A Novel Membrane Permeant cADPR Antagonist

Modified in the Pyrophosphate Bridge

N. Qi^{1,¶}, K. Jung^{2,¶}, M. Wang¹, L. X. Na¹, Z. J. Yang^{1,*}, L. R. Zhang¹, A. H. Guse²,

L. H. Zhang^{1,*}

¹State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

²Calcium Signalling Group, Institute of Biochemistry and Molecular Biology I, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

[¶]Equal contribution

*Corresponding author

Contents

1. ¹ H NMR, ³¹ P NMR and HRMS of 5b-1	2
2. ¹ H NMR, ³¹ P NMR and HRMS of 5b-2	3
3. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _s ¹ -cIDPRE-1	5
4. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _s ¹ -cIDPRE-2	7
5. ¹ H NMR, ³¹ P NMR and HRMS of 5c-1	9
6. ¹ H NMR, ³¹ P NMR and HRMS of 5c-2	10
7. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P ¹ _{Se} -cIDPRE-1	12
8. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P ¹ _{Se} -cIDPRE-2	14
9. ¹ H NMR, ³¹ P NMR and HRMS of 9b-1	16
10. ¹ H NMR, ³¹ P NMR and HRMS of 9b-2	17
11. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _s ² -cIDPRE-1	19
12. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _S ² -cIDPRE-2	21
13. ¹ H NMR, ³¹ P NMR and HRMS of 9c-1	23
14. ¹ H NMR, ³¹ P NMR and HRMS of 9c-2	24
15. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _{Se} -cIDPRE-1	
16. HPLC, ¹ H NMR, ³¹ P NMR and HRMS of P _{Se} -cIDPRE-2	
17. Bioassay results of P_s^1 -cIDPRE-1 and P_s^1 -cIDPRE-2	30
18. Procedures for preparation of P_s^1 -cIDPRE-1, P_s^1 -cIDPRE-2, P_{se}^1 -cIDPRE-1, P_{se}^1 -cID	PRE-2,
P_{s}^{2} -cIDPRE-1, P_{s}^{2} -cIDPRE-2, P_{se}^{2} -cIDPRE-1 and P_{se}^{2} -cIDPRE-2	32

1. ¹H NMR, ³¹P NMR and HRMS of 5b-1

2. ¹H NMR, ³¹P NMR and HRMS of 5b-2

Bruker APEX IV FT_MS (7.0 T) Report (all)

Analysis Info Analysis Nam	北方 C:\data	て大学医药卫生 sample/ESL 091201	∈分析中心 10\ESLS2 2009120	Acquisition Da 7\NEG_3		07/12/2009 16:01:07		
Method Sample Name			_10.201_02_2000120	Operator Instrument	bpfxsh@bjmu.edu. FT_MS _Bruk	cn; Tel:010_82801437 er APEX IV (7.0 T)		
Comment	ESI CAL588 in 1:1 H mg/mL	C16H22N4O11P2S ; 226.16718;249.15 362.24081;391.284 475.32548;509.254 588.40954;679.511 20:MeOH; CapExit 1 ; 150uL/h	1 MW 540.0481 695;340.25887;301.14 83;413.26647;453.343 07;509.25407;566.427 66;701.49361;826.471 50V; m/z 150-2880;	158; 53; 60; 21;				
Acquisition R	esult:	Exact Mass	Measured Mass	Error (mm/e)	Error (ppm) D	escription		

3. HPLC, ¹H NMR, ³¹P NMR and HRMS of P_s¹-cIDPRE-1

4. HPLC, ¹H NMR, ³¹P NMR and HRMS of P_s¹-cIDPRE-2

5. ¹H NMR, ³¹P NMR and HRMS of 5c-1

6. ¹H NMR, ³¹P NMR and HRMS of 5c-2

9. ¹H NMR, ³¹P NMR and HRMS of 9b-1

10. ¹H NMR, ³¹P NMR and HRMS of 9b-2

Analysis N	ame C	C:\data_sample\ESI_2011 6_1	0320_30	ESI_PS_8_	2_2011032	9\NEOperat	or bpfxshi nent FT_MS	@bjmu. S _Bruk	edu.cn er APE	K IV (7
Comment	ESI CALS 335.9 in 1:1 D1=	C16H22N4O11P2S1 CAME; NEG 216.98461; POS 399.14451; 6 19207;414.00562;509.254 H2O:MeOH; CapExit 15 2s; ns=8 100uL/h	MW 540. 615.1208 17.13639; 107;826.4 0V; m/z 1	0481 9; 833.1152; ; 835.12827; 7121351;964 50-3000; 10	5 1053.1201 145⊡ 24K;	5; 1271.1120	03; 1489.10391	; 1707.0	9579320.	01451;
Acquisition	Result:	Exact Mass	Measu	red Mass	Error (mDa)	Error (ppm)	D	escriptio	on
		Sum Formula C 16 H 11 N 15 O 2 P 2 S 1 C 26 H 15 N 5 O 3 P 2 S 1 C 17 H 17 N 8 O 7 P 2 S 1 C 15 H 15 N 11 O 6 P 2 S 1 C 28 H 17 N 2 O 4 P 2 S 1 C 18 H 23 N 1 O 12 P 2 S 1 C 29 H 13 N 6 P 2 S 1 C 16 H 21 N 4 O 11 P 2 S 1	Sigma 0.046 0.051 0.052 0.054 0.056 0.059 0.060 0.061	m/z 539.04216 539.03763 539.04216 539.04082 539.04082 539.04081 539.04082	Err [ppm] 4.38 -4.02 4.39 1.90 -1.53 4.40 0.95 1.91	Mean Err [pp 2 -5 3 0 -2 -2 -2 -0 0 0 0	Err [mDa] 8.82 2.36 3.17 -2.17 3.12 2.37 3.42 1.02 6.60 -0.82 3.46 2.37 0.28 0.51 0.75 1.03	rdb 20.00 23.00 14.50 15.00 22.50 9.00 27.50 9.50	N Rule ok ok ok ok ok ok ok ok	e odd odd even odd even odd even even
0	<u> </u>	C 31 H 15 N 3 O 1 P 2 S 1	0.066	539.04165	3.45	2	1.86	27.00	ok	odd
tens.	<	0 15 H 25 0 15 P 2 S 1	0.071	559.05949	-0.57	-1	-0.31	ESI PS	8 2 2011	0329\NEG
×10 ⁵	L O I									
3 9	0-2		530 0308	0						
2			000.0000	-						
1										
1		and the second	mar to make a low		but there at the part	to a the day set to the statement	a second state of the local backwards	Section of the sector of the s	allow the sufficient of the loss	
×10 ⁵						ESI_PS_8_2_	20110329\NEG_1	: C 16 H	21 N 4 O 1	1P2S1
4										
3			500 0 100	-						
2			539.0408	2						
1										
1										

BJMU - BRUKER APEX IV FT-MS (7.0T) Spectrum Report

11. HPLC, ¹H NMR, ³¹P NMR and HRMS of P_S²-cIDPRE-1

12. HPLC, ¹H NMR, ³¹P NMR and HRMS of P_s²-cIDPRE-2

13. ¹H NMR, ³¹P NMR and HRMS of 9c-1

14. ¹H NMR, ³¹P NMR and HRMS of 9c-2

16. HPLC, ¹H NMR, ³¹P NMR and HRMS of P_{Se}²-cIDPRE-2

17. Bioassay results of Ps-cIDPRE-1 and Ps-cIDPRE-2

The bioassay was carried out with similar procedures of reference **6e** and **6f** (Reference **6e**. M. Dong, T. Kirchberger, X. C. Huang, Z. J. Yang, L. R. Zhang, A. H. Guse and L. H. Zhang, *Org. Biomol. Chem.*, 2010, **8**, 4705-4715; **6f**. L. J. Li, C. C. Siebrands, Z. J. Yang, L. R. Zhang, A. H. Guse and L. H. Zhang, *Org. Biomol. Chem.*, 2010, **8**, 1843-1848).

Fig. S-1 Effects of P_s^1 -cIDPRE-1 and P_s^1 -cIDPRE-2 on the free cytosolic Ca²⁺ concentration. Jurkat T-cells loaded with the fluorescent Ca²⁺ dye Fura2-AM were analyzed over 14 minutes after addition of compounds or vehicle. (A) Stimulation with 1 mM compound P_s^1 -cIDPRE-2 (n = 8) evoked Ca²⁺ release in contrast to buffer control (n = 8); (B) Application of OKT3 (10 μ g/mL) in the presence of 1 mM cIDPRE-analogue P_s^1 -cIDPRE-1 (n = 11) (14 minutes preincubation) resulted in significantly lower Ca²⁺ signaling as compared to OKT3 alone (n = 8). Gray line: time courses of single cells; black line: mean of 8-11 cells. The arrow indicates time of compound or vehicle application.

Fig. S-2 Comparison of effects of cIDPRE, P_s^1 -cIDPRE-1 and P_s^1 -cIDPRE-2 on Ca²⁺ release. Jurkat T-cells loaded with the fluorescent Ca²⁺ dye Fura2-AM were analyzed over 14 minutes after addition of compounds or vehicle. Ca²⁺ peak: difference between the Ca²⁺ concentration 0.4 minutes after compound application and the basal Ca²⁺ concentration (after one minute); Ca²⁺ plateau: difference between the Ca²⁺ concentration ten minutes after compound application and the basal Ca²⁺ concentration and the basal Ca²⁺ concentration (after one minute). (A) Ca²⁺ peak stimulated by buffer control (n = 57); (B) Ca²⁺ peak stimulated by 1 mM cIDPRE (n = 58); (C) Ca²⁺ peak stimulated by 1 mM P_s¹-cIDPRE-1 (n = 39); (D) Ca²⁺ peak stimulated by 1 mM P_s¹ cIDPRE-2 (n = 33); (E) Ca²⁺ plateau stimulated by 1 mM P_s¹-cIDPRE-1 (n = 39); (H) Ca²⁺ plateau stimulated by 1 mM P_s¹-cIDPRE-2 (n = 33).

Fig. S-3 Antagonistic effects of P_s^1 -cIDPRE-1 on Ca^{2+} release. Jurkat T-cells loaded with the fluorescent Ca^{2+} dye Fura2-AM were analyzed over 14 minutes after addition of compounds or vehicle. Ca^{2+} Peak: difference between the Ca^{2+} concentration 2.5 minutes after OKT3 application and the basal Ca^{2+} concentration (after 15 minutes); Ca^{2+} Plateau: difference between the Ca^{2+} concentration ten minutes after OKT3 application and the basal Ca^{2+} OKT3 application and the basal Ca^{2+} concentration (after 15 minutes); $(A) Ca^{2+}$ peak stimulated by 1 mM cIDPRE (n = 58); (B) Ca^{2+} peak stimulated by OKT3 (10 µg/mL) in the presence of buffer (14 minutes)

preincubation) (n = 41); (C) (D) (E) Ca²⁺ peak stimulated by OKT3 (10 µg/mL) in the presence of 100 µM (n = 35), 500 µM (n = 31) or 1 mM (n = 39) P_s^1 -cIDPRE-1 (14 minutes preincubation); (F) Ca²⁺ plateau stimulated by 1 mM cIDPRE (n = 58); (G) Ca²⁺ plateau stimulated by OKT3 (10 µg/mL) in the presence of buffer (14 minutes preincubation) (n = 41); (H) (I) (J) Ca²⁺ plateau stimulated by OKT3 (10 µg/mL) in the presence of 100 µM (n = 35), 500 µM (n = 31) or 1 mM (n = 39) P_s^1 -cIDPRE-1 (14 minutes preincubation).

18. Procedures for preparation of P_s^1 -cIDPRE-1, P_s^1 -cIDPRE-2, P_{Se}^1 -cIDPRE-1, P_{Se}^1 -cIDPRE-2, P_s^2 -cIDPRE-1, P_s^2 -cIDPRE-2, P_{Se}^2 -cIDPRE-1 and P_{Se}^2 -cIDPRE-2

All solvents were dried and distilled prior to use. Unless otherwise noted, materials were obtained from commercial suppliers and were used as provided. Evaporations were carried out under reduced pressure with a bath temperature of 35 °C. ¹H NMR data were recorded with Bruker Avance III 400 spectrometer; Chemical shifts were reported in parts per million downfield from TMS. ³¹P NMR spectra were recorded at room temperature using Bruker Avance 300 (121.5 MHz) or JNM-ECA 600 (243.0 MHz) spectrometer; Orthophosphoric acid (85%) was used as an external standard. HR-ESI-MS (electrospray ionization) were attained with Bruker APEX IV. Optical rotation was determined with Perkin-Elmer 243B polarimeter. The analysis of compounds was performed on Welch XB analytical C₁₈ reversed-phase column (5 μ m, 4.6 x 150 mm) with Varian HPLC by the buffer system: MeCN/TEAA (pH = 7.0). The purification of compounds was performed on Agela Venusil XBP preparative C₁₈ reversed-phase column (10 μ m, 22 ×250 mm) with Gilson HPLC by the buffer system:

Methods for preparative HPLC:

- Method A: performed with C₁₈ reversed-phase column, eluting with a linear gradient of 0-40% CH₃CN in TEAA buffer solution (0.05 M, pH 7.0), 5 mL/min of flow rate, 260 nm of detection wavelength.
- Method B: performed with C₁₈ reversed-phase column, eluting with a linear gradient of 0-15% CH₃CN in TEAA buffer solution (0.05 M, pH 7.0), 5 mL/min of flow rate, 260 nm of detection wavelength.

 N^{1} -[(5"-O-phosphorylethoxy)methyl]-5'-O-phosphorothioate-2',3'-O-isopropylideneinosine-5'.5"-cyclicpyrophosphate 5b-1 and 5b-2. 2-Cyanoethoxy-N,N,N'.N'-tetraisopropylphosphoramidite (41 µL, 0.13 mmol) was added to a solution of 2 (50 mg, 89 µmol) and 1H-tetrazole (19 mg, 0.27 mmol) in CH₃CN (30 mL) under argon. After the reaction was continued for 0.5 h, CS₂ solution (30 mL) of S₈ (32 mg, 1 mmol) was added and the reaction was continued for 8 h. After the reaction mixture was evaporated, the residue resolved in H₂O and extracted with CHCl₃ The aqueous layer was concentrated. The purification was performed with method A for preparative HPLC to give compound 4b (a pair of diastereoisomers, unseparated, 37.6 mg, 61%). Compound 4b was resolved in 1M TEAB bicarbonate buffer (pH = 7.5, 5 mL) and the reaction was stirred for 3h at room temperature. After evaporation, the separation of the mixture was performed with method A for preparative HPLC. The fractions of 5b-1 (13.4 mg, 32%) and 5b-2 (23.0 mg, 58%) were collected separately. Data for **5b-1**: $\delta_{H}(400 \text{MHz}; D_2 \text{O})$ 1.47, 1.63 (each s, each 3H, (CH₃)₂C), 3.86-3.95 (m, 6H, H₅', OCH₂CH₂OP), 4.62-4.63 (m, 1H, H₄'), 5.35-5.39 (m, 2H, H₁"a, H₃'), 5.92-5.95 $(m, 2H, H_1"b, H_2'), 6.35 (s, 1H, H_1'), 8.21 (s, 1H, H_8), 8.49 (s, 1H, H_2); \delta_P(121.5 \text{ MHz}; D_2O;$ decoupled with ¹H) -10.84 (s), 43.94 (s); m/z (ESI-TOF⁻) 539.0402 (M⁻ requires 539.0408). Data for **5b-2**: $\delta_{H}(400 \text{ MHz}; \text{ D}_2\text{O})$ 1.47, 1.63 (each s, each 3H, (CH₃)₂C), 3.75-3.76 (m, 1H, H_{5a}'), 3.88-4.06 (m, 5H, H_{5b}', OCH₂CH₂OP), 4.70 (m, 1H, H₄'), 5.30-5.31 (m,1H, H₃'), 5.38 $(d, 1H, J_{H1"a, H1"b} = 11.2 Hz, H_1"a), 5.90 (d, 1H, J_{H1"b, H1"a} = 11.2 Hz, H_1"b), 5.94 (m, 1H, H_2'),$ 6.30 (s, 1H, H₁'), 8.23 (s, 1H, H₈), 8.49 (s, 1H, H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^1\text{H})$ -10.63 (s), 43.56 (s); m/z (ESI-TOF) 539.0427 (M⁻ requires 539.0408).

 N^{1} -[(5"-*O*-phosphorylethoxy)methyl]-5'-*O*-phosphorothioate-inosine-5',5"-cyclic pyrophosphate P¹_s-cIDPRE-1 and P¹_s-cIDPRE-2. The solution of 5b-1 (13.4 mg, 18 μmol) in 60% HCOOH (5 mL) was stirred for 12 h and then evaporated under reduced pressure. The purification of the residue was performed with method A for preparative HPLC, and the main fraction was collected to give the target molecule P¹_s-cIDPRE-1 (10.8 mg, 85%). The same treatment was imposed on 5b-2 to give P¹_s-cIDPRE-2 (18.5 mg, 85%), which was purified with the same procedure. Data for P¹_s-cIDPRE-1: δ_H(400MHz; D₂O) 3.88-3.91 (m, 4H, OCH₂CH₂OP), 4.09-4.10 (m, 1H, H_{5a}'), 4.18-4.21 (m, 1H, H_{5b}'), 4.30 (m, 1H, H₄'), 4.90-4.92 (m, 1H, H₃'), 5.38-5.40 (m, 1H, H₂'), 5.46 (d, 1H, $J_{H1"a,H1"b}$ = 11.2 Hz, H₁"a), 5.81 (d, 1H, $J_{H1"b,H1"a}$ = 11.2 Hz, H₁"b), 6.05 (d, 1H, $J_{H1',H2'}$ = 3.2 Hz, H₁'), 8.19 (s, 1H, H₈), 8.49 (s, 1H, H₂); δ_P(243.0 MHz; D₂O; decoupled with ¹H) -10.67 (s), 43.15 (s); m/z (ESI-TOF⁻) 499.0089 (M⁻ requires 499.0095). Data for **P**¹_s-**cIDPRE-2**: δ_H(400MHz; D₂O) 3.82-3.85 (m, 2H, OCH₂), 3.95-3.99 (m, 2H, CH₂OP), 4.10-4.14 (m, 1H, H_{5a}'), 4.22-4.27 (m, 1H, H_{5b}'), 4.33 (m, 1H, H₄'), 4.79 (buried in H₂O residue peak, 1H, H₃'), 5.39-5.41 (m, 1H, H₂'), 5.51 (d, 1H, $J_{H1"a,H1"b}$ = 11.2 Hz, H₁"a), 5.78 (d, 1H, $J_{H1"b,H1"a}$ = 11.2 Hz, H₁"b), 6.06 (d, 1H, $J_{H1",H2"}$ = 3.6 Hz, H₁'), 8.19 (s, 1H, H₈), 8.51 (s, 1H, H₂); δ_P(243.0 MHz; D₂O; decoupled with ¹H) -10.72 (s), 43.91 (s); m/z (ESI-TOF⁻) 499.0077 (M⁻ requires 499.0095).

 N^{1} -[(5"-O-phosphorylethoxy)methyl]-5'-O-phosphoroselenoate-2',3'-O-isopropylidene -inosine-5',5"-cyclicpyrophosphate 5c-1 and 5c-2. 2-Cyanoethoxy-N,N,N',N'-tetraisopropylphosphoramidite (41 µL, 0.13 mmol) was added to a solution of 2 (50 mg, 89 µmol) and 1H-tetrazole (19 mg, 0.27 mmol) in CH₃CN (30 mL) under argon. After the reaction was continued for 0.5 h, the CHCl₃ solution (30 mL) of Se (79 mg, 1 mmol) was added and the reaction was continued for 8 h. After the reaction mixture was evaporated, the residue resolved in H₂O and extracted with CHCl₃ and the aqueous layer was concentrated. The purification was performed with method A for preparative HPLC to give compound 4c (a pair of diastereoisomers, unseparated, 23.0 mg, 35%). Compound 4c was resolved in 1M TEAB bicarbonate buffer (pH = 7.5, 5 mL) and the reaction was stirred for 3h at room temperature. After evaporation, the separation of the mixture was performed with method A for preparative HPLC. The fractions of 5c-1 (7.9 mg, 32%) and 5c-2 (13.4 mg, 54%) were collected separately. Data for **5c-1**: $\delta_{H}(400 \text{MHz}; D_2 \text{O})$ 1.48, 1.63 (each s, each 3H, (CH₃)₂C), 3.88-3.95 (m, 6H, H₅', OCH₂CH₂OP), 4.65-4.66 (m, 1H, H₄'), 5.37 (d, 1H, J_{H1"a, H1"b} = 11.2 Hz, H₁"a), 5.39-5.40 (m, 1H, H₃'), 5.94-5.96 (m, 2H, H₁"b, H₂'), 6.35 (s, 1H, H₁'), 8.22 (s, 1H, H₈), 8.49 (s, 1H, H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^{1}\text{H}) -11.39 \text{ (s)}, 34.41 \text{ (s)}; m/z \text{ (ESI-TOF)})$ 586.9864 (M⁻ requires 586.9847). Data for 5c-2: $\delta_{\rm H}$ (400MHz; D₂O) 1.47, 1.63 (each s, each 3H, (CH₃)₂C), 3.74-3.75 (m, 1H, H_{5a}'), 3.89-4.10 (m, 5H, H_{5b}', OCH₂CH₂OP), 4.72 (m, 1H, H_4 '), 5.31-5.32 (m,1H, H_3 '), 5.38 (d, 1H, $J_{H1"a, H1"b} = 10.8$ Hz, H_1 "a), 5.89-5.93 (m, 2H, H_1 "b, H_2 '), 6.30 (s, 1H, H_1 '), 8.24 (s, 1H, H_8), 8.49 (s, 1H, H_2); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with})$ ¹H) -11.14 (s), 33.98 (s); m/z (ESI-TOF) 586.9861 (M⁻ requires 586.9847).

 N^{1} -[(5"-*O*-phosphorylethoxy)methyl]-5'-*O*-phosphoroselenoate-inosine-5',5"-cyclicpyrophosphate P_{se}^{1} -cIDPRE-1 and P_{se}^{1} -cIDPRE-2. The solution of 5c-1 (7.9 mg, 10 µmol) in 60% HCOOH (5 mL) was stirred for 12 h and then evaporated under reduced pressure. The purification of the residue was performed with method A for preparative HPLC, and the main fraction was collected to give the target molecule P_{se}^{1} -cIDPRE-1 (6.5 mg, 87%). The same treatment was imposed on 5c-2 (13.4 mg, 17 µmol) to give P_{se}^{1} -cIDPRE-2 (10.8 mg, 85%), which was purified with the same procedure. Data for P_{se}^{1} -cIDPRE-1: $\delta_{H}(400MHz; D_{2}O)$ 3.86-3.93 (m, 4H, OCH₂CH₂OP), 4.10-4.12 (m, 1H, H_{5a}'), 4.18-4.19 (m, 1H, H_{5b}'), 4.31 (m, 1H, H₄'), 4.92-4.95 (m, 1H, H₃'), 5.36-5.38 (m, 1H, H₂'), 5.47 (d, 1H, $J_{H1"a,H1"b} = 11.2$ Hz, H₁"a), 5.82 (d, 1H, $J_{H1"b,H1"a} = 11.2$ Hz, H₁"b), 6.06 (d, 1H, $J_{H1',H2'} = 2.8$ Hz, H₁'), 8.19 (s, 1H, H₈), 8.49 (s, 1H, H₂); $\delta_{P}(121.5$ MHz; D₂O; decoupled with ¹H) -11.15 (s), 32.97 (s); m/z (ESI-TOF") 546.9509 (M⁻ requires 546.9534). Data for P_{se}^{1} -cIDPRE-2: $\delta_{H}(400MHz; D_{2}O)$ 3.81-3.85 (m, 2H, OCH₂), 3.97-4.01 (m, 2H, CH₂OP), 4.11-4.15 (m, 1H, H_{5a}'), 4.24-4.29 (m, 1H, H_{5b}'), 4.33 (m, 1H, H₄'), 4.83 (m, 1H, H₃'), 5.37-5.39 (m, 1H, H₂'), 5.50 (d, 1H, $J_{H1"a,H1"b}$ = 10.8 Hz, H₁"a), 5.79 (d, 1H, $J_{H1"b,H1"a} = 10.8$ Hz, H₁"b), 6.06 (d, 1H, $J_{H1",H2"} = 3.6$ Hz, H₁'), 8.19 (s, 1H, H₃) (s, 1H, H₈), 8.52 (s, 1H, H₂); $\delta_{P}(121.5$ MHz; D₂O; decoupled with ¹H) -11.10 (s), 34.16 (s); m/z (ESI-TOF") 546.9502 (M⁻ requires 546.9534).

 N^{1} -[(5"-O-(phosphorothioate)ethoxy)methyl]-5'-O-phosphoryl-2',3'-O-isopropylideneinosine-5',5"-cyclicpyrophosphate 9b-1 and 9b-2. 2-Cyanoethoxy-*N*,*N*,*N*',*N*'-tetraisopropyl phosphoramidite (0.1 mL, 0.33 mmol) was added to a solution of 6 (0.12 g, 0.22 mmol) and 1H-tetrazole (46 mg, 0.66 mmol) in CH₃CN (80 mL) under argon. After the reaction was continued for 0.5 h, CS₂ solution (30 mL) of S₈ (69 mg, 2.16 mmol) was added and the reaction was continued for 8 h. After the reaction mixture was evaporated, the residue resolved in H₂O and extracted with CHCl₃ The aqueous layer was concentrated. The purification was performed with method A for preparative HPLC to give compound 8b (a pair of diastereoisomers, unseparated, 84 mg, 57%). Compound 8b was resolved in 1M TEAB bicarbonate buffer (pH = 7.5, 10 mL) and the reaction was stirred for 6h at 35° C. After evaporation, the separation of the mixture was performed with method B for preparative HPLC. The fractions of **9b-1** (37 mg, 41%) and **9b-2** (48 mg, 54%) were collected separately. Data for **9b-1**: $\delta_{\rm H}(400 \text{ MHz}; D_2 \text{O})$ 1.48, 1.65 (each s, each 3H, (CH₃)₂C), 3.87-4.08 (m, 6H, H₅', OCH₂CH₂OP), 4.65-4.66 (m, 1H, H₄'), 5.36-5.40 (m, 2H, H₃', H₁"a), 5.87-5.88 (m,1H, $H_{2'}$), 5.94 (d,1H, $J_{H1"b, H1"a}$ = 10.8 Hz, H_1 "b), 6.36 (s, 1H, H_1 '), 8.22 (s, 1H, H_8), 8.52 (s, 1H, H_8), 8.52 (s, 1H, H_8), 8.52 (s, 1H, H_8), 8.52 (s, 1H, H_8 H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^1\text{H}) -11.45 \text{ (d, } J_{p,p} = 17.0 \text{ Hz}), 45.00 \text{ (d, } J_{p,p} = 17.0 \text{ Hz})$ Hz); m/z (ESI-TOF) 539.0394 (M⁻ requires 539.0408). Data for **9b-2**: $\delta_{\rm H}(400 \text{ MHz}; \text{ D}_2\text{O})$ 1.48, 1.65 (each s, each 3H, (CH₃)₂C), 3.79-4.03 (m, 6H, H₅, OCH₂CH₂OP), 4.72 (m, 1H, H₄'), 5.35-5.37 (m,1H, H₃'), 5.39 (d, 1H, J_{H1"a, H1"b} = 10.8 Hz, H₁"a), 5.92 (d,1H, J_{H1"b, H1"a} = 10.8 Hz, H₁"b), 6.01-6.03 (m, 1H, H₂'), 6.31 (s, 1H, H₁'), 8.24 (s, 1H, H₈), 8.53 (s, 1H, H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^{1}\text{H}) -11.34 (d, J_{p,p} = 17.0 \text{ Hz}), 44.84 (d, J_{p,p} = 17.0 \text{ Hz}); m/z (ESI-TOF⁻) 539.0398 (M⁻ requires 539.0408).$

 N^{1} -[(5"-O-(phosphorothioate)ethoxy)methyl]-5'-O-phosphoryl-inosine-5',5"-cyclicpyrophosphate P_s^2 -cIDPRE-1 and P_s^2 -cIDPRE-2 The solution of 9b-1 (25 mg, 34 µmol) in 60% HCOOH (10 mL) was stirred for 20 h and then evaporated under reduced pressure. The purification of the residue was performed with method B for preparative HPLC, and the main fraction was collected to give the target molecule P_{s}^{2} -cIDPRE-1 (20 mg, 85%); The same treatment was imposed on 9b-2 (25 mg, 34 μ mol) to give P_s²-cIDPRE-2 (22 mg, 95%), which was purified with the same procedure. Data for P_8^2 -cIDPRE-1: $\delta_H(400 \text{ MHz}; D_2O)$ 3.85-3.92 (m, 2H, OCH₂), 3.96-4.03 (m, 2H, CH₂OP), 4.09-4.13 (m, 1H, H_{5a}'), 4.29-4.35 (m, 2H, H₄', H_{5b} '), 4.77-4.78 (m, 1H, H_3 '), 5.44 (d,1H, $J_{H1"a, H1"b} = 11.2$ Hz, H_1 "a), 5.49-5.51 (m,1H, H_2 '), 5.88 (d,1H, $J_{\text{H1"b, H1"a}}$ = 11.2 Hz, H_1 "b), 6.06 (d, 1H, $J_{\text{H1", H2"}}$ = 4.4 Hz, H_1 '), 8.21 (s, 1H, H_8), 8.55 (s, 1H, H₂); δ_P (121.5 MHz; D₂O; decoupled with ¹H) -11.12 (d, $J_{p,p}$ = 19.6 Hz), 44.73 (d, $J_{p,p} = 19.6 \text{ Hz}$; m/z (ESI-TOF) 499.0089 (M⁻ requires 499.0095). Data for P_s^2 -cIDPRE-2: δ_H(400 MHz; D₂O) 3.81-3.88 (m, 2H, OCH₂), 3.98-4.09 (m, 3H, H_{5a}', CH₂OP), 4.22-4.27 (m, 1H, H_{5b}'), 4.33-4.36 (m, 1H, H₄'), 4.76-4.77 (m, 1H, H₃'), 5.43-5.45 (m, 1H, H₂'), 5.51 (d, 1H, $J_{\text{H1"a, H1"b}} = 11.2 \text{ Hz}, \text{H}_1\text{"a}), 5.80 \text{ (d, 1H, } J_{\text{H1"b, H1"a}} = 11.2 \text{ Hz}, \text{H}_1\text{"b}), 6.06 \text{ (d, 1H, } J_{\text{H1", H2"}} = 4$ Hz, H₁'), 8.20 (s, 1H, H₈), 8.58 (s, 1H, H₂); δ_P(121.5 MHz; D₂O; decoupled with ¹H) -11.23 (d, $J_{p,p} = 17.0 \text{ Hz}$, 44.62 (d, $J_{p,p} = 17.0 \text{ Hz}$); m/z (ESI-TOF) 499.0090 (M⁻ requires 499.0095).

 N^{1} -[(5"-*O*-(phosphoroselenoate)ethoxy)methyl]-5'-*O*-phosphoryl-2',3'-*O*-isopropylidene-inosine-5',5"-cyclicpyrophosphate 9c-1 and 9c-2. 2-Cyanoethoxy-N,N,N',N'tetraisopropylphosphoramidite (0.1 mL, 0.33 mmol) was added to a solution of 6 (0.12 g, 0.22 mmol) and 1*H*-tetrazole (46 mg, 0.66 mmol) in CH₃CN (80 mL) under argon. After the reaction was continued for 0.5 h, the CHCl₃ solution (30 mL) of Se (0.17 g, 2.16 mmol) was added and the reaction was continued for 8 h. After the reaction mixture was evaporated, the residue resolved in H₂O and extracted with CHCl₃ and the aqueous layer was concentrated. The purification was performed with method A for preparative HPLC to give compound **8c** (a pair of diastereoisomers, unseparated, 47 mg, 30%). Compound **8c** was resolved in 1M TEAB bicarbonate buffer (pH = 7.5, 10 mL) and the reaction was stirred for 6h at 35°C. After evaporation, the separation of the mixture was performed with method B for preparative HPLC. The fractions of **9c-1** (18 mg, 36%) and **9c-2** (30 mg, 59%) were collected separately. Data for **9c-1**: $\delta_{\rm H}(400 \text{ MHz}; \text{ D}_2\text{O})$ 1.50, 1.67 (each s, each 3H, (CH₃)₂C), 3.91-3.95 (m, 2H, OCH₂), 3.99-4.12 (m, 4H, H₅', CH₂OP), 4.66-4.69 (m, 1H, H₄'), 5.38-5.41 (m, 2H, H₃', H₁"a), 5.87-5.89 (m,1H, H₂'), 5.95 (d,1H, J_{H1"b}, H_{1"a} = 10.8 Hz, H₁"b), 6.37 (s, 1H, H₁'), 8.24 (s, 1H, H₈), 8.53 (s, 1H, H₂); $\delta_{\rm P}(121.5 \text{ MHz}; \text{ D}_2\text{O};$ decoupled with ¹H) -11.81 (d, $J_{\rm p,p}$ = 19.6 Hz), 34.94 (d, $J_{\rm p,p}$ = 19.6 Hz); m/z (ESI-TOF⁻) 586.9851 (M⁻ requires 586.9847). Data for **9c-2:** $\delta_{\rm H}(400 \text{ MHz}; \text{ D}_2\text{O})$ 1.49, 1.67 (each s, each 3H, (CH₃)₂C), 3.81-4.07 (m, 6H, H₅', OCH₂CH₂OP), 4.75-4.76 (m, 1H, H₄'), 5.38-5.41 (m,2H, H₃, H₁"a), 5.94 (d,1H, J_{H1"b}, H_{1"a} = 11.2 Hz, H₁"b), 6.05-6.07 (m, 1H, H₂'), 6.32 (s, 1H, H₁'), 8.25 (s, 1H, H₈), 8.55 (s, 1H, H₂); $\delta_{\rm P}(121.5 \text{ MHz}; \text{ D}_2\text{O};$ decoupled with ¹H) -11.63 (d, $J_{\rm p,p}$ = 17.1 Hz), 34.65 (d, $J_{\rm p,p}$ = 17.1 Hz); m/z (ESI-TOF⁻) 586.9846 (M⁻ requires 586.9847).

N¹-[(5"-O-(phosphoroselenoate)ethoxy)methyl]-5'-O-phosphoryl-inosine-5',5"-cyclicpyrophosphate P_{Se}^2 -cIDPRE-1 and P_{Se}^2 -cIDPRE-2. The solution of 9c-1 (18 mg, 23 µmol) in 60% HCOOH (10 mL) was stirred for 20 h and then evaporated under reduced pressure. The purification of the residue was performed with method B for preparative HPLC, and the main fraction was collected to give the target molecule P_{Se}^2 -cIDPRE-1 (15 mg, 90%). The same treatment was imposed on 9c-2 (25.0 mg, 32 μ mol) to give P²_{se}-cIDPRE-2 (22 mg, 95%), which was purified with the same procedure. Data for P_{Se}^2 -cIDPRE-1: $\delta_H(400 \text{ MHz}; D_2O)$ 3.86-4.04 (m, 4H, OCH₂CH₂OP), 4.11-4.14 (m, 1H, H_{5a}'), 4.28-4.35 (m, 2H, H_{5b}', H₄'), 4.76-4.78 (m, 1H, H₃'), 5.43 (d,1H, $J_{H1"a, H1"b} = 11.2$ Hz, H_1 "a), 5.47-5.50 (m,1H, H₂'), 5.87 $(d, 1H, J_{H1"b, H1"a} = 11.2 \text{ Hz}, H_1"b), 6.06 (d, 1H, J_{H1', H2'} = 6 \text{ Hz}, H_1'), 8.20 (s, 1H, H_8), 8.54 (s, 1H, H_$ 1H, H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^1\text{H}) - 11.45 \text{ (d, } J_{p,p} = 19.6 \text{ Hz}), 34.72 \text{ (d, } J_{p,p} = 19.6 \text{ Hz})$ 19.6 Hz); m/z (ESI-TOF⁻) 546.9540 (M⁻ requires 546.9534). Data for P_{Se}^2 -cIDPRE-2: δ_H (400 MHz; D₂O) 3.83-3.89 (m, 2H, OCH₂), 4.02-4.09 (m, 3H, H_{5a}', CH₂OP), 4.24-4.29 (m, 1H, H_{5b}'), 4.34-4.37 (m, 1H, H₄'), 4.75-4.77 (m, 1H, H₃'), 5.43-5.46 (m,1H, H₂'), 5.51 (d, 1H, $J_{\text{H1"a, H1"b}} = 11.2 \text{ Hz}, H_1$ "a), 5.81 (d, 1H, $J_{\text{H1"b, H1"a}} = 11.2 \text{ Hz}, H_1$ "b), 6.06 (d, 1H, $J_{\text{H1", H2"}} = 4$ Hz, H₁'), 8.21 (s, 1H, H₈), 8.60 (s, 1H, H₂); $\delta_P(121.5 \text{ MHz}; D_2O; \text{ decoupled with }^1\text{H}) -11.60 (d, 1)$ $J_{p,p}$ = 19.6 Hz), 34.56 (d, $J_{p,p}$ = 19.6 Hz); m/z (ESI-TOF) 546.9536 (M⁻ requires 546.9534).