right) .-\operatorname{IR}(A T R, ~ v): 2962,2934,2840,2044,1733,1603,1582,1567$, 1518, 1455, 1432, 1397, 1288, 1247, 1182, 1142, 1115, 1025, 873 823, 813, 733, 722, 684, $647,561,520,483,453 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 203$ (100) [M$\left.{ }^{+}\right], 202(4), 188$ (38), 160 (48), 134 (18). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{DOF}$): calc. 203.0857, found 203.0856.

1-Deutero-4-(phenylethynyl)benzene (30): Following GP 7, $102 \mathrm{mg}(39.0 \mu \mathrm{~mol})$ of resin 10

($0.381 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA-d . Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $4.00 \mathrm{mg}(22.3 \mu \mathrm{~mol})$ of the product in 57% yield. - $\mathrm{R}_{f} .0 .80$ (cyclohexane/ethyl acetate, 10:1). $-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=7.34-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=89.3$ (2 C, C), 123.3 ($2 \mathrm{C}, \mathrm{C}$), 128.2 ($2 \mathrm{C}, \mathrm{CH}$), 128.2 (CH), 128.3 (2 C , CH), 131.6 (4C, CH). - IR (ATR, v): 3062, 1713, 1598, 1493, 1441, 1405, 1311, 1279, 1157, 1103, 1070, 1025, 916, 859, 753, 728, 688, 606, 532, $503 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 179$ (100) $\left[M^{+}\right], 178$ (11), 152 (6), 127 (2), 89 (5). - HRMS ($\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{D}$): calc. 179.0845, found 174.0844.

2-Fluoro-1-deutero-4-(phenylethynyl)benzene (3p): Following GP 7, $100 \mathrm{mg}(51.1 \mu \mathrm{~mol})$
 of resin $1 \mathrm{p}(0.510 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $4.40 \mathrm{mg}(22.3 \mu \mathrm{~mol})$ of the product in 43% yield. - $\mathrm{R}_{f} .0 .76$ (cyclohexane/ethyl acetate, $20: 1$). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=7.23\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz}\right), 7.31-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=88.1$ ($\mathrm{d}, 1 \mathrm{C},{ }^{4} \mathrm{~J}=3.0 \mathrm{~Hz}, \mathrm{C}$), 90.22 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{C}$), 114.9-115.7 (m, $1 \mathrm{C}, \mathrm{C}$), 118.4 (d, $1 \mathrm{C},{ }^{2} \mathrm{~J}=22.6 \mathrm{~Hz}, \mathrm{CH}$), 122.8 (s, $\left.1 \mathrm{C}, \mathrm{C}\right), 125.1$ (d, $\left.1 \mathrm{C},{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz}, \mathrm{C}\right), 127.5\left(\mathrm{~d}, 1 \mathrm{C},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, \mathrm{CH}\right.$), 128.4 (s, $2 \mathrm{C}, \mathrm{CH}$), 128.6 (s, 1 C , CH), 129.8 ($\mathrm{d}, 1 \mathrm{C},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, \mathrm{CH}$), 131.7 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{CH}$). 162.4 ($\left.\mathrm{d}, 1 \mathrm{C},{ }^{1} \mathrm{~J}=246.5 \mathrm{~Hz}, \mathrm{C}\right) .-$ IR (ATR, v): 3442, 3062, 2924, 2212, 1604, 1567, 1493, 1473, 1443, 1410, 1318, 1282, 1249, 1207, 1116, 939, 871, 840, 788, 755, 643, $556 \mathrm{~cm}^{-1}$. - El (m/z): 154 (100) [M $\left.{ }^{+}\right], 153$ (11), 124 (7), 108 (40), 93 (77), 78 (72), 65 (56). - HRMS ($\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{DF}$): calc. 197.0751, found 197.0748.

1-Methoxy-4-(p-deuterophenylethynyl)benzene (3q): Following GP 7, $108 \mathrm{mg}(55.6 \mu \mathrm{~mol})$
 of resin 1q ($0.515 \mathrm{mmol} / \mathrm{g}$) were reacted with TFA- d_{1}. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $9.90 \mathrm{mg}(47.3 \mu \mathrm{~mol})$ of the product in 85% yield. - $\mathrm{R}_{\text {f. }} 0.68$ (cyclohexane/ethyl acetate, 10:1). $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm), $\delta=3.83$ (s, 3 H), 6.87-6.89 (m, 2 H), 7.33-7.34 (m, 2 H), 7.47-7.48 (m, 2 H), 7.51-7.52 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.3\left(\mathrm{CH}_{3}\right), 88.1$ (C), 89.3 (C), 114.0 (2 C, CH), 115.4 (C), 123.6 (C), 128.2 ($2 \mathrm{C}, \mathrm{CH}$), 131.4 (2 C, CH), 133.0 (2 C, CH), 159.6 (C). - IR (ATR, v): 2935, 2836, 2284, 2214, 1920,
$1603,1589,1508,1455,1405,1286,1245,1203,1173,1138,1107,1026,858,832,778$, 758, 728, 690, 606, 541, $518 \mathrm{~cm}^{-1}$. - El (m/z): 209 (100) [$\left.\mathrm{M}^{+}\right], 208$ (6), 194 (35), 166 (25), 141 (98), 112 (23), 80 (17). - HRMS ($\left.\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{DO}\right)$: calc. 209.0951, found 209.0949.

GP 9: Generation of $\mathrm{D}_{3} \mathrm{CO}$-derivatives in methanol

In a Crimptop vial, the resin was first heated in a drying oven $\left(93^{\circ} \mathrm{C}\right)$, evacuated until adjusted to room temperature and afterwards flushed with nitrogen. Then methanol-d ${ }_{4}$ (1.3 $\mathrm{mL} / 100 \mathrm{mg}$ of resin) and TFA- $\mathrm{d}_{1}(50 \mu \mathrm{~L} / 100 \mathrm{mg}$ of resin) are added. The vial was sealed, agitated for 14 h at $80^{\circ} \mathrm{C}$, and then the resin was filtered off and washed with acetone, methanol and dichloromethane. The filtrate was concentrated in vacuo and the residue was purified by column chromatography.

4-d \mathbf{d}_{3}-Methoxy-1-bromonaphthalene (4I): Following GP 9, 136 mg ($81.0 \mu \mathrm{~mol}$) of resin 1 I
 (0.595 mmol $/ \mathrm{g}$) were reacted with $\mathrm{TFA}^{2} \mathrm{~d}_{1}$. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $10.9 \mathrm{mg}(45.4 \mu \mathrm{~mol})$ of the product in 56% yield. - R_{f}. 0.76 (cyclohexane/ethyl acetate, 10:1). - ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=6.69\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}\right.$), 7.52 (ddd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.9$ $\left.\mathrm{Hz},{ }^{4} J=1.2 \mathrm{~Hz}\right), 7.52\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}\right), 7.66\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=8.2\right)$, $8.16\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}\right), 8.16\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}\right) .-{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=104.5(\mathrm{CH}), 113.2(\mathrm{C}), 122.4(\mathrm{CH}), 125.9(\mathrm{CH}), 126.7(\mathrm{C}), 126.8$ (CH), 127.7 (CH), 129.4 (CH), 132.4 (C), 155.2 (C). - IR (ATR, v): 3069, 2922, 2222, 2068, 1667, 1620, 1587, 1505, 1455, 1421, 1374, 1327, 1298, 1265, 1244, 1202, 1158, 1128, 1102, 1079, 1026, 973, 895, 806, 758, $613 \mathrm{~cm}^{-1}$. - El (m/z): 239/241 (100/95), 221/223 (38/38), 193/195 (48/48), 114 (33). - HRMS ($\left.\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{D}_{3} \mathrm{BOr}\right)$: calc. 239.0025, found 239.0024.

4-(d_{3}-Methoxy)-4'-methoxy-1,1'-biphenyl (4m): Following GP 9, 142 mg (53.4 $\mu \mathrm{mol}$) of $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad$ resin $1 \mathrm{~m}(0.376 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $6.40 \mathrm{mg}(29.5 \mu \mathrm{~mol})$ of the product in
55% yield. $-\mathrm{R}_{f}: 0.25$ (cyclohexane/ethyl acetate, $20: 1$). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), δ $=3.85(\mathrm{~s}, 3 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=55.3\left(\mathrm{CH}_{3}\right), 114.1(2 \mathrm{C}, \mathrm{CH}), 114.2(2 \mathrm{C}, \mathrm{CH}), 127.7(4 \mathrm{C}, \mathrm{CH}), 133.4(\mathrm{C}), 133.5(\mathrm{C})$, 158.7 (2 C, C). - IR (ATR, v): 2924, 2853, 2219, 2071, 1607, 1500, 1275, 1251, 1182, 1110, 1039, 990, 957, 824, 810, $771 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 217$ (100) [M $\left.{ }^{+}\right]$, 202 (46), 174 (123), 156 (7), 128 (12), 108 (6). - HRMS ($\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{D}_{3} \mathrm{O}_{2}$): calc. 217.1182, found 217.1184.

4-(\mathbf{d}_{3}-Methoxy)-1,1'-biphenyl (4r): Following GP 9, $123 \mathrm{mg}(49.1 \mu \mathrm{~mol})$ of resin $\mathbf{1 r}(0.399$ $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad \mathrm{mmol} / \mathrm{g}$) were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $6.50 \mathrm{mg}(34.7 \mu \mathrm{~mol})$ of the product in 71% yield. $-\mathrm{R}_{f}: 0.64$ (cyclohexane/ethyl acetate, 10:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=6.95-$ 7.01 (m, 2 H), 7.30-7.34 (m, 1 H), 7.39-7.46 (m, 2 H), 7.51-7.58 (m, 4 H). $-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=114.1$ (2 C), 126.6, 126.7 (2 C), 128.1 (2 C), 128.7 (2 C), 133.7, 140.8, 159.0. - IR (ATR, v): 3034, 2924, 2253, 2221, 2069, 1604, 1520, 1482, 1269, 1201, 1105, 987, 955, 832, 757, $685 \mathrm{~cm}^{-1} .-$ El (m/z): 187 (100) [M $\left.{ }^{+}\right], 169$ (30), 141 (29), 115 (20). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{D}_{3} \mathrm{O}$): calc. 187.1076, found 187.1075.

2-(\mathbf{d}_{3}-Methoxy)-1,1'-biphenyl (4s): Following GP 9, $110 \mathrm{mg}(74.1 \mu \mathrm{~mol})$ of resin $\mathbf{1 s}(0.674$ $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \mathrm{mmol} / \mathrm{g}$) were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $10.6 \mathrm{mg}(56.6 \mu \mathrm{~mol})$ of the product in 76\% yield. - $\mathrm{R}_{f}: 0.56$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=7.00-7.08$ (m, 2 H), 7.31-7.38 (m, 3 H), 7.39-7.46 (m, 2 H), 7.52-7.57 (m, 2 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=111.1,120.8,126.9$, 128.0 (2 C), 128.6, 129.5 (2 C), 130.7, 130.9, 138.5, 156.4. - IR (ATR, v): 3059, 3026, 2925, 2217, 2069, 1596, 1583, 1503, 1481, 1435, 1270, 1240, 1125, 1108, 991, 753, 732, $714 \mathrm{~cm}^{-}$ ${ }^{1} .-$ El (m/z): 187 (100) [M $\left.{ }^{+}\right], 169$ (27), 141 (21), 115 (23). - HRMS ($\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{D}_{3} \mathrm{O}$): calc. 187.1076, found 187.1078.

3-[(d_{3}-Methoxy)phenyl]methanol (4t): Following GP 9, $130 \mathrm{mg}(85.5 \mu \mathrm{~mol})$ of resin $\mathbf{1 t}$ $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad(0.660 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, 4:1) gave $6.20 \mathrm{mg}(43.9 \mu \mathrm{~mol})$ of the product in 51% yield. - $\mathrm{R}_{f}: 0.08$ (cyclohexane/ethyl acetate, 10:1).- ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=4.57$ (s, 2 H), 6.78-6.83 (m, 1 H), 6.89-6.93 (m, 2
H), 7.20-7.26 (m, 1 H$).-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=65.3\left(\mathrm{CH}_{2}\right), 112.2(\mathrm{CH})$, 113.3 (CH), 119.1 (CH), 129.6 (CH), 142.5 (C), 159.8 (C). - IR (ATR, v): 3328, 2925, 2219, 2070, 1585, 1487, 1448, 1268, 1158, 1108, 1008, 857, 780, 728, $691 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 141$ (100) [${ }^{+}{ }^{+}$, 140 (38), 124 (19), 112 (84), 105 (28), 94 (28), 77 (37). - HRMS ($\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{D}_{3} \mathrm{O}_{2}$): calc. 141.0869 , found 141.0867.

1-(d \mathbf{d}_{3}-Methoxy)-3-methoxybenzene (4u): Following GP 9, $102 \mathrm{mg}(83.1 \mu \mathrm{~mol})$ of resin $\mathbf{1 u}$ $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad(0.816 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, 10:1) gave $6.10 \mathrm{mg}(43.2 \mu \mathrm{~mol})$ of the product in 52% yield. - $\mathrm{R}_{f}: 0.37$ (cyclohexane/ethyl acetate, 10:1). - ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=3.80(\mathrm{~s}, 3 \mathrm{H}), 6.42-6.50(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=55.3,100.5,106.1(2 \mathrm{C}), 129.8,160.8,160.8$. - IR (ATR, v): $3442,2925,2219,2071,1726,1600,1491,1475,1292,1270,1204,1168,1157,1111$, 1043, 835, 763, 687, 646, $561 \mathrm{~cm}^{-1}$. - El (m/z): 141 (100) [M+], 112 (37), 80 (32), 65 (18).

1-Chloro-3-(d_{3}-methoxy)-2-methylbenzene (4v): Following GP 9, 221 mg ($162 \mu \mathrm{~mol}$) of $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad$ resin $1 \mathrm{v}(0.735 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, $20: 1$) gave $9.40 \mathrm{mg}(58.9 \mu \mathrm{~mol})$ of the product in 36% yield. - $\mathrm{R}_{f} .0 .57$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=2.27(\mathrm{~s}, 3 \mathrm{H}), 6.74\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.04 \mathrm{~Hz}\right), 6.97\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $7.83 \mathrm{~Hz}), 7.05-7.11(\mathrm{~m}, 1 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=12.6,108.4,121.3$, 125.1, 126.6, 135.1, 158.5. - IR (ATR, v): 3442, 2928, 2853, 2255, 2221, 2071, 1736, 1593, $1577,1465,1379,1298,1270,1190,1155,1109,1086,1030,957,815,798,767,706 \mathrm{~cm}^{-1}$. - El (m/z): 159 (100) [M$], 149$ (50), 141 (32), 124 (46), 105 (18), 92 (17), 77 (42). - HRMS ($\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{DCIO}$): calc. 159.0530, found 159.0533 .

Methyl 3-(d d_{3}-methoxy)-4-methylbenzoate (4w): Following GP 9, 184 mg ($104 \mu \mathrm{~mol}$) of
 resin $1 \mathbf{w}(0.570 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, 20:1) gave $14.1 \mathrm{mg}(77.0 \mu \mathrm{~mol})$ of the product in 73% yield.

Upscaling: In a 20 mL vial $2.40 \mathrm{~g}(1.37 \mathrm{mmol})$ of resin $1 \mathrm{w}(0.570 \mathrm{mmol} / \mathrm{g})$ were first evacuated, flushed with nitrogen, and then suspended in 11 mL of methanol- d_{4}. After addition of 1.2 mL of trifluoroacetic acid the vial was sealed and the mixture was
agitated for 15 h at $80^{\circ} \mathrm{C}$. After cooling down to room temperature the resin was filtered off, washed with acetone and ethyl acetate and the residue was purified by column chromatography (100% cyclohexane \rightarrow cyclohexane/ethyl acetate, 10:1) to yield 206 mg ($1.12 \mathrm{mmol}, 82 \%$) of a pale yellow oil. - $\mathrm{R}_{f}: 0.20$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=2.26$ (s, 3 H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 7.18\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.47(\mathrm{~d}, 1$ $\mathrm{H},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}$), $7.56\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7,{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}\right) .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=$ $16.5\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 110.4(\mathrm{CH}), 121.8(\mathrm{CH}), 129.9(\mathrm{CH}), 130.4,132.5,157.6,167.2$ - IR (ATR, v): 3426, 2953, 2221, 2072, 1720, 1608, 1584, 1504, 1436, 1415, 1383, 1321, 1294, 1274, 1238, 1196, 1129, 1106, 1018, 986, 873, 791, $761 \mathrm{~cm}^{-1}$. - El (m/z): 183 (100) [M $\left.\mathrm{M}^{+}\right]$, 152 (116), 137 (2), 124 (20), 106 (8), 92 (20). - HRMS ($\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{D}_{3} \mathrm{O}_{3}$): calc. 183.0975, found 183.0971.

2-(\mathbf{d}_{3}-Methoxy)acetophenone (4x): Following GP 9, $114 \mathrm{mg}(71.2 \mu \mathrm{~mol})$ of resin $\mathbf{1 x}(0.624$ $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad \mathrm{O} \mathrm{mmol} / \mathrm{g}$) were reacted with TFA. Column chromatography (dichloromethane / methanol, 10:1) gave $6.90 \mathrm{mg}(44.2 \mu \mathrm{~mol})$ of the product in 62% yield. $-\mathrm{R}_{f}$: 0.34 (dichloromethane / methanol, 10:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), δ $=6.95-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.74\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9\right.$ $\mathrm{Hz}) .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=111.5(\mathrm{CH}), 120.5(\mathrm{CH}), 128.2(\mathrm{C}), 130.4(\mathrm{C})$, 133.7 (CH), 158.9 (C), 200.0 (C). - IR (ATR, v): 2937, 2228, 2073, 1666, 1596, 1480, 1449, 1295, 1247, 1164, 1126, 1104, 1049, 981, 953, 898, $755,566,516,490 \mathrm{~cm}^{-1} .-\mathrm{EI}(\mathrm{m} / \mathrm{z}): 156$ (27) $\left[\mathrm{M}^{+}\right], 153$ (18), 138 (100), 1107 (16), 89 (15), 77 (33). - HRMS ($\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{D}_{6} \mathrm{O}_{2}$): calc. 156.1057, found 156.1060 .
lodo-4-(d_{3}-methoxy)-1-methylbenzene (4y): Following GP 9, $136 \mathrm{mg}(86.6 \mu \mathrm{~mol})$ of resin $\mathrm{D}_{3} \mathrm{C}_{\mathrm{O}} \quad 1 \mathbf{z}(0.639 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $9.60 \mathrm{mg}(38.2 \mu \mathrm{~mol})$ of the product in 44% yield. - R $\mathrm{R}_{f} .0 .58$ (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=2.36(\mathrm{~s}, 3 \mathrm{H}), 6.80\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}\right.$), $7.12(\mathrm{~d}, 1$ $\mathrm{H},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}$), $7.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}\right) .-{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=26.8$ $\left(\mathrm{CH}_{3}\right), 100.8(\mathrm{C}), 114.2(\mathrm{CH}), 123.9(\mathrm{CH}), 129.7(\mathrm{CH}), 133.3,157.8$. - IR (ATR, v): 3444, 2920, 2854, 2253, 2218, 2069, 1727, 1597, 1562, 1485, 1452, 1383, 1288, 1244, 1109, 1024, 1000, 960, 836, $803 \mathrm{~cm}^{-1} .-\mathrm{El}(\mathrm{m} / \mathrm{z}): 251$ (59) [M+], 217 (3), 184 (7), 157 (13), 124
(23), 105 (8), 90 (10), 77 (20), 58 (29), 43 (100). - HRMS ($\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{D}_{3} \mathrm{OI}$): calc. 251.9886, found 251.9889.

4-(d \mathbf{d}_{3}-Methoxy)1,1'-biphenyl (4aa): According to GP 3, 10.7 mg ($34.6 \mu \mathrm{~mol}$) of 1-(biphenyl-
 $4-\mathrm{yl})$-3,3-diisopropyltriaz-1-ene (1aa) were reacted with TFA-d ${ }_{1}$ in methanol-d 4_{4}. Column chromatography (cyclohexane/ethyl acetate, 10:1) gave 5.10 mg (27.1 $\mu \mathrm{mol}$) of the target compound in 79% yield. $-\mathrm{R}_{f}=0.58$ (cyclohexane/ethyl acetate, 10:1). - ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=6.95-7.01(\mathrm{~m}, 2 \mathrm{H})$, (td, $1 \mathrm{H},{ }^{4} \mathrm{~J}=1.9$ $\mathrm{Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}$), 7.39-7.46 (m, 2 H), 7.51-7.58 (m, 4 H). $-{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=114.1$ (2 C), 126.6, 126.7 (2 C), 128.1 (2 C), 128.7 (2 C), 133.7, 140.8, 159.0. - IR (ATR, v): 3034, 2924, 2253, 2221, 2069, 1604, 1520, 1482, 1269, 1201, 1105, 987, 955, 832, 757, $685 \mathrm{~cm}^{-1}$. - El (m/z): 187 (100) [M $\left.{ }^{+}\right], 169$ (30), 141 (29), 115 (20). HRMS $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{D}_{3} \mathrm{O}\right)$: calc. 187.1076, found 187.1075.
tert-Butyl 3-(2-d \mathbf{d}_{3}-methoxyphenyl)acrylate (4ab): According to GP 3, $19.8 \mathrm{mg}(59.7 \mu \mathrm{~mol})$
 of tert-butyl-3-(2-(-3-3-diisopropyltriaz-1-en-1-yl)phenyl)acrylate (1ab) were reacted with TFA- d_{1} in methanol- d_{4}. Column chromatography (cyclohexane/ethyl acetate, 10:1) gave $11.4 \mathrm{mg}(47.6 \mu \mathrm{~mol})$ of the target compound in 80% yield. $-\mathrm{R}_{f}=0.38$ (cyclohexane/ethyl acetate, 10:1). $-{ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=1.53(\mathrm{~s}, 9 \mathrm{H}), 6.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=16.1 \mathrm{~Hz}\right.$), 6.88-6.98(m,2 H), 7.33 (ddd, 1 $\mathrm{H},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}$), $7.49\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}\right), 7.91(\mathrm{~d}, 1 \mathrm{H}$, ${ }^{3} \mathrm{~J}=16.1 \mathrm{~Hz}$). $-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=28.2$ (3 C), 80.2, 111.0, 120.5, 120.6, 123.6, 128.7, 131.1, 138.9, 158.2, 166.9. - IR (ATR, ṽ): 2977, 2930, 2221, 2072, 1705, 1631, 1599, 1487, 1457, 1391, 1367, 1324, 1258, 1151, 1112, 992, 875, $752 \mathrm{~cm}^{-1}$. - El (m/z): 237 (41) $\left[\mathrm{M}^{+}\right], 181$ (31), 152 (100), 100 (35). - HRMS ($\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{D}_{3} \mathrm{O}_{3}$): calc. 237.1444, found 237.1445.

3-Methoxy-4-deutero-1-nitrobenzene (1j): According to general procedure $8,6.05 \mathrm{~g}(3.70$
 mmol) of resin $1 \mathrm{j}(0.612 \mathrm{mmol} / \mathrm{g})$ were reacted with TFA-d d_{1}. Column chromatography (cyclohexane/ethyl acetate, 10:1) gave 186 mg (1.21 mmol) of the product in 33% yield. Analytics are identical to compound $1 \mathbf{j}$ via general procedure 7.

1-(D_{3}-Methoxy)-3-methoxy-4-deuterobenzene (4z): Following GP 9, 111 mg ($90.9 \mu \mathrm{~mol}$) of
 resin 12 were reacted with TFA. Column chromatography (cyclohexane/ethyl acetate, $50: 1$) gave $4.70 \mathrm{mg}(33.1 \mu \mathrm{~mol})$ of the product in 36% yield over two steps. - Rf: 0.39 (cyclohexane/ethyl acetate, 20:1). - ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right), \delta=3.80(\mathrm{~s}, 3 \mathrm{H}), 6.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}\right), 6.51\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ $8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.3 \mathrm{~Hz}$), 7.12-7.19 (m, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$), $\delta=54.4$ (sept, $1 \mathrm{C},{ }^{2} \mathrm{~J}=22.0 \mathrm{~Hz}$), 55.3, 100.5, $105.8\left(\mathrm{t}, 1 \mathrm{C},{ }^{2} \mathrm{~J}=24.9 \mathrm{~Hz}\right.$), 106.1, 129.8, 160.8, 160.8. - IR (ATR, ṽ): 2922, 2851, 1734, 1596, 1472, 1375, 1245, 1170, 1110, 567. - El (m/z): 142 [M $\left.{ }^{+}\right]$ (100), 95 (11), 78 (38), 53 (8).

Additional Literature:

Ref. 1 c) for a list of 260 available deuterated drugs as internal standard see: http://www.lgcstandards.com/media/1014889491.pdf.
Ref. 2 c) D. J. Kushner, A. Baker and T. G. Dunstall, Can. J. Physiol. Pharmacol. 1999, 77, 79-88; d) A. T. Yarnell, Chem. Engin. News 2009, 87, 36-39; Deuterated analogs of drugs in at least clinical phase I: Fludalanine (analog of 3-fluoro-D-aniline, Merck, stopped: e) F. Kahan, Chem. Engin. News 2009, 87, 6.); CTP-347 (analog of paroxetine, Concert: f) S. Harbeson and R. Tung, Drug Discovery Dev. 2010, 13, 22); SD-254 (analog of Effexor, Auspex: see ref. 4).
Ref. 5 b) E. Strandberg and A. S. Ulrich, Concepts Magn. Reson. Part A 2004, 23A, 89-120 and references therein; c) S. Jankowski, Annu. Reports NMR Spectroscopy 2009, 68, 149191.

Ref. 7 b) R. Mendelsohn and C. C. Koch, Biochim. Biophys. Acta 1980, 598, 260-271. c) K. L. Aubrey, G. J. Thomas, Jr., Biophys. J. 1991, 60, 1337-1349; d) E. Blackie, E. C. Le Ru, M. Meyer, M. Timmer, B. Burkett, P. Northcote and P. G. Etchegoin, Phys. Chem. Chem. Phys. 2008, 10, 4147-4153.

Ref. 8 d) M. M. Green, C. Andreola, B. Munoz, M. P. Reidy and K. Zero, J. Am. Chem. Soc. 1988, 110, 4063-4065; e) L. Stryer, J. Am. Chem. Soc. 1966, 88, 5708-5712; f) S. D. Nelson and W. F. Trager, Drug Metab. Dispos. 2003, 31, 1481-1498; g) D. B. Northrop, Annu. Rev. Biochem. 1981, 50, 103-131; h) W. W. Cleland, Methods Enzymol. 1995, 249, 341-373.

Ref. 9 b) R. P. Bell, Chem. Soc. Rev. 1974, 3, 513-544; c) J. P. Klinman, J. Phys. Org. Chem. 2010, 23, 606-612; d) Y.-I. Suzuki, H. Shen, Y. Tang, N. Kurahashi, K. Sekiguchi, T. Mizunoc, T. Suzuki, Chem. Sci. 2011, 2, 1094-1102.

Ref. 12 other methods. Reviews: c) J. Atzrodt, V. Derdau, T. Fey and J. Zimmermann, Angew. Chem. 2007, 119, 7890-7911; Angew. Chem. Int. Ed. 2007, 46, 7744-7765; d) W. J. S. Lockey, J. Labelled Compd. Radiopharm. 1983, 21, 45-57; e) M. H. G. Prechtl, M. Hölscher, Y. Ben-David, N. Theyssen, R. Loschen, D. Milstein and W. Leitner, Angew. Chem. 2007, 119, 2319-2322; Angew. Chem. Int. Ed. 2007, 46, 2269-2272; f) M. Yamamoto, Y. Yokota, K. Oshima and S. Matsubara, Chem. Commun. 2004, 1714-1715; g) T. Itou, Y. Yoshimi, K. Nishikawa, T. Morita, Y. Okada, N. Ichinosec, M. Hatanakad Chem. Commun. 2010, 46, 6177-6179; Metal-catalysed hydrogen isotope exchange: h) W. J. S. Lockey and J. R. Heys, J. Labelled Compd. Radiopharm. 2010, 53, 635-644.

Ref. 13 b) V. Derdau, T. Fey and J. Atzrodt, Tetrahedron 2010, 66, 1472-1482.

Ref. 19 b) H. Zollinger, Diazo Chemistry I; VCH: Weinheim, Germany, 1994, 188-212; 228230; c) N. Satyamurthy, J. R. Barrio, D. G. Schmidt, C. Kammerer, G. T. Bida and M. E. Phelps, J. Org. Chem. 1990, 55, 4560-4564.

