Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes

Olga Ekkert, Gerald Kehr, Roland Fröhlich and Gerhard Erker

Supporting Information

Experimental Section

All experiments were carried out under a dry Argon atmosphere using standard Schlenk techniques or in a glovebox. Solvents (including deuterated solvents used for NMR) were dried and distilled prior to use. ¹H, ¹³C, ¹¹B, ¹⁹F, ³¹P NMR spectra were recorded on a *Bruker* AV 300 MHz, Varian 500 MHz INOVA or a Varian 600 MHz UNITY plus NMR spectrometer at ambient temperature unless otherwise stated. Chemical shifts are given in ppm relative to solvents (¹H and ¹³C) or an external standard [$\delta(BF_3 \cdot OEt_2) = 0$ for ¹¹B NMR, $\delta(CFCl_3) = 0$ for ¹⁹F NMR and $\delta(85\% H_3PO_4) = 0$ for ³¹P NMR). Coupling constants are in Hz. Elemental analysis data was recorded on a *Elementar Vario El III*. HRMS was recorded on GTC Waters Micromass (Manchester, UK). IR spectra were recorded on a Varian 3100 FT-IR (Excalibur Series). Melting points were obtained with a DSC 2010 (TA Instruments). X-ray structure analysis: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods in Enzymology, 1997, 276, 307-326), absorption correction Denzo (Z.Otwinowski, D. Borek, W. Majewski & W. Minor, Acta Cryst. 2003, A59, 228-234), structure solution SHELXS-97 (G.M. Sheldrick, Acta Cryst. 1990, A46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Acta Cryst. 2008, A64, 112-122), graphics XP (BrukerAXS, 2000). Graphics show the thermal ellipsoids with 50 % probability, R values are given for the observed reflections, wR^2 values for all reflections. CCDC reference numbers 826907 - 826909.

B(C₆F₅)₃ was prepared according to procedures reported in the literature (caution: the intermediate involved is explosive) [(a) A. G. Massey, A. J. Park, *J. Organomet. Chem.* 1964, **2**, 245-250. (b) C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Fröhlich, *Organometallics*, 2005, **24**, 4760-4773]. Compound **3c** was prepared according to modified procedures reported in the literature [(a) A. D. Miller, S. A. Johnson, K. A. Tupper, J. L. McBee, T. D. Tilley, *Organometallics*, 2009, **28**, 1252–1262; (b) A. Samb, B. Demerseman, P. H. Dixneuf, C. Mealli, *Organometallics*, 1988, **7**, 26–33].

Synthesis of 3c. *p*-Tolylacetylene (0.49 ml, 3.84 mmol) was dissolved in diethylether (15 ml). Then *n*-butyllithium solution (1.6 M in hexane, 2.4 ml, 3.84 mmol) was added at -78°C. The solution was stirred for 2h at room temperature. Subsequently the reaction mixture was again cooled to -78° C and a solution of chlorodimesitylphosphane (1.17 g, 3.84 mmol) in diethylether (15

ml) was added. The reaction mixture was warmed to room temperature and stirred for 3h. The solvent was removed in vacuum and the residue was extracted with pentane (30 ml) and the product (0.584 g, 1.52 mmol, 40%) could be isolated as a white-yellow solid. Crystals suitable for X-ray crystal structure analysis were grown by slow diffusion of pentane into a solution of **3c** in dichloromethane at $-36 \,^{\circ}$ C. **Anal. Calc.** for C₂₇H₂₉P: C, 84.34; H, 7.60. Found: C, 84.05; H, 7.43. **IR** (KBr): $\tilde{\nu} / \text{ cm}^{-1} = 2917$ (br m), 2148 (w), 1913 (w), 1601 (m), 1463 (s), 1226 (m), 1103 (m), 849 (s), 618 (s), 534 (s). **M.p.** (DSC): 124°C.

¹**H NMR** (500 MHz, 298 K, C₆D₆): $\delta = 7.23$ (d, ³*J*_{HH} = 8.1 Hz, 2H, *o*-Tol), 6.71 (d, ³*J*_{HH} = 8.1 Hz, 2H, *m*-Tol), 6.69 (d, ⁴*J*_{PH} = 3.3 Hz, 4H, *m*-Mes), 2.58 (s, 12H, *o*-CH₃^{Mes}), 2.05 (s, 6H, *p*-CH₃^{Mes}), 1.91 (s, 3H, Me).

¹³C{¹H} NMR (126 MHz, 298 K, C₆D₆): $\delta = 142.3$ (d, ²*J*_{PC} = 15.7 Hz, *o*-Mes), 138.4 (*p*-Tol), 138.3 (*p*-Mes), 131.4 (d, ⁴*J*_{PC} = 2.1 Hz, *o*-Tol), 130.6 (d, ¹*J*_{PC} = 12.7 Hz, *i*-Mes), 130.4 (d, ³*J*_{PC} = 3.6 Hz, *m*-Mes), 129.3 (*m*-Tol), 121.3 (d, ³*J*_{PC} = 1.5 Hz, *i*-Tol), 107.6 (d, ²*J*_{PC} = 8.4 Hz, TolC=), 87.8 (d, ¹*J*_{PC} = 6.2 Hz, $\equiv C^P$), 23.3 (d, ³*J*_{PC} = 13.3 Hz, *o*-CH₃^{Mes}), 21.2 (Me), 20.9 (*p*-CH₃^{Mes}).

³¹P{¹H} NMR (202 MHz, 298 K, C₆D₆): δ = -55.7 ($v_{1/2} \sim 1$ Hz).

¹**H**, ¹**H GCOSY** (500 MHz / 500 MHz, 298 K, C₆D₆): δ^{1} H / δ^{1} H = 7.23 / 6.71 (*o*-Tol / *m*-Tol), 6.42 / 2.58, 2.05 (*m*-Mes / *o*-CH₃^{Mes}, *p*-CH₃^{Mes}).

¹H,¹³C GHSQC (500 MHz / 126 MHz, 298 K, C₆D₆): δ^{1} H / δ^{13} C = 7.23 / 131.4 (*o*-Tol), 6.71 / 129.3 (*m*-Tol), 6.69 / 130.4 (*m*-Mes), 2.58 / 23.3 (*o*-CH₃^{Mes}), 2.05 / 20.9 (*p*-CH₃^{Mes}), 1.91 / 21.2 (Me).

¹H,¹³C GHMBC (500 MHz / 126 MHz, 298 K, C₆D₆): δ^{1} H / δ^{13} C = 7.23 / 138.4, 107.6 (*o*-Tol / *p*-Tol, ^{Tol}C=), 6.71 / 121.3, 21.2 (*m*-Tol / *i*-, *p*-Tol), 6.69 / 130.6, 23.3, 20.9 (*m*-Mes / *i*-Mes, *o*-, *p*-CH₃^{Mes}), 2.58 / 142.3, 130.4 (*o*-CH₃^{Mes} / *i* -, *m* -Mes), 2.05 / 138.3, 130.4, 121.4 (*p*-CH₃^{Mes} / *p*-, *m*-Mes), 1.91 / 138.4, 129.3, 121.3 (Me / *p*-Tol, *m*-Tol, *i*-Tol).

X-Ray crystal structure analysis of 3c. Crystal data for C₂₇H₂₉P, M = 384.47, triclinic, $P\overline{I}$ (No. 2), a = 10.1751(5), b = 10.6783 (4), c = 11.6493(7) Å, $\alpha = 96.462(2)$, $\beta = 107.570(4)$, $\gamma = 109.165(4)^{\circ}$, V = 1107.87(10) Å³, $D_c = 1.153$ g cm⁻³, $\mu = 1.142$ mm⁻¹, F(000) = 412, Z = 2, $\lambda = 1.54178$ Å, T = 223(2) K, 15949 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 3784 independent ($R_{int} = 0.048$), and 3388 observed reflections [I $\geq 2\sigma(l$)], 260 refined parameters, R = 0.044, w $R^2 = 0.123$, GoF = 1.039.

Synthesis of 5. $B(C_6F_5)_3$ (0.400 g, 0.780 mmol) and 3c (0.300 g, $(C_6F_5)_3B_{\oplus P}$ Mes₂ (0.780 mmol) were suspended in pentane (15 ml) and stirred for 30 minutes at room temperature. The suspension was filtered and the residue washed twice with pentane (20 ml). Drying under vacuum gave the

product **5** (0.534 g, 0.596 mmol, 76%) as a white solid. Crystals suitable for X-ray crystal structure analysis were grown by slow diffusion of pentane into a solution of **5** in dichloromethane at -36 °C. **Anal. Calc.** for C₄₅H₂₉BF₁₅P: C, 60.29; H, 3.26. Found: C, 60.37; H, 3.51. **IR** (KBr): $\tilde{\nu}$ / cm⁻¹ = 2926 (br m), 2360 (w), 1643 (m), 1515 (s), 1464 (s), 1092 (s), 980 (s), 823 (m), 648 (m), 564 (m). **Decomp.** (DSC): 189 °C.

¹**H** NMR (500 MHz, 298 K, C₆D₆): $\delta = 6.96$ (d, ³*J*_{HH} = 8.1 Hz, 2H, *o*-Tol), 6.80 (d, ³*J*_{HH} = 8.1 Hz, 2H, *m*-Tol), 6.42 (d, ⁴*J*_{PH} = 5.2 Hz, 4H, *m*-Mes), 2.08 (s, 12H, *o*-CH₃^{Mes}), 1.92 (s, 3H, Me), 1.87 (s, 6H, *p*-CH₃^{Mes}).

¹³C{¹H} NMR (126 MHz, 298 K, C₆D₆): $\delta = 151.6$ (br, ^BC=), 148.7 (dm, ¹*J*_{FC} ~ 240 Hz, *o*-C₆F₅), 144.0 (d, ⁴*J*_{PC} = 2.9 Hz, *p*-Mes), 142.9 (d, ²*J*_{PC} = 11.7 Hz, *o*-Mes), 141.2 (*p*-Tol), 139.7 (dm, ¹*J*_{FC} ~ 250 Hz, *p*-C₆F₅), 137.4 (dm, ¹*J*_{FC} ~ 245 Hz, *m*-C₆F₅), 136.7 (^{Tol}C=), 130.6 (d, ³*J*_{PC} = 13.4 Hz, *m*-Mes), 129.6 (*m*-Tol), 128.4 (d, ³*J*_{PC} = 5.3 Hz, *o*-Tol), 125.4 (d, ²*J*_{PC} = 3.7 Hz, *i*-Tol), 121.5 (br, *i*-C₆F₅), 121.4 (d, ¹*J*_{PC} = 88.0 Hz, *i*-Mes), 22.8 (d, ³*J*_{PC} = 7.2 Hz, *o*-CH₃^{Mes}), 21.1 (Me), 20.8 (*p*-CH₃^{Mes}).

¹⁹**F NMR** (470 MHz, 298 K, C₆D₆): δ = -130.3 (m, 6F, *o*-BC₆F₅), -159.5 (t, ³*J*_{FF} = 20.7 Hz, 3F, *p*-BC₆F₅), -164.5 (m, 6F, *m*-BC₆F₅) [Δδ¹⁹F_{m,p} = 5.0].

¹¹B{¹H} NMR (160 MHz, 298 K, C₆D₆): δ = -16.5 ($v_{1/2} \sim 50$ Hz).

³¹P{¹H} NMR (121 MHz, 300 K, C₆D₆): δ = -137.8 ($v_{1/2} \sim 10$ Hz).

TOCSY (500 MHz, 298 K, C₆D₆): $\delta^{1}H_{irr.} / \delta^{1}H_{res.} = 6.96 / 6.80$ (*o*-Tol / *m*-Tol), 6.80 / 6.96, 1.92 (*m*-Tol / *o*-Tol, Me), 6.42 / 2.08, 1.87 (*m*-Mes / *o*-, *p*-CH₃^{Mes}).

NOE (500 MHz, 298 K, C₆D₆): δ^{1} H_{irr.} / δ^{1} H_{res.} = 6.96 / 6.80, 2.08 (*o*-Tol / *m*-Tol, *o*-CH₃^{Mes}), 6.80 / 6.96, 1.92 (*m*-Tol / *o*-Tol, Me), 6.42 / 2.08, 1.87 (*m*-Mes / *o*-, *p*-CH₃^{Mes}).

¹**H**, ¹**H GCOSY** (500 MHz / 500 MHz, 298 K, C₆D₆): δ^{1} H / δ^{1} H = 6.96 / 6.80 (*o*-Tol / *m*-Tol), 6.80 / 6.96, 1.92 (*m*-Tol / *o*-Tol, Me), 6.42 / 2.08, 1.87 (*m*-Mes / *o*-, *p*-CH₃^{Mes}).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 298 K, C₆D₆): δ^{1} H / δ^{13} C = 6.96 / 128.4 (*o*-Tol), 6.80 / 129.6 (*m*-Tol), 6.42 / 130.6 (*m*-Mes), 2.08 / 22.8 (*o*-CH₃^{Mes}), 1.92 / 21.1 (Me), 1.87 / 20.8 (*p*-CH₃^{Mes}).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 298 K, C₆D₆): δ^{1} H / δ^{13} C = 6.96 / 141.2, 136.7, 129.6 (*o*-Tol / *p*-Tol, ^{Tol}C=, *m*-Tol), 6.80 / 128.4, 125.4, 21.1 (*m*-Tol / *o*-Tol, *i*-Tol, Me), 6.42 / 142.9, 121.4, 22.8, 20.8 (*m*-Mes / *o*-, *i*-Mes, *o*-, *p*-CH₃^{Mes}), 2.08 / 142.9, 130.6, 121.4 (*o*-CH₃^{Mes} / *o*-, *m*-, *i*-Mes), 1.92 / 141.2, 129.6, 125.4 (Me / *p*-Tol, *m*-Tol, *i*-Tol), 1.87 / 144.0, 130.6, 121.4 (*p*-CH₃^{Mes} / *p*-, *m*-, *i*-Mes).

X-Ray crystal structure analysis of 5. Crystal data for $C_{45}H_{29}BF_{15}P * \frac{1}{2} CH_2Cl_2 * \frac{1}{2} C_5H_{12}$, M = 975.00, orthorhombic, $Pca2_1$ (No. 29), a = 21.7497(6), b = 22.5390(4), c = 17.9477(6)Å, V = 8798.3(4) Å³, $D_c = 1.472$ g cm⁻³, $\mu = 1.998$ mm⁻¹, F(000) = 3968, Z = 8, $\lambda = 1.54178$ Å, T = 223(2) K, 47800 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 14469 independent ($R_{int} = 0.074$), and 12099 observed reflections [I $\geq 2\sigma(l)$], 1206 refined parameters, R = 0.059, w $R^2 = 0.157$, GoF = 1.033, Flack parameter 0.50(2).

Synthesis of 4c. $B(C_6F_5)_3$ (0.332 g, 0.650 mmol) and 3c (0.250 g, 0.650 mmol) were dissolved in toluene (20 ml) and stirred for 6h at 105 °C. Subsequently the solvent was removed and the residue was washed twice with pentane (15 ml) and all volatiles were removed in vacuo to yield 4c (0.379 g, 0.423 mmol, 65%) as a white solid [admixed with 15% of A: see O. Ekkert, R. Fröhlich, G. Kehr, G. Erker, *J. Am. Chem. Soc.* 2011, *133*, 4610-4616]. Crystals suitable for X-ray crystal structure analysis were grown by slow diffusion of pentane into a solution of 4c in dichloromethane at -36 °C. HRMS: Calc. for

C₄₅H₂₉BF₁₅PAg: 1005.09161. Found: 1005.09180. **IR** (KBr): $\tilde{v} / cm^{-1} = 2924$ (br m), 2624 (w), 2398 (w), 2175 (w), 1643 (s), 1520 (br s), 1277 (s), 1095 (s), 982 (s), 694 (m), 506 (m). **Decomp.** (DSC): 227 °C.

¹**H** NMR (500 MHz, 298 K, CD₂Cl₂): δ = 6.97 (m, 2H, *m*-Tol), 6.86 (m, 2H, *o*-Tol), 6.82 (d, ⁴*J*_{PH} = 3.6 Hz, 4H, *m*-Mes), 2.27 (s, 9H, *p*-CH₃^{Mes} / Me), 2.14 (s, 12H, *o*-CH₃^{Mes}).

¹³C{¹H} NMR (126 MHz, 298 K, CD₂Cl₂): $\delta = 146.9$ (d, ¹*J*_{PC} = 48.0 Hz, =C^P), 143.7 (d, ²*J*_{PC} = 9.1 Hz, *o*-Mes), 142.3 (d, ⁴*J*_{PC} = 2.7 Hz, *p*-Mes), 139.3 (*p*-Tol), 134.9 (*i*-Tol), 131.0 (d, ³*J*_{PC} = 9.3 Hz, *m*-Mes), 129.6 (*m*-Tol), 127.3 (d, ³*J*_{PC} = 4.0 Hz, *o*-Tol), 123.2 (d, ¹*J*_{PC} = 36.0 Hz, *i*-Mes), 24.0 (d, ³*J*_{PC} = 5.6 Hz, *o*-CH₃^{Mes}), 21.4 (Me), 20.9 (*p*-CH₃^{Mes}), n.o. (^BC=), [C₆F₅ not listed].

¹⁹**F**{¹**H**} **NMR** (470 MHz, 298 K, CD₂Cl₂): $\delta = -127.3$ (br., 4F, *o*), -158.0 (t, ${}^{3}J_{FF} = 20.5$ Hz, 2F, *p*), -165.2 (m, 4F, *m*) (B(C₆F₅)₂) [$\Delta \delta^{19}F_{m,p} = 7.2$], -136.7 (m, 2F, *o*), -156.3 (t, ${}^{3}J_{FF} = 21.0$ Hz, 1F, *p*), -163.7 (m, 2F, *m*) (C₆F₅), [$\Delta \delta^{19}F_{m,p} = 7.4$]; {**A** [key resonance]: -188.2 (br, B-F)}.

¹¹B{¹H} NMR (160 MHz, 298 K, CD₂Cl₂): δ = -0.1 ($v_{1/2} \sim 350$ Hz).

³¹P{¹H} NMR (202 MHz, 298 K, CD₂Cl₂): $\delta = 14.6 (v_{1/2} \sim 50 \text{ Hz});$

{A: $\delta = 27.3 (v_{1/2} \sim 60 \text{ Hz})$ }.

TOCSY (500 MHz, 298 K, CD₂Cl₂): δ^{1} H_{irr.} / δ^{1} H_{res.} = 6.97 / 6.86 (*m*-Tol / *o*-Tol), 6.86 / 6.97, 2.27 (*o*-Tol / *m*-Tol, Me), 6.82 / 2.27, 2.14 (*m*-Mes / *p*-, *o*-CH₃^{Mes}).

NOE (500 MHz, 298 K, CD₂Cl₂): $\delta^{1}H_{irr.} / \delta^{1}H_{res.} = 6.97 / 6.86$, 2.27 (*m*-Tol / *o*-Tol, Me), 2.27, 2.14 / 6.82 (*p*-CH₃^{Mes}, *o*-CH₃^{Mes} / *m*-Mes).

¹H,¹H GCOSY (500 MHz / 500 MHz, 298 K, CD₂Cl₂): δ^{1} H / δ^{1} H = 6.97 / 6.86 (*m*-Tol / *o*-Tol), 6.82 / 2.27, 2.14 (*m*-Mes / *p*-, *o*-CH₃^{Mes}).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 298 K, CD₂Cl₂): δ^{1} H / δ^{13} C = 6.97 / 129.6 (*m*-Tol), 6.86 / 127.3 (*o*-Tol), 6.82 / 131.0 (*m*-Mes), 2.27 / 21.4 (Me), 2.27 / 20.9 (*p*-CH₃^{Mes}), 2.14 / 24.0 (*o*-CH₃^{Mes}).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 298 K, CD₂Cl₂): δ^{1} H / δ^{13} C = 6.97 / 134.9, 21.4 (*m*-Tol / *i*-Tol, Me), 6.86 / 146.9, 139.3 (*o*-Tol / =C^P, *i*-Tol), 6.82 / 143.7, 123.2, 24.0, 20.9 (*m*-Mes / *o*-, *i*-Mes, *o*-, Me), 2.27 / 142.3, 139.3, 131.0, 129.6 (Me, *p*-CH₃^{Mes} / *p*-Mes, *p*-Tol, *m*-Mes, *m*-Tol), 2.14 / 143.7, 131.0, 123.2 (*o*-CH₃^{Mes} / *o*-, *m*-, *i*-Mes).

 ${}^{135}_{13}C{}^{125}_{1H} NMR (126 \text{ MHz}, 298 \text{ K}, CD_2Cl_2) \text{ of } 4c.$

X-Ray crystal structure analysis of 4. Crystal data for C₄₅H₂₉BF₁₅P, M = 896.46, triclinic, $P\overline{I}$ (No. 2), a = 12.4342(5), b = 13.4995 (6), c = 14.2303(6) Å, a = 82.805(2), $\beta = 66.678(2)$, $\gamma = 64.037(2)^{\circ}$, V = 1968.75(14) Å³, $D_{c} = 1.512$ g cm⁻³, $\mu = 1.570$ mm⁻¹, F(000) = 908, Z = 2, $\lambda = 1.54178$ Å, T = 223(2) K, 28030 reflections collected (±h, ±k, ±l), [(sin θ)/ λ] = 0.60 Å⁻¹, 6739 independent ($R_{int} = 0.038$), and 6261 observed reflections [I $\ge 2\sigma(I)$], 566 refined parameters, R = 0.037, w $R^2 = 0.109$, GoF = 1.034. Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

NMR-scale reactions:

a) Heating of **5** (31.0 mg, 0.035 mmol) in d₈-toluene (1 ml) for 6h at 105 °C yielded a mixture of **4c** and **A** in a 1:0.1 ratio (monitored by 31 P NMR).

NMR spectra before heating

¹H NMR (300 MHz, 298 K, D₈-toluene) and ¹¹B{¹H} NMR (96 MHz): before heating of **5**

³¹P NMR (122 MHz, 298 K, D₈-toluene): before heating of **5**

NMR spectra after heating at 105°C for 6h

 $^{31}P\{^{1}H\}$ NMR (122 MHz, 298 K, D₈-toluene): after heating of **5** for 6h

b) Heating of **5** (43.0 mg, 0.048 mmol) and **3a** (17.9 mg, 0.062 mmol) in d₈-toluene (1 ml) for 48h at 70 °C resulted in a reaction mixture of **4c**, **4a**, **3c** and **3a** in a ca. 5.8 : 1 : 1 : 3.4 ratio [traces of **5** and **A**] (monitored by ³¹P NMR).

NMR spectra before heating

¹⁹F NMR (282 MHz, 298 K, D₈-toluene): before heating the reaction mixure of **5** and **3a**

³¹P NMR (122 MHz, 298 K, D₈-toluene): before heating the reaction mixure of **5** and **3a**

NMR spectra after heating at 70°C for 48h

¹H NMR (300 MHz, 298 K, D₈-toluene): heating the reaction mixure of **5** and **3a** (70°C, 48h)

¹⁹F NMR (282 MHz, 298 K, D₈-toluene): heating the reaction mixure of **5** and **3a** (70°C, 48h)

¹¹B NMR (96 MHz, 298 K, D₈-toluene): heating the reaction mixure of **5** and **3a** (70°C, 48h)

³¹P NMR (122 MHz, 298 K, D₈-toluene): heating the reaction mixure of **5** and **3a** (70°C, 48h)