A convenient method for the measurements of accurate transverse relaxation rates in homonuclear scalar coupled spin systems

Caroline Barrère, Pierre Thureau, André Thévand and Stéphane Viel

Electronic Supplementary Information

1 Experimental parameters

Experiments were performed on a 9.4 T Bruker Avance II NMR spectrometer using a 5 mm ${}^{13}\text{C}/{}^{1}\text{H}$ probe. The sample was prepared dissolving 5 mg of uracil into 500 μ L of DMSO-d₆ and 100 μ L of D₂O. The dissolved oxygen was not removed. For the results shown in Fig. 2 and 3, the recycle delay was adjusted to ensure full recovery of the magnetization and was set to 18 s. The ${}^{1}\text{H}$ 90° pulse length was 9 μ s.

In all cases, the experimental ¹H signal amplitudes were estimated by integrating the spectral peaks. These amplitudes were normalized against the peak integral for $\tau = 4 \ \mu$ s. The confidence limits on the determined relaxation rates R_2 were determined by non-linear fitting to the mono-exponential decay formula.

2 Phase Cycling

The ZQ- and DQ-filtered signals are obtained from separate experiments. The same result can be obtained with a unique experiment multiplied by appropriate weights. The pulse phases are given in the following table:

ϕ_1	90°
ϕ_2	0°
ϕ_3	90°
ϕ_4	$0^\circ~90^\circ~180^\circ~270^\circ$
ϕ_5	0°
$\phi_{R_{ZQF}}$	$0^\circ~270^\circ~180^\circ~90^\circ$
$\phi_{R_{DQF}}$	$0^\circ~90^\circ~180^\circ~270^\circ$

Table 1: Phase cycling for ZQ- or DQ-filtered pulse sequence shown in Fig. 1. Phases are given for the 5 radiofrequency pulses, in order from left to right, and for the receiver phase. A four-step phase cycle can be added to ϕ_3 and ϕ_5 to ensure the sign change of the coherences order, giving rise to a 64-step phase cycle. Data shown in Fig. 2 and 3 were obtained using the 4-step and 64-step phase cycles, respectively.

3 Impact of diffusion on R_2 measurements

In the presence of background gradient g_b , due to magnetic field inhomogeneity ΔB_0 , the signal intensity does not only depend on the relaxation rate but also on the molecular self-diffusion coefficient.

The signal loss induced by molecular diffusion can be estimated by measuring the NMR signal line width at half height $\Delta \nu_{1/2}$. Considering the worst case scenario, where the signal line width is only due to the magnetic field inhomogeneity, we can write:

$$\Delta \nu_{1/2} = \frac{\gamma \Delta B_0}{2\pi} \tag{1}$$

In addition, the background gradient is given by:

$$g_b = \frac{\Delta B_0}{L} \tag{2}$$

with L being the length of the coil active region. Thus, the background gradient can be rewritten according to:

$$g_b = \frac{1}{L} \frac{2\pi}{\gamma} \Delta \nu_{1/2} \tag{3}$$

Typically, for standard solution-state NMR probes we have L = 1 cm and

 $\Delta \nu_{1/2} = 0.5$ Hz.

In a spin-echo experiment, the amplitude of the signal at the echo is given by:

$$\exp\left(-\tau R_2\right)\exp\left(-\frac{1}{12}\gamma^2 g_b^2 D\tau^3\right) \tag{4}$$

With $D_{uracil} = 3.10^{-10} \text{ m}^2 \text{.s}^{-1}$, the term related to diffusion is equal to 0.997 at the largest τ value (10 s) which basically means that the influence of diffusion can be neglected.

4 Strongly coupled spin system

A citric acid sample was used to illustrate the case of a strongly coupled spin system. 10 mg of citric acid were dissolved in D_2O . Each of the two CH_2 groups forms a diastereotopic proton pair. If the labile-OH protons are ignored, the spin system classification is AA'BB'.

Figure 1: a) Citric acid molecular structure b) Experimental ¹H NMR spectra of citric acid c) Experimental ¹H ZQF+DQF signal amplitudes obtained as a function of τ for a citric acid sample dissolved in D₂O mixture; The solid curve represents the best fit to the mono-exponential decay.

5 Uracil CPMG and Hahn-Echo curves

Figure 2: Experimental evolution as a function of τ of the ¹H signal amplitude of a uracil sample (proton H₁) dissolved in a DMSO-d₆/D₂O mixture obtained with: a) The CPMG pulse sequence. The solid curve represents the best fit to the mono-exponential decay. b) The Hahn-Echo pulse sequence. The solid curve represents the best fit to the analytical function: $\cos(\pi J \tau) \exp(-\tau R_2)$.