Supplementary Information

Sweet (hetero)aromatics: Glycosylated templates for the construction of saccharide mimetics

Christine Wiebe, ${ }^{a, b}$ Claudine Schlemmer, ${ }^{a, b}$ Stefan Weck, ${ }^{a, b}$ and Till Opatz ${ }^{a}$
${ }^{a}$ Institute for Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany. Fax: +49 6131 3922338; Tel: +49 6131 3924443;
E-mail: opatz@uni-mainz.de
${ }^{b}$ Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

Contents

\qquad1. General Methods.S2
2. Experimental procedures and characterization data S3
3. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra S34

1. General Methods

Moisture sensitive reactions were carried out under argon atmosphere in dried glasware sealed by rubber septa. Organic solutions were concentrated under reduced pressure using a Büchi rotary evaporator with a Vacuubrand vacuum pump. Unless otherwise specified, chemicals were obtained from commercial suppliers and were used without further purification. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ were dried over CaH_{2} and distilled under argon atmosphere prior to use. THF was dried over sodium and distilled under argon atmosphere prior to use. Flash chromatography was performed on silica gel 60 ($0.035-0.070 \mathrm{~mm}$, Acros). Chromatography solvents (cyclohexane, EtOAc) were distilled prior to use. For analytical TLC, Merck silica gel aluminium sheets $\left(60 \mathrm{~F}_{254}\right)$ were used. Visualisation was accomplished by UV (254 nm) and sugar reagent (1 M ethanolic $\mathrm{H}_{2} \mathrm{SO}_{4} / 0.2$ \% ethanolic 3-methoxyphenol solution 1:1). Purification of products was accomplished by flash chromatography on silica gel and the purified compounds showed a single spot in analytical TLC.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC300, AV 400 or DRX 500 in CDCl_{3}, Methanol- d_{4} or DMSO- d_{6} using the residual solvent peak as internal reference $\left(\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}=\right.$ $7.26, \delta_{\mathrm{C}}=77.16$, methanol- $d_{4}, \delta_{\mathrm{H}}=3.31, \delta_{\mathrm{C}}=49.0$, DMSO- $d_{6}, \delta_{\mathrm{H}}=2.50, \delta_{\mathrm{C}}=39.52$). Optical rotations were measured at room temperature on a Krüss P8000 polarimeter at 589 nm, or on a Perkin Elmer 241 polarimeter at 546 and 578 nm ; the optical rotation at 589 nm was extrapolated using the Drude equation. IR spectra were recorded on a ThermoNicolet Avatar 370 FT-IR spectrometer. FAB mass spectrometry was carried out on with a VG70S (Xe-FAB ionisation) with m-nitrobenzylalcohol as matrix. For exact mass determination (FAB-HRMS), PEG 300 or PEG 600 was used as internal standard. ESI mass spectrometry was carried out on an Agilent 1200 LC/MSD Trap XCT. The samples were dissolved in acetonitrile ($\mathrm{c} \approx 0.1 \mathrm{~g} / \mathrm{l}$) and injected via an Agilent 1200 HPLC with an Ascentis Express C8 ($30 \times 2 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$ particle size) columm (acetonitrile/water 80:20, Flow: $0.5 \mathrm{ml} / \mathrm{min}$). Exact mass determination (ESI-HRMS) was carried out on a Q-ToF-Ultima 3-Instrument with Lock
 were used as external standard.

2. Experimental Procedures and characterization data

A mixture of 2,3,4,6-tetra-O-benzyl-D-galactosyl trichloroacetimidate ${ }^{1}$ (1) (1.31 g, 1.91 mmol), 2-naphthol ($350 \mathrm{mg}, 2.43 \mathrm{mmol}$) and activated $4 \AA$ molecular sieves (1 g) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min under argon atmosphere to remove traces of water from the reactants. Then, TMSOTf ($440 \mu \mathrm{l}, 2.43 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added and the mixture was stirred until TLC-monitoring showed no further progress. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by flash chromatography (cyclohexane/EtOAc, 7:1) to give 1-C($2^{\prime}, 3^{\prime}, 4 ’, 6$ '-tetra- O-benzyl- β-D-galactosyl)-2-naphthol (2) ($663 \mathrm{mg}, 0.994 \mathrm{mmol}, 52 \%$).

2: colorless oil: $R_{f}=0.12$ (cyclohexane/EtOAc, 20:1). ${ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , CDCl_{3}) : $\delta=8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.93\left(\mathrm{~d},{ }^{3} J_{8,7}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\text {naph }}\right), 7.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\text {naph }}, \mathrm{H}-\right.$ $5^{\text {naph }}$), 7.37-7.13 (m, $\left.17 \mathrm{H}, \mathrm{H}-6^{\text {naph }}, \mathrm{H}-7^{\text {naph }}, 15 \mathrm{H}-\mathrm{Ph}\right), 7.09\left(\mathrm{~d},{ }^{3} J_{3,4}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {naph }}\right)$, $7.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 6.90\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 6.36-6.27$ (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$), $5.27\left(\mathrm{~d},{ }^{3} J_{1,2}=9.6,1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}\right), 5.04\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.64\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.39-4.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\mathrm{gal}}, 2 \mathrm{CH}_{2} \mathrm{Ph}\right), 4.20\left(\mathrm{~d},{ }^{2} J=9.8,1\right.$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.06 (pseudo-d, $\left.{ }^{3} J_{\text {app }}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right), 3.75-3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {gal }}, \mathrm{H}-5^{\text {gal }}\right)$, $3.52\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6^{\mathrm{gal}}\right), 3.45\left(\mathrm{~d},{ }^{2} J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.1\left(\mathrm{C}^{\text {naph }}\right.$), $138.9,138.8,138.0,137.5\left(4 \mathrm{x}, \mathrm{C}-1^{\mathrm{Ph}}\right), 133.1$ $\left(\mathrm{C}-8 \mathrm{a}^{\text {naph }}\right), 130.7\left(\mathrm{C}-4^{\text {naph }}\right), 129.0\left(\mathrm{C}-5^{\text {naph }}, \mathrm{C}-4 \mathrm{a}^{\text {naph }}\right), 128.8,128.7,128.3,128.2,128.1,128.0$, $127.8,127.7\left(\mathrm{CH}^{\text {arom }}\right), 126.8\left(\mathrm{C}-7^{\text {naph }}\right), 123.3\left(\mathrm{C}-6^{\text {naph }}\right), 123.1\left(\mathrm{C}-8^{\text {naph }}\right), 119.8\left(\mathrm{C}-3^{\text {naph }}\right), 115.8$ $\left(\mathrm{C}-1^{\text {naph }}\right), 84.3\left(\mathrm{C}-5^{\text {gal }}\right), 79.4\left(\mathrm{C}-2^{\mathrm{gal}}\right), 77.8\left(\mathrm{C}-3^{\text {gal }}\right), 76.8\left(\mathrm{C}-1^{\text {gal }}\right), 76.0,74.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.1$ $\left(\mathrm{C}-4^{\text {gal }}\right), 74.0,73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 68.8\left(\mathrm{C}-6^{\text {gal }}\right) \mathrm{ppm}$. FAB-MS $m / z(\%)=666.3[\mathrm{M}]^{+}(100)$. FABHRMS: calc. for $\left[\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{O}_{6}\right]^{+}: m / z=666.2981$, found: 666.2993. $[\alpha]^{26}{ }_{\mathrm{D}}=+56.7(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3386,2924,2360,1453,1266,1224,1096,1028,735,697$.

A mixture of 2,3,4,6-tetra- O-acetyl- α-D-mannosyl-trichloracetimidate ${ }^{2}$ (3) (493 g, 1.00 mmol), 1-C-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl-galactosyl)-2-naphthol (2) ($663 \mathrm{mg}, 994 \mu \mathrm{~mol}$) and activated $4 \AA$ molecular sieves (1 g) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 20 min under argon atmosphere to remove traces of water from the reactants. Then, TMSOTf ($190 \mu \mathrm{l}, 1.05 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the mixture was stirred until TLC-monitoring showed no further progress. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was purified by flash chromatography (cyclohexane/EtOAc, 3:1) to give 1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-benzyl- β-D-galactosyl)-2- O (2', $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-tetra- O-acetyl- α-D-mannosyl)-2-naphthol (4) ($320 \mathrm{mg}, 321 \mu \mathrm{~mol}, 32 \%$).

4: colorless oil: $R_{f}=0.16$ (cyclohexane/EtOAc, 3:1). ${ }^{1} \mathrm{H}$ NMR, COSY (500 MHz , CDCl_{3}): $\delta=8.75\left(\mathrm{~d},{ }^{3} J_{7,8}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\text {naph }}\right), 7.78\left(\mathrm{~d},{ }^{3} J_{3,4}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {naph }}\right), 7.75(\mathrm{~d}$, $\left.{ }^{3} J_{5,6}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {naph }}\right)$, 7.47-7.23 (m, $\left.17 \mathrm{H}, \mathrm{H}-3^{\text {naph }}, \mathrm{H}-6^{\text {naph }}, 15 \mathrm{H}-\mathrm{Ph}\right), 7.22-7.19(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{H}-7^{\text {naph }}\right), 7.01\left(\mathrm{~d},{ }^{3} J=7.49 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 6.94\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 6.60\left(\mathrm{~d},{ }^{3} J=\right.$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$), $5.61\left(\mathrm{dd},{ }^{3} J_{3,4}=10.2 \mathrm{~Hz},{ }^{3} J_{2,3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{man}}\right), 5.58\left(\mathrm{~d},{ }^{3} J_{1,2}=1.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{m}^{\mathrm{man}}$), $5.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{man}}\right), 5.41\left(\mathrm{~d}^{3} J_{1,2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{gal}}\right), 5.36$ (pseudo-t, $\left.{ }^{3} J_{a p p, 4,3 / 5}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{man}}\right), 5.15\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63$ (pseudo-t, $\left.{ }^{3} J_{a p p, 2,1 / 3}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {gal }}\right), 4.52\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46\left(\mathrm{~d},{ }^{2} J=\right.$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.35\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.27 (pseudo-d, ${ }^{3} J_{\text {app }}=2.1 \mathrm{~Hz}, 1$ H, H-4 $4^{\text {gal }}$), 3.98-3.93 (m, $\left.3 \mathrm{H}, \mathrm{H}-3^{\text {gal }}, \mathrm{H}-5^{\text {gal }} . \mathrm{H}^{2}-6 \mathrm{a}^{\mathrm{man}}\right), 3.82-3.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}-5^{\text {man }}, \mathrm{H}-\right.$ $\left.6 \mathrm{a}^{\mathrm{gal}}\right), 3.69\left(\mathrm{dd},{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{man}}\right), 3.65\left(\mathrm{dd},{ }^{2} J=8.9 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=5.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}$), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$) ppm. ${ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,170.3,170.2,170.0(4 \mathrm{C}=\mathrm{O})$, $151.8(\mathrm{C}-2), 139.8,139.2,138.7,138.4\left(4 \mathrm{C}-1{ }^{\mathrm{Ph}}\right), 132.9\left(\mathrm{C}-8 \mathrm{a}^{\text {naph }}\right), 131.0\left(\mathrm{C}-4 \mathrm{a}^{\text {naph }}\right), 130.8(\mathrm{C}-$ $\left.4^{\text {naph }}\right), 128.8\left(\mathrm{C}-5^{\text {naph }}\right), 128.7,128.6,128.3,128.0,127.6,127.3\left(\mathrm{CH}^{\text {arom }}\right), 126.9\left(\mathrm{C}-8^{\text {naph }}\right)$, $126.8\left(\mathrm{C}-7^{\text {naph }}\right), 124.6\left(\mathrm{C}-6^{\text {naph }}\right), 121.9\left(\mathrm{C}-1^{\text {naph }}\right), 114.8\left(\mathrm{C}-3^{\text {naph }}\right), 96.4\left(\mathrm{C}-1^{\text {man }}\right), 85.6\left(\mathrm{C}-3^{\text {gal }}\right)$, $78.4\left(\mathrm{C}-2^{\mathrm{gal}}\right), 77.3\left(\mathrm{C}-5^{\mathrm{gal}}\right), 75.2\left(\mathrm{C}-1^{\mathrm{gal}}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 74.7\left(\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{C}-4^{\mathrm{gal}}\right), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$,
$72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.9,69.7\left(\mathrm{C}-2^{\mathrm{man}}, \mathrm{C}-5^{\mathrm{man}}\right), 69.4\left(\mathrm{C}-3^{\mathrm{man}}\right), 68.7\left(\mathrm{C}-6^{\mathrm{gal}}\right), 65.6\left(\mathrm{C}-4^{\mathrm{man}}\right), 62.1(\mathrm{C}-$ $\left.6^{\text {man }}\right)$, 21.3, 21.2, $21.1\left(4 \mathrm{CH}_{3}\right) \mathrm{ppm}$. ESI-HRMS: calc. for $\left[\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{O}_{15}+\mathrm{Na}\right]^{+}: m / z=1019.3824$, found: 1019.3821. $[\alpha]^{23}{ }_{\mathrm{D}}=+33.3\left(\mathrm{c}=0.40, \mathrm{CDCl}_{3}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2922,1749,1632,1454$, 1367, 1224, 1085, 748, 698.

1-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}-$ tetra- O-benzyl- β-D-galactosyl)-2-O-(2', $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime ’-t e t r a-~} O$-acetyl- α-D-mannosyl)-2-naphthol (4) (100 mg, 0.10 mmol) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL}) . \mathrm{Pd}(\mathrm{OAc})_{2}$ $\left(5 \mathrm{mg}, 22.3 \mu \mathrm{~mol}\right.$) was added, the mixture was degassed under Ar and flushed with H_{2}. The mixture was stirred for 22 h at room temperature. The mixtures was filtered through Celite ${ }^{\circledR}$ and washed with $\mathrm{MeOH}(60 \mathrm{ml})$. The solvent was removed in vacuo the residue filtered through silica gel ($10 \mathrm{~cm}, \mathrm{EtOAc} / \mathrm{EtOH}, 20: 1$) to give 1- $\beta-\mathrm{D}-$ galactosyl-2-O-(2', $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}-$ tetra- O-acetyl-mannosyl)-2-naphthol ($32 \mathrm{mg}, 50 \mu \mathrm{~mol}, 51 \%$).
colorless oil: $\mathrm{R}_{\mathrm{f}}=0.42(\mathrm{EtOAc} / \mathrm{MeOH}, 20: 1){ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.88$ $\left(\mathrm{d},{ }^{3} J_{3-4}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {naph }}\right), 7.88-7.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\text {naph }}\right), 7.50-7.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\text {naph }}\right), 7.48(\mathrm{~d}$, ${ }^{3} J_{3,4}=9.0,1 \mathrm{H}, \mathrm{H}-3^{\text {naph }}$), $7.39\left(\mathrm{ddd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} J=6.8 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {naph }}\right.$), $5.81(\mathrm{~d}$, ${ }^{3} J_{1,2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{man}}$), $5.77\left(\mathrm{dd},{ }^{3} J_{3,4}=10.3 \mathrm{~Hz},{ }^{3} J_{2,3}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{man}}\right.$), $5.61(\mathrm{dd}$, ${ }^{3} J_{2,3}=3.3 \mathrm{~Hz},{ }^{3} J_{1,2}=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{man}}$), 5.44 (pseudo-t, ${ }^{3} J_{\text {app }, 4,3 / 5}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{man}}$), 5.38 (d, ${ }^{3} J_{1,2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}$), 4.51 (pseudo-t, ${ }^{3} J_{\text {app }, 2,1 / 3}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {gal }}$), 4.44 (ddd, ${ }^{3} J_{4,5}$ $\left.=10.1 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=4.8 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{man}}\right), 4.30\left(\mathrm{dd},{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=4.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-6 \mathrm{a}^{\mathrm{man}}\right), 4.15\left(\mathrm{~d},{ }^{3} J_{\text {app }}=2.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{gal}}\right), 4.04\left(\mathrm{dd},{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{man}}\right)$, $3.90-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\text {gal }}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ESI-HRMS: calc. for $\left[\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{15}+\mathrm{Na}\right]^{+}: m / z=659.1952$, found: 659.1964. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3456,2942,1748,1513,1370,1226,1135,1049,813,753 \mathrm{~cm}^{-1}$

1-C-galactosyl-2-O-(2', $3^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}$-tetra- O-acetyl-mannosyl)-2-naphthol (32 mg, was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$. NaOMe in MeOH was added until $\mathrm{pH} \approx 10$. The mixture was stirred 4 h , neutralized by stirring with Amberlyst 15^{\circledR} for 10 min , filtered and washed with $\mathrm{MeOH}(50 \mathrm{ml})$. The solvent was removed in vacuo to give $1-\beta$-D-galactosyl-2-O- α-D-mannosyl-2-naphthol (5) ($23 \mathrm{mg}, 50 \mu \mathrm{~mol}$, quant.).
colorless oil: $R_{f}=0.10(\mathrm{EtOAc} / \mathrm{MeOH} 4: 1) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.85$ $\left(\mathrm{d},{ }^{3} J_{3,4}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {naph }}\right), 7.88-7.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\text {naph }}\right), 7.57\left(\mathrm{~d},{ }^{3} J_{3,4}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $3^{\text {naph }}$), $7.45\left(\mathrm{ddd},{ }^{3} J=8.6 \mathrm{~Hz},{ }^{3} J=6.8 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, \mathrm{H}^{\text {naph }}\right.$), $7.36\left(\mathrm{ddd},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{3} J=6.8\right.$ $\left.\mathrm{Hz},{ }^{3} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {naph }}\right), 5.64\left(\mathrm{~d},{ }^{3} J_{1,2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{man}}\right), 5.26\left(\mathrm{~d},{ }^{3} J_{1,2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-\mathrm{g}^{\mathrm{gal}}\right), 4.52\left(\mathrm{t},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17-4.06(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.66(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=153.87\left(\mathrm{C}-2^{\text {naph }}\right), 134.0,131.9\left(\mathrm{C}_{4}{ }^{\text {naph }}, \mathrm{C} 8 \mathrm{a}^{\text {naph }}\right), 131.2,129.3,127.7$, 126.9, $124.8\left(5 \mathrm{CH}^{\text {naph }}\right), 121.7\left(\mathrm{C}-1^{\text {naph }}\right), 116.7\left(\mathrm{CH}^{\text {naph }}\right), 100.3\left(\mathrm{C}-1^{\text {man }}\right), 81.0,77.6,77.0,75.4$, 72.4, 72.2, 71.2, 71.0, 68.5, $63.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{ppm}$. ESI-MS: $m / z(\%)=491$ $[\mathrm{M}+\mathrm{Na}]^{+}(100)$. ESI-HRMS calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{11}+\mathrm{Na}\right]^{+}: m / z=491.1529$, found: 491.1526.

To a solution of indoline ($5.32 \mathrm{ml}, 47.4 \mathrm{mmol}$) in a mixture of ethanol (345 ml) and water (dist., 8.5 ml) D-glucose ($3.98 \mathrm{~g}, 22.1 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 26 h and then concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent $\mathrm{EtOAc} / \mathrm{MeOH}, 15: 1$) to give 1-(β-D-glucopyranosyl)-indoline (6.41 g , quant.). (For a similar procedure, see: ${ }^{3}$).
rose solid; $R_{f}=0.41\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}, 5: 1: 0.1\right)$. 1 H NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=6.94-7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\text {indoline }}, \mathrm{H}-6^{\text {indoline }}\right), 6.54-6.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\text {indoline }}, \mathrm{H}-7^{\text {indoline }}\right), 5.02(\mathrm{~s}$, 2 H , broad, OH), $4.93(\mathrm{~s}, 2 \mathrm{H}$, broad, OH$), 4.64\left(\mathrm{~d},{ }^{3} J_{1,2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gluc }}\right), 3.07-3.67(\mathrm{~m}$, $\left.7 \mathrm{H} \mathrm{H}-2^{\text {gluc }}, \mathrm{H}-3^{\text {gluc }}, \mathrm{H}-4^{\text {gluc }}, \mathrm{H}-5^{\text {gluc }}, \mathrm{H}-6^{\text {gluc }}, \mathrm{H}-2^{\text {indoline }}\right), 2.87-2.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {indoline }}\right)$. IR \tilde{v} $\left(\mathrm{cm}^{-1}\right): 3391,2931,2907,2882,1605,1491,1464,1417,1372,1333,1265,1082,1021,756$. ESI-MS: $m / z(\%)=282.2[\mathrm{M}+\mathrm{H}]^{+}(100), 304.2[\mathrm{M}+\mathrm{Na}]^{+}(20)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}+\mathrm{Na}\right]^{+}: m / z=304.1161$, found: 304.1158. $[\alpha]^{22}{ }_{\mathrm{D}}$: $-11.8(\mathrm{c}=1.00, \mathrm{MeOH})$.

A solution of 1- β-D-glucopyranosyl-indoline ($1.665 \mathrm{~g}, 5.961 \mathrm{mmol}$), pyridine (25 ml) and acetic anhydride ($9.01 \mathrm{ml}, 9.42 \mathrm{mmol}$) was stirred at room temperature for 16 h and then concentrated in vacuo. The crude product was purified by flash chromatography (eluent
cyclohexane/EtOAc, 8:1) to give 1-(3,4,5,6-tetra- O-acetyl- β-d-glucopyranosyl)-indoline (6.12 $\mathrm{g}, 95 \%$). (For a similar procedure, see: ${ }^{4}$).
colorless solid; $R_{f}=0.58$ (cyclohexane/EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.06-7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\text {indoline }}, \mathrm{H}-6^{\text {indoline }}\right.$), 6.74 (d-pseudo-t, ${ }^{3} J_{5,6}=7.4 \mathrm{~Hz}$, $\left.{ }^{4} J_{5,3 / 6}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indoline }}\right), 6.55\left(\mathrm{~d},{ }^{3} J_{7,6}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indoline }}\right), 5.28-5.37(\mathrm{~m}, 2 \mathrm{H}$, this multiplet contains: 5.34 (pseudo-t, ${ }^{3} J_{a p p, 3,2 / 3}=9.3 \mathrm{~Hz}, \mathrm{H}-3^{\text {gluc }}$), 5.30 (pseudo-t, ${ }^{3} J_{\text {app }, 2,1 / 3}=9.3$ $\mathrm{Hz}, \mathrm{H}-2^{\text {gluc }}$), 5.09 (pseudo-t, ${ }^{3} J_{\text {app, } 4,3 / 5}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {gluc }}$), $5.01\left(\mathrm{~d},{ }^{3} J_{1,2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.1^{\text {gluc }}\right), 4.25\left(\mathrm{dd},{ }^{3} J_{6 a / 6 \mathrm{~b}}=12.3 \mathrm{~Hz},{ }^{3} J_{6 / 5}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\text {gluc }}\right), 4.03\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{~b} / 6 \mathrm{a}}=12.3 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{6 \mathrm{~b} / 5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gluc}}\right), 3.76\left(\mathrm{ddd},{ }^{3} J_{5 / 4}=10.0 \mathrm{~Hz},{ }^{3} J_{5 / 6 \mathrm{a}}=4.7 \mathrm{~Hz},{ }^{3} J_{5 / 6 \mathrm{~b}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.5^{\text {gluc }}\right), 3.54-3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\text {indoline }}\right), 2.90-3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {indoline }}\right), 2.04,2.03,2.00,1.99(4 \mathrm{x} \mathrm{s}$, each $3 \mathrm{H}, \mathrm{COCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8,170.4,169.8,169.7(4 \mathrm{x} \mathrm{C=O})$, 149.5 ($\left.\mathrm{C}-7 \mathrm{a}^{\text {indoline }}\right), 130.7\left(\mathrm{C}-3 \mathrm{a}^{\text {indoline }}\right), 127.2\left(\mathrm{C}-6^{\text {indoline }}\right), 125.1\left(\mathrm{C}-4{ }^{\text {indoline }}\right), 119.6\left(\mathrm{C}-5^{\text {indoline }}\right)$, 107.8 ($\left.\mathrm{C}-7^{\text {indoline }}\right), 84.4\left(\mathrm{C}-1^{\text {gluc }}\right), 74.1\left(\mathrm{C}-3^{\text {gluc }}\right), 73.4\left(\mathrm{C}-5^{\text {gluc }}\right), 68.9\left(\mathrm{C}-2^{\text {gluc }}\right), 68.6\left(\mathrm{C}-4^{\text {gluc }}\right)$, 62.1 ($\left.\mathrm{C}-6^{\text {gluc }}\right), 45.9$ (C-2 $\left.2^{\text {indoline }}\right), 28.3$ (C-3 $\left.{ }^{\text {indoline }}\right), 20.9,20.81,20.77(2 \mathrm{C}),\left(4 \mathrm{xCCH}_{3}\right)$. IR \tilde{v} $\left(\mathrm{cm}^{-1}\right): 3483,2957,1752,1607,1490,1427,1368,1229,1097,1035,910,752$. ESI-MS: m / z $(\%)=450.1[\mathrm{M}+\mathrm{H}]^{+}(100), 472.0[\mathrm{M}+\mathrm{Na}]^{+}(22)$. ESI-HRMS: calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: \mathrm{m} / \mathrm{z}=$ 472.1584, found: 472.1600. MS (ESI): $450.1\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{9}\right]^{+}(100), 472.0\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NNaO}_{9}\right]^{+}$ (22). HRMS (ESI): calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{9}+\mathrm{Na}\right]^{+}: 472.1584$; found: 472.1600. $[\alpha]^{22}{ }_{\mathrm{D}}$: +7.4 (c $=$ $\left.1.00, \mathrm{CHCl}_{3}\right)$.

A solution of 1-(3,4,5,6-tetra- O-acetyl- β-D-glucopyranosyl)-indoline ($2.36 \mathrm{~g}, 5.24 \mathrm{mmol}$) and DDQ ($1.43 \mathrm{~g}, 6.29 \mathrm{mmol}$) in 1,4-dioxane (160 ml) was stirred at room temperature for 16 h . After addition of saturated aqueous NaHCO_{3} and extraction with EtOAc, the organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a residue that was purified by flash chromatography (eluent cyclohexane/EtOAc, 8:1) to afford compound 6a ($2.213 \mathrm{~g}, 94 \%$). (For a similar procedure, see: et al. ${ }^{3}$).

6a: colorless solid; $R_{f}=0.60$ (cyclohexane/EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60$ (d-pseudo-t, ${ }^{3} J_{4,5}=7.9 \mathrm{~Hz},{ }^{4} J_{\text {app,4,3/6 }}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}$), 7.41 (dd, ${ }^{3} J_{7,6}=8.4 \mathrm{~Hz},{ }^{4} J_{7,5}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indole }}$), $7.23-7.27(\mathrm{~m}, 2 \mathrm{H}$, this multiplet contains: 7.25 $\left(\mathrm{ddd},{ }^{3} J_{6,5}=7.1 \mathrm{~Hz},{ }^{3} J_{6,7}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\text {indole }}\right), 7.23\left(\mathrm{~d},{ }^{3} J_{2,3}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indole }}\right)$), 7.15 $\left(\mathrm{ddd},{ }^{4} J_{5,7}=0.9 \mathrm{~Hz},{ }^{3} J_{5,4}=7.9 \mathrm{~Hz},{ }^{3} J_{5,6}=7.1 \mathrm{~Hz},{ }^{4} J_{6,4}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right.$), $6.57\left(\mathrm{~d},{ }^{3} J_{3,2}=\right.$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {indole }}$), $5.64\left(\mathrm{~d},{ }^{3} J_{1,2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gluc }}\right.$), 5.55 (pseudo-t, ${ }^{3} J_{a p p, 2,1 / 3}=9.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2^{\text {gluc }}$), 5.45 (pseudo-t, ${ }^{3} J_{a p p, 3,2 / 4}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {gluc }}$), $5.29\left(\mathrm{dd},{ }^{3} J_{4,5}=10.0 \mathrm{~Hz},{ }^{3} J_{4,3}=\right.$ $\left.9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {gluc }}\right), 4.30\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\text {gluc }}\right), 4.15\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{~b}, 6 \mathrm{a}}\right.$ $\left.=12.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\text {gluc }}\right), 4.00\left(\mathrm{ddd},{ }^{3} J_{5,4}=10.0 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=4.9 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=2.3\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {gluc }}\right), 2.08,2.07,2.03,1.67\left(4 \mathrm{x} \mathrm{s}\right.$, each $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR, HSQC (101 MHz , CDCl_{3}): $\delta=170.8,170.3,169.6,168.9(4 \mathrm{x} \mathrm{C=O}), 136.3$ ($\left.\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right), 129.2$ ($\left.\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right), 124.5$ $\left(\mathrm{C}-2^{\text {indole }}\right), 122.5\left(\mathrm{C}-6{ }^{\text {indole }}\right), 121.5\left(\mathrm{C}-4^{\text {indole }}\right), 120.9\left(\mathrm{C}-5^{\text {indole }}\right), 109.7\left(\mathrm{C}-7^{\text {indole }}\right), 104.5$ (C-3 $\left.3^{\text {indole }}\right), 83.3\left(\mathrm{C}-1^{\text {gluc }}\right), 74.7\left(\mathrm{C}-5^{\text {gluc }}\right), 73.5\left(\mathrm{C}-3^{\text {gluc }}\right), 70.5\left(\mathrm{C}-2^{\text {gluc }}\right), 68.3\left(\mathrm{C}-4^{\text {gluc }}\right), 62.0$ (C-6 $\left.{ }^{\text {gluc }}\right), 20.9,20.8(2 \mathrm{C}), 20.3(4 \mathrm{x} \mathrm{COCH} 3)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2939,1743,1523,1457,1379$, 1315, 1230, 1220, 1089, 1035, 919, 902, 820, 753, 728. ESI-MS: $m / z(\%)=331.0[\mathrm{M}-$ indole $]^{+}(100), 448.2[\mathrm{M}+\mathrm{H}]^{+}(63), 470.1[\mathrm{M}+\mathrm{Na}]^{+}$(44). ESI-HRMS: calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{9}+\mathrm{Na}\right]^{+}: m / z=470.1427$, found: 470.1422. $[\alpha]^{20}{ }_{\mathrm{D}}:+0.5\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

To a solution of indoline ($2,00 \mathrm{~g}, 16.8 \mathrm{mmol}$) in a mixture of ethanol $(120 \mathrm{ml})$ and water (dest., 4 ml) D-galactose $(1.41 \mathrm{~g}, 7.82 \mathrm{mmol})$ was added. The reaction mixture was refluxed for 17.5 h and then concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent $\mathrm{EtOAc} / \mathrm{MeOH}, 40: 1$) to give 1-(β-D-galactopyranosyl)-indoline $(1.80 \mathrm{~g}, 82 \%)$. (For a similar procedure, see: ${ }^{3}$).
colorless solid, mp.: 112-114 ${ }^{\circ} \mathrm{C} ; R_{f}=0.30\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}, ~ 5: 1: 0.1\right) .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}(500 \mathrm{MHz}, \mathrm{MeOH}): \delta=6.97-7.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\text {indoline }}, \mathrm{H}-6^{\text {indoline }}\right), 6.61-6.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\left.5^{\text {indoline }}, \mathrm{H}-7^{\text {indoline }}\right), 4.74\left(\mathrm{~d},{ }^{3} J_{1,2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}\right), 3.87-3.92(\mathrm{~m}, 2 \mathrm{H}$, this multiplet contains: 3.91 (dd, ${ }^{3} J=1.0,3.3 \mathrm{~Hz}, \mathrm{H}-4^{\text {gal }}$), $3.90\left(\mathrm{dd},{ }^{3} J_{2,1}=9.0, \mathrm{~Hz},{ }^{3} J_{2,3}=9.4 \mathrm{~Hz}, \mathrm{H}-2^{\text {gal }}\right)$), 3.64-3.72 (m, 4H, H-2 $\left.{ }^{\text {indoline }}, \mathrm{H}^{\mathrm{g}} 6^{\text {gal }}\right), 3.56-3.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {gal }}, \mathrm{H}-5^{\text {gal }}\right), 2.96-3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.3^{\text {indoline }}\right)$. ${ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=151.8\left(\mathrm{C}-7 \mathrm{a}^{\text {indoline }}\right), 131.7\left(\mathrm{C}-3 \mathrm{a}^{\text {indoline }}\right)$,
128.1 (C-6 $\left.6^{\text {indoline }}\right), 125.5\left(\mathrm{C}-4^{\text {indoline }}\right), 119.7\left(\mathrm{C}-5^{\text {indoline }}\right), 109.1\left(\mathrm{C}-7^{\text {indoline }}\right), 87.8\left(\mathrm{H}-1^{\text {gal }}\right), 78.0$, 76.3 (C-3 $\left.3^{\text {gal }}, C-5^{\text {gal }}\right), 70.7\left(\mathrm{C}-4^{\text {gal }}\right), 69.6\left(\mathrm{C}-2^{\text {gal }}\right), 62.6\left(\mathrm{C}-6^{\text {gal }}\right), 46.9$ (C-2 $\left.2^{\text {indoline }}\right)$, 29.1 (C$\left.3^{\text {indoline }}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3425,2910,1608,1486,1409,1257,1080,1034$. FAB-MS: $m / z(\%)=$ $281.1[\mathrm{M}]^{+}(100), 282.1[\mathrm{M}+\mathrm{H}]^{+}(90)$. FAB-HRMS: calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}\right]^{+}: m / z=281.1263$, found: 281.1259; calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}+\mathrm{H}\right]^{+}: m / z=282.1341$, found: 282.1136. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}$: C 59.78, H 6.81, N 4.98; found: C 59.77, H 6.88, N 5.03. $[\alpha]^{22}{ }_{\mathrm{D}}:+3.3$ (c 1.00, MeOH). (these data match those reported in the literature) ${ }^{3}$.

A solution of 1-(β-D-galactopyranosyl)-indoline $(1.524 \mathrm{~g}, 5.418 \mathrm{mmol})$ and $\mathrm{DDQ}(1.48 \mathrm{~g}$, $6.51 \mathrm{mmol})$ in 1,4-dioxane (250 ml) was stirred at room temperature for 16 h . After addition of saturated aqueous NaHCO_{3} and extraction with EtOAc the organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a residue that was purified by flash chromatography (eluent cyclohexane/EtOAc, 40:1) to afford 1-(β-D-galactopyranosyl)-indole $(1.46 \mathrm{~g}, 97 \%)$. (For a similar procedure, see: ${ }^{3}$).
colorless solid; $R_{f}=0.31\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}, 5: 1: 0.1\right) .{ }^{1} \mathrm{H}$ NMR, COSY $(500 \mathrm{MHz}$, DMSO-d d_{6} : $\delta=7.64$ (dd, ${ }^{3} J_{7,6}=8.2 \mathrm{~Hz},{ }^{4} J_{7,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indole }}$), 7.55 ($\mathrm{ddd},{ }^{3} J_{4,5}=7.8 \mathrm{~Hz}$, ${ }^{4} J_{4,6}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}$), $7.44\left(\mathrm{~d},{ }^{3} J_{2,3}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indole }}\right.$), $7.13\left(\mathrm{ddd},{ }^{4} J_{6,7}=8.2 \mathrm{~Hz}\right.$, ${ }^{3} J_{6,5}=7.1 \mathrm{~Hz},{ }^{4} J_{6,4}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\text {indole }}$), $7.04\left(\mathrm{ddd},{ }^{3} J_{5,4}=7.8 \mathrm{~Hz},{ }^{3} J_{5,6}=7.1 \mathrm{~Hz},{ }^{4} J_{5,7}=1.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right), 6.45\left(\mathrm{dd},{ }^{2} J_{3,2}=3.3 \mathrm{~Hz},{ }^{4} J_{3,4}=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {indole }}\right), 5.34\left(\mathrm{~d},{ }^{3} J_{1,2}=9.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-1^{\mathrm{gal}}$), 4.39 (s, broad, 4H, OH), 4.11 (pseudo-t, $J_{\text {app }, 2,1 / 3}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {gal }}$), 3.82 (dd, $\left.{ }^{3} J_{4,3}=2.6 \mathrm{~Hz},{ }^{3} J_{4,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right), 3.70\left(\mathrm{ddd},{ }^{3} J_{5,6 \mathrm{~b}}=6.6 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=5.7 \mathrm{~Hz},{ }^{3} J_{5,4}=1.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}\right), 3.60-3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {gal }}, \mathrm{H}-6 \mathrm{a}^{\text {gal }}\right), 3.49\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.0 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=6.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}$). ${ }^{13} \mathrm{C}$ NMR, HSQC (101 MHz, DMSO-d $)_{6}: \delta=135.8$ (C-7a $\left.{ }^{\text {indole }}\right)$, 128.6 (C$\left.3 \mathrm{a}^{\text {indole }}\right), 126.9\left(\mathrm{C}-2^{\text {indole }}\right), 121.0\left(\mathrm{C}-6^{\text {indole }}\right), 120.3\left(\mathrm{C}-4^{\text {indole }}\right), 119.5\left(\mathrm{C}-5^{\text {indole }}\right), 111.4\left(\mathrm{C}-7^{\text {indole }}\right)$, $101.2\left(\mathrm{C}-3^{\text {indole }}\right), 86.1\left(\mathrm{C}-1^{\text {gal }}\right), 77.7\left(\mathrm{C}-5^{\text {gal }}\right), 74.3\left(\mathrm{C}-3^{\text {indole }}\right), 68.9\left(\mathrm{C}-2^{\text {indole }}\right), 68.6\left(\mathrm{C}-4^{\text {indole }}\right)$, 60.6 (C-6 $\left.6^{\text {indole }}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3420,2912,1610,1483,1407,1251,1078,1025$. FAB-MS: m / z $(\%)=279.1[M]^{+}(100), 280.1[M+H]^{+}(75)$. FAB-HRMS: calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5}\right]^{+}: m / z=$
279.1107, found: 279.1115; calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: m / z=280.1185$, found: 280.1188 . $[\alpha]^{22}{ }_{\mathrm{D}}$: $+1.8(c 1.00, \mathrm{MeOH})$. (these data match those reported in the literature) ${ }^{3}$.

A solution of 1-(β-D-galactopyranosyl)-indole ($411 \mathrm{~g}, 1.47 \mathrm{mmol}$), pyridine (6 ml) and acetic anhydride ($2.2 \mathrm{ml}, 2.3 \mathrm{mmol}$) was stirred at room temperature for 16 h . After addition of EtOAc the mixture was washed with $\mathrm{HCl}(1 \mathrm{M})$ and saturated aqueous NaHCO_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford compound $\mathbf{6 b}$ ($603 \mathrm{mg}, 92 \%$). (For a similar procedure, see: ${ }^{4}$)

6b: colorless solid; $R_{f}=0.49$ (cyclohexane/EtOAc, 2:1). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.58\left(\mathrm{~d},^{3} J_{4,5}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}\right), 7.45\left(\mathrm{~d},{ }^{3} J_{7,6}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indole }}\right), 7.25$ (d, ${ }^{3} J_{2,3}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indole }}$), $7.22\left(\mathrm{ddd},{ }^{3} J_{6,7}=8.2 \mathrm{~Hz},{ }^{3} J_{6,5}=7.1 \mathrm{~Hz},{ }^{4} J_{6,4}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-6^{\text {indole }}\right), 7.12\left(\mathrm{ddd},{ }^{3} J_{5,4}=7.8 \mathrm{~Hz},{ }^{3} J_{5,6}=7.1 \mathrm{~Hz}, J_{5,7}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right), 6.55\left(\mathrm{~d},{ }^{3} J_{3,2}=\right.$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {indole }}$), 5.72 ($\mathrm{dd},{ }^{3} J_{2,3}=10.2 \mathrm{~Hz},{ }^{3} J_{2,1}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {gal }}$), $5.54-5.56(\mathrm{~m}, 2 \mathrm{H}$, this multiplet contains: $5.55\left(\mathrm{~d},{ }^{3} J_{1,2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}\right), 5.54\left(\mathrm{dd},{ }^{3} J_{4,3}=3.4 \mathrm{~Hz},{ }^{3} J_{4,5}=0.7\right.$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right)$), $5.26\left(\mathrm{dd},{ }^{3} J_{3,2}=10.2 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{gal}}\right), 4.09-4.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}\right.$, $\left.\mathrm{H}^{-6 \mathrm{gal}}\right), 2.23,2.01,1.99,1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $170.6,170.3,170.2,168.9(4 \mathrm{x} \mathrm{C}=\mathrm{O}), 136.2$ ($\left.\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right), 129.3$ ($\left.\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right), 125.0\left(\mathrm{C}-2^{\text {indole }}\right)$, 122.5 ($\left.\mathrm{C}-6^{\text {indole }}\right), 121.5\left(\mathrm{C}-4^{\text {indole }}\right), 120.8\left(\mathrm{C}-5^{\text {indole }}\right), 110.0\left(\mathrm{C}-7^{\text {indole }}\right), 104.2\left(\mathrm{C}-3^{\text {indole }}\right), 84.1(\mathrm{C}-$ $\left.1^{\text {gal }}\right), 73.5\left(\mathrm{C}-5^{\mathrm{gal}}\right), 71.7\left(\mathrm{C}-3^{\text {gal }}\right), 68.2\left(\mathrm{C}-2^{\text {gal }}\right), 67.4\left(\mathrm{C}-4^{\text {gal }}\right), 61.6\left(\mathrm{C}-6^{\text {gal }}\right), 20.9,20.8,20.7$, $20.3(4 \mathrm{x} \mathrm{COCH} 33)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2917,1750,1461,1370,1223,1087,1057,921,745$. FABMS: $m / z(\%)=331.2\left[M_{\text {-indole }}{ }^{+}(100), 447.2[M]^{+}\right.$(75). FAB-HRMS: calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{9}+\mathrm{H}\right]: m / z=448.1608$, found: 448.1590. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{9}: \mathrm{C}, 59.06, \mathrm{H}$, 5.63, N, 3.13; found: C 59.10, H 5.77, N 3.13. $[\alpha]^{20}{ }_{\mathrm{D}}{ }^{2}+10.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a cooled $\left(-60^{\circ} \mathrm{C}\right)$, stirred mixture of compound $\mathbf{6}(50 \mathrm{mg}, 0.112 \mathrm{mmol})$, compound $\mathbf{3}$ (83 $\mathrm{mg}, 0.168 \mathrm{mmol}$), activated 4- \AA molecular sieves (2.0 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.01 \mathrm{ml}, 0.08 \mathrm{mmol})$. Stirring was continued for 4.5 h and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was filtered diluted with EtOAc and washed with saturated aqueous NaHCO_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash chromatography (eluent cyclohexane/EtOAc, 5:1 $\rightarrow 1: 1$) to afford compound to afford compound $\mathbf{8}(48 \mathrm{mg}, 55 \%)$. (For a similar procedure, see: ${ }^{5}$)

8: colorless oil; $R_{f}=0.30$ (cyclohexane/EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC, HMBC, NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80\left(\mathrm{dd},{ }^{3} J_{4,5}=8.0 \mathrm{~Hz},{ }^{4} J_{4,6}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}\right)$, $7.53\left(\mathrm{dd},{ }^{3} J_{7,6}=8.2 \mathrm{~Hz},{ }^{4} J_{7,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indole }}\right), 7.44\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indole }}\right), 7.26$ (ddd, ${ }^{3} J_{6,7}=8.2 \mathrm{~Hz},{ }^{3} J_{6,5}=7.0 \mathrm{~Hz},{ }^{4} J_{6,4}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\text {indole }}$), 7.14 (ddd, ${ }^{3} J_{5,4}=8.0 \mathrm{~Hz},{ }^{3} J_{5,6}$ $\left.=7.0 \mathrm{~Hz},{ }^{4} J_{5,7}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right)$, $5.94\left(\mathrm{dd},{ }^{3} J_{2,3}=2.8 \mathrm{~Hz},{ }^{3} J_{2,1}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{man}}\right)$, $5.70\left(\mathrm{dd},{ }^{3} J_{2,3}=10.2 \mathrm{~Hz},{ }^{3} J_{2,1}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{gal}}\right), 5.56\left(\mathrm{dd}, J_{4,3}=3.3 \mathrm{~Hz},{ }^{3} J_{4,5}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-4^{\mathrm{gal}}\right), 5.51\left(\mathrm{~d}, J_{1,2}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{gal}}\right), 5.34-5.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1^{\mathrm{man}}, \mathrm{H}-4^{\mathrm{man}}, \mathrm{H}-3^{\mathrm{man}}\right), 5.25$ (dd, $J_{3,2}=10.2 \mathrm{~Hz},{ }^{3} J_{3,4}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {gal }}$), $3.99-4.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5^{\text {gal }}, \mathrm{H}-6^{\text {gal }}, \mathrm{H}-6^{\mathrm{man}}\right), 3.55-$ $3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{man}}\right), 2.31,2.20,2.04,2.03,2.02,1.99,1.95,1.70(8 \mathrm{x} \mathrm{COCH} 3) .{ }^{13} \mathrm{C}$ NMR, DEPT, HSQC, HMBC ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,170.75,170.73,170.71,170.5,170.3$, 169.8, $168.7(\mathrm{C}=\mathrm{O}), 136.3$ ($\left.\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right)$, 127.6 ($\left.\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right)$, $124.5\left(\mathrm{C}-2^{\text {indole }}\right), 123.5\left(\mathrm{C}-6^{\text {indole }}\right)$, 121.3 (C-5 $\left.5^{\text {indole }}\right), 121.2\left(\mathrm{C}-4^{\text {indole }}\right), 111.6\left(\mathrm{C}-3^{\text {indole }}\right), 111.3\left(\mathrm{C}-7^{\text {indole }}\right), 85.4\left(\mathrm{C}-1^{\text {gal }}\right), 73.5(2 \mathrm{C}$, $\left.\mathrm{C}-1^{\text {man }}, \mathrm{C}-5^{\text {gal }}\right), 71.5\left(\mathrm{C}-3^{\text {gal }}\right), 70.9,70.8\left(\mathrm{C}-3^{\mathrm{man}}, \mathrm{C}-5^{\mathrm{man}}\right), 69.6\left(\mathrm{C}-2^{\mathrm{man}}\right), 68.4\left(\mathrm{C}-2^{\text {gal }}\right), 67.2(\mathrm{C}-$ $\left.4^{\text {gal }}\right), 66.4\left(\mathrm{C}-4^{\mathrm{man}}\right), 62.8,61.7\left(\mathrm{C}-6^{\mathrm{man}}, \mathrm{C}^{2} 6^{\mathrm{gal}}\right), 21.3,21.03,21.00,20.97,20.95,20.91,20.8$, $20.3\left(\mathrm{COCH}_{3}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3062,2982,2939,2853,1746,1467,1370,1211,1039,911$, 741. ESI-MS: $m / z(\%)=778.2551[\mathrm{M}+\mathrm{H}]^{+}(100), 800.2377[\mathrm{M}+\mathrm{Na}]^{+}(90), 816.2131[\mathrm{M}+\mathrm{K}]^{+}$ (45). ESI-HRMS: calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{18}+\mathrm{H}\right]^{+}: m / z=778.2553$, found: 778.2551; calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{NO}_{18}+\mathrm{Na}\right]^{+}: m / z=800.2372$, found: 800.2377; calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{18}+\mathrm{K}\right]^{+}: m / z=$ 816.2117, found: 816.2131. $[\alpha]^{20}{ }_{\mathrm{D}}:+36.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a cooled $\left(-60^{\circ} \mathrm{C}\right)$, stirred mixture of compound $\mathbf{6}(50 \mathrm{mg}, 0.112 \mathrm{mmol})$, compound 7 (72 $\mathrm{mg}, 0.168 \mathrm{mmol})$, activated 4- \AA molecular sieves (2.0 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.01 \mathrm{ml}, 0.08 \mathrm{mmol})$. Stirring was continued for 4.5 h and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was filtered diluted with EtOAc and washed with and washed with saturated aqueous NaHCO_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was that was purified by flash chromatography (eluent cyclohexane/EtOAc, 3:1 $\rightarrow 1: 1$) to afford compound 9 ($40 \mathrm{mg}, 33 \%$). (For a similar procedure, see: $:^{5}$).

9: colorless oil; $R_{f}=0.38$ (cyclohexane/EtOAc, 2:1). ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC, HMBC ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68\left(\mathrm{~d},{ }^{3} J_{4,5}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}\right.$), $7.38\left(\mathrm{~d},{ }^{3} J_{7,6}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-7^{\text {indole }}$), 7.31 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indole }}$), 7.22 (ddd, ${ }^{3} \mathrm{~J}_{6,7}=8.2 \mathrm{~Hz},{ }^{3} J_{6,5}=7.1 \mathrm{~Hz},{ }^{4} J_{6,4}=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-6^{\text {indole }}\right), 7.14\left(\mathrm{ddd},{ }^{3} J_{5,4}=7.9 \mathrm{~Hz},{ }^{3} J_{5,6}=7.1 \mathrm{~Hz},{ }^{4} J_{5,7}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right), 5.50-5.61(4 \mathrm{H}$, $\left.\mathrm{H}-2^{\mathrm{fuc}}, \mathrm{H}-3^{\mathrm{fuc}}, \mathrm{H}-1^{\text {gal }}, \mathrm{H}-2^{\mathrm{gal}}\right), 5.37\left(\mathrm{dd},{ }^{3} J_{4,3}=3.4 \mathrm{~Hz},{ }^{3} J_{4,5}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right), 5.18-5.24$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\mathrm{fuc}}, \mathrm{H}-3^{\mathrm{gal}}\right), 4.73\left(\mathrm{~d},{ }^{3} J_{1,2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{fuc}}\right), 4.09-4.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5^{\text {gal }}, \mathrm{H}-\right.$ $6 \mathrm{a}, \mathrm{b}^{\mathrm{gal}}$), 3.99 (dq, ${ }^{3} J_{5,6}=6.4 \mathrm{~Hz},{ }^{3} J_{5,4}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {fuc }}$), 2.26, $2.24,2.02(3 \mathrm{x} \mathrm{s}$, each 3 H , COCH_{3}), $1.98\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{COCH}_{3}\right), 1.77,1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.23\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{H}-6^{\text {fuc }}\right) .{ }^{13} \mathrm{C}$ NMR, DEPT, HSQC, $\operatorname{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0,170.62,170.57$, $170.4,170.3,169.6,168.8(7 \mathrm{x} \mathrm{C=O}), 136.8$ ($\left.\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right)$, 127.9 ($\left.\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right)$, 123.3 ($\left.\mathrm{C}-3^{\text {indole }}\right)$, $123.0\left(\mathrm{C}-6^{\text {indole }}\right), 121.0\left(\mathrm{C}-5^{\text {indole }}\right), 120.1\left(\mathrm{C}-4^{\text {indole }}\right), 114.3\left(\mathrm{C}-3^{\text {indole }}\right), 110.1\left(\mathrm{C}-7^{\text {indole }}\right), 83.9(\mathrm{C}-$ $\left.1^{\mathrm{gal}}\right), 74.5\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 73.7\left(\mathrm{C}-5^{\mathrm{gal}}\right), 73.4\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 73.3\left(\mathrm{C}-3^{\mathrm{gal}}\right), 71.8\left(\mathrm{C}-4^{\mathrm{fuc}}\right), 71.4\left(\mathrm{C}-4^{\mathrm{gal}}\right), 69.6$ (C-2 $\left.2^{\text {fuc }}\right), 68.5\left(\mathrm{C}-3^{\text {fuc }}\right), 67.5\left(\mathrm{C}-2^{\text {gal }}\right), 61.7\left(\mathrm{C}-6^{\text {gal }}\right), 21.0,20.94,20.92,20.87,20.80,20.77$, $20.33\left(7 \mathrm{x} \mathrm{COCH}_{3}\right), 16.9\left(\mathrm{C}-6^{\text {fuc }}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3057,2981,2940,2857,1743,1468,1369$, 1212, 1041, 916, 744. ESI-MS: $m / z(\%)=742.2312[\mathrm{M}+\mathrm{Na}]^{+}(100)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{16}+\mathrm{Na}\right]^{+}: m / z=742.2318$, found: 742.2312. $[\alpha]^{20} \mathrm{D}:-3.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a cooled $\left(-15^{\circ} \mathrm{C}\right)$, stirred mixture of compound $\mathbf{6 a}$ ($310 \mathrm{mg}, 0.698 \mathrm{mmol}$), compound 7 $450 \mathrm{mg}, 1.04 \mathrm{mmol}$), activated $4-\AA$ molecular sieves (2.8 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.06 \mathrm{ml}, 0.48 \mathrm{mmol})$. Stirring was continued for 4.5 h and the mixture was allowed to warm to $8^{\circ} \mathrm{C}$. The mixture was filtered diluted with EtOAc and washed with saturated aqueous NaHCO_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was that was purified by flash chromatography (eluent cyclohexane/EtOAc, 3:1) to afford compound 10 ($141 \mathrm{mg}, 45 \%, \alpha: \beta$ $=1: 1.8$, determined by NMR-spectroscopy). (For a similar procedure, see: ${ }^{5}$).

10 colorless oil, $R_{f}=0.43$ (cyclohexane/EtOAc, 1:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.80\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole } \alpha}\right), 7.71\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{H}-4^{\text {indol } \beta}\right), 7.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\text {indol } \alpha}\right)$, 7.40 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indol } \alpha}$), 7.35 (d, $\left.J=8.2 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{H}-7^{\text {indol }}\right), 7.23-7.34(\mathrm{~m}, 4.6 \mathrm{H}$, $\left.\mathrm{H}-2^{\text {indol } \beta}, \mathrm{H}-6^{\text {indol } \alpha \beta}\right), 7.16\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2.8 \mathrm{H}, \mathrm{H}-5^{\text {Indol } \alpha \beta}\right), 5.20-5.76\left(\mathrm{~m}, 12.6 \mathrm{H}, \mathrm{H}-1^{\text {gluc } \alpha \beta}\right.$, $\mathrm{H}-2^{\text {gluc } \alpha \beta}, \mathrm{H}-3^{\text {gluc } \alpha \beta}, \mathrm{H}-4^{\text {gluc } \alpha \beta}, \mathrm{H}-1^{\text {fuc } \alpha}, \mathrm{H}-2^{\text {fuc } \alpha \beta}, \mathrm{H}-3^{\mathrm{fuc} \alpha} / \beta, \mathrm{H}-4^{\mathrm{fuc} \alpha / \beta}$), 4.71 (d, $J=9.8 \mathrm{~Hz}$, $\left.1.8 \mathrm{H}, \mathrm{H}-1^{\text {fuc }}\right), 4.26-4.32\left(\mathrm{~m}, 2.7 \mathrm{H}\right.$, this multiplet contains: $4.29\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{aa}, 6 \mathrm{~b}}=12.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=\right.$ $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{man} \alpha}\right), 4.28\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{a}, 6 \mathrm{~b}}=12.5 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=5.0 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\text {gluc } \beta}\right)$), $4.19(\mathrm{dd}$, $\left.{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=12.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, . \mathrm{H}-6 \mathrm{~b}^{\text {gluc } \alpha}\right), 4.12\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=12.5 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=2.0 \mathrm{~Hz}\right.$, $\left.1.8 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gluc} \beta}\right), 5.20-5.77\left(\mathrm{~m}, 4.6 \mathrm{H}, \mathrm{H}-5^{\text {fuc } \beta}, \mathrm{H}-5^{\mathrm{gluc} \alpha} / \beta\right.$) $3.60\left(\mathrm{dq},{ }^{3} J_{5,6}=6.4 \mathrm{~Hz},{ }^{3} J_{5,4}=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{fuc} \mathrm{\alpha}}$), 2.26 ($\mathrm{s}, 5.4 \mathrm{H}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}$), 2.09 ($\mathrm{s}, 3 \mathrm{H}$), 2.08 ($\mathrm{s}, 6 \mathrm{H}$), 2.07 ($\mathrm{s}, 8.4 \mathrm{H}$), 2.06 (s, 5.4 H$), 2.03(\mathrm{~s}, 8.4 \mathrm{H}), 1.99(\mathrm{~s}, 5.4 \mathrm{H}), 1.76(\mathrm{~s}, 5.4 \mathrm{H}), 1.69(\mathrm{~s}, 5.4 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}),\left(\mathrm{COCH}_{3}\right), 1.24\left(\mathrm{~d},{ }^{3} J_{6,5}=6.3 \mathrm{~Hz}, 1.8 \mathrm{H}, \mathrm{H}-6^{\text {fuc }}\right), 1.04\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-6^{\text {fuc }}\right) . \mathbf{1 -}$
(3,4,5,6-tetra- \boldsymbol{O}-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-3-(2,3,4-tri- \boldsymbol{O}-acetyl- $\boldsymbol{\beta}$-L-fucopyranosyl)indole: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.9,170.7,170.5,170.3$ (2C), 169.6, 168.8 (7 x $\mathrm{C}=\mathrm{O}), 136.8\left(\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right), 127.6\left(\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right), 123.0\left(\mathrm{C}-2^{\text {indole }}\right), 122.8\left(\mathrm{C}-6{ }^{\text {indole }}\right), 121.0\left(\mathrm{C}-4^{\text {indole }}\right)$,
 $73.5\left(\mathrm{C}-3^{\mathrm{gluc}}\right), 73.2\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 73.0\left(\mathrm{C}-3^{\text {fuc }}\right), 71.3\left(\mathrm{C}-4^{\mathrm{fuc}}\right), 70.5\left(\mathrm{C}-2^{\mathrm{gluc}}\right), 69.4\left(\mathrm{C}-2^{\mathrm{fuc}}\right), 68.2(\mathrm{C}-$ $\left.4^{\text {gluc }}\right), 62.1\left(\mathrm{C}-6^{\text {gluc }}\right), 21.0,20.9,20.8,20.7(2 \mathrm{C}), 20.6,20.2(7 \mathrm{x} \mathrm{COCH} 3), 16.8\left(\mathrm{C}-6^{\text {fuc }}\right) .1-$
(3,4,5,6-Tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-3-(2,3,4-tri- \boldsymbol{O}-acetyl- α-L-fucopyranosyl)indole: ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.9,170.6,170.3$ (2C), 170.0, 169.6, 168.6 $(\mathrm{C}=\mathrm{O}), 136.2\left(\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right), 128.5\left(\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right)$, $124.1\left(\mathrm{C}-2^{\text {indole }}\right)$, $123.3\left(\mathrm{C}-6{ }^{\text {indole }}\right)$, $121.2(\mathrm{C}-$ $\left.4^{\text {indole }}\right)$, $121.1\left(\mathrm{C}_{-} 5^{\text {indole }}\right)$, $111.7\left(\mathrm{C}-7^{\text {indole }}\right)$, $109.8\left(\mathrm{C}-3^{\text {indole }}\right)$, $83.5\left(\mathrm{C}-1^{\text {gluc }}\right), 74.9,73.1,71.7$, $70.4,70.2,69.1,68.7,68.4\left(\mathrm{C}-2^{\text {gluc }}, \mathrm{C}-3^{\text {gluc }}, \mathrm{C}-4^{\text {gluc }}, \mathrm{C}-5^{\text {gluc }}, \mathrm{C}-1^{\text {fuc }}, \mathrm{C}-2^{\text {fuc }}, \mathrm{C}-3^{\text {fuc }}, \mathrm{C}-4^{\text {fuc }}\right), 66.2$ (C-5 $\left.5^{\text {fuc }}\right)$, 62.0 (C-6 $\left.6^{\text {gluc }}\right), 21.99,20.94,20.87,20.81,20.72$ (2C), $20.06\left(7 \mathrm{x}^{\left(\mathrm{COCH}_{3}\right), 16.4}\right.$ (C-6 $\left.{ }^{\text {fuc }}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3060,2981,2942,2857,1746,1468,1372,1212,1039,915,742$.

A mixture of 1-acetyl-2,3,4,6-tetra- O-benzyl- α / β-D-galactopyranose ($850 \mathrm{mg}, 1.46 \mathrm{mmol}$), tributylstannyl(trimethylsilyl)ethyne ($905 \mathrm{mg}, 2.34 \mathrm{mmol}$), activated $4-\AA$ molecular sieves (0.8 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{ml})$ was stirred at room temperature for 1 h . Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and TMSOTf $(0.52 \mathrm{ml}, 0.0020 \mathrm{mmol})$ was added dropwise. The dark brown mixture was allowed to warm to room temperature, and stirred for additional 20 h . After dilluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was filtered and washed with saturated aqueous NaHCO_{3}, and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 20:1) to give trimethyl-(2,3,4,6-tetra-O-benzyl- α-D-fucosyl-2-ylethynyl)-silane ($393 \mathrm{mg}, 43 \%$). (For a similar procedure, see: ${ }^{6}$).
colorless oil; $R_{f}=0.65$ (cyclohexane/EtOAc, 2:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.25-7.39(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 4.93\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.84\left(\mathrm{~d},{ }^{3} J_{1,2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 4.80\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69-4.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.49\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.41\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.10-4.13$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5), 4.07\left(\mathrm{dd},{ }^{3} J_{2,3}=9.7 \mathrm{~Hz},{ }^{3} J_{2,1}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.94\left(\mathrm{dd},{ }^{3} J_{4,3}=2.7 \mathrm{~Hz},{ }^{3} J_{4,5}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.85\left(\mathrm{dd},{ }^{3} J_{3,2}=9.8 \mathrm{~Hz},{ }^{3} J_{3,4}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.56\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{a}, 6 \mathrm{~b}}=8.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{6 \mathrm{a}, 5}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right), 3.53\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=8.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 0.18(\mathrm{~s}, 9 \mathrm{H}$, $\left.\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.93,138.87(2 \mathrm{C}), 138.2\left(4 \mathrm{x}, \mathrm{C}-1{ }^{\mathrm{Ph}}\right), 128.6$ (2C), 128.53 (2C), 128.49 (2C), 128.43 (2C), 128.42 (2C), 128.1 (2C), 128.0, 127.9 (2C), 127.8 (3C), 127.69, 127.67 (H-Ph), 100.7 (gal-C \equiv CTMS), 93.8 (gal-C $\equiv \underline{C T M S}$), 79.5 (C-3), $75.7(\mathrm{C}-2), 75.1(\mathrm{C}-4), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.7\left(2 \mathrm{C}, \mathrm{C}-5, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $\left.68.9(\mathrm{C}-6), 67.8(\mathrm{C}-1), 0.14\left(3 \mathrm{C}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)\right) .[\alpha]^{20}$ D: $82.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (these data match those reported in the literature) ${ }^{7}$

To a solution of trimethyl-(2,3,4,6-tetra- O-benzyl- α-D-galactosyl-2-ylethynyl)-silane (382 $\mathrm{mg}, 0.615 \mathrm{mmol})$, in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{ml}, 10: 1)$ was added TBAF $(0.3 \mathrm{ml}, 1 \mathrm{M}$ in THF, 0.3 $\mathrm{mmol})$. The reaction was stirred at room temperature for 23 h , diluted with EtOAc and washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 15:1) to give compound 12 ($251 \mathrm{mg}, 74 \%$). (For a similar procedure, see: ${ }^{6}$)
colorless oil; $R_{f}=0.54$ (cyclohexane/EtOAc, 2:1); ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC, HMBC $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.22-7.37(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 4.91\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83(\mathrm{~d}$, $\left.{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.76-4.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}-1\right), 4.73\left(\mathrm{~d},{ }^{2} J=13.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(\mathrm{~d},{ }^{2} J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47\left(\mathrm{~d},{ }^{2} J=\right.$ $\left.11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.39\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.06-4.13(\mathrm{~m}, 2 \mathrm{H}$, this multiplet contains: 4.10 (ddd, $\left.{ }^{3} J_{5,6 \mathrm{~b}}=6.0 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=4.9 \mathrm{~Hz},{ }^{3} J_{5,4}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 4.08\left(\mathrm{dd},{ }^{3} J_{2,3}=\right.$ $\left.9.9 \mathrm{~Hz},{ }^{3} J_{2,1}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$), $3.96\left(\mathrm{dd},{ }^{3} J_{4,3}=2.9 \mathrm{~Hz},{ }^{3} J_{4,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.88(\mathrm{dd}$, $\left.{ }^{3} J_{3,2}=9.9 \mathrm{~Hz},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.54\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{a}, 6 \mathrm{~b}}=8.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right)$, $3.51\left(\mathrm{~d},{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=8.4 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 2.51\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}=\mathrm{CH}, 1}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR, DEPT, HSQC, HMBC ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.9,138.8,138.5,138.2\left(4 \mathrm{x} \mathrm{C-1} 1^{\mathrm{Ph}}\right)$, 128.62 (2C), 128.61 (2C), 128.59 (2C), 128.51 (2C), 128.46 (2C), 128.16 (4C), 127.98 (2C), 127.83, 127.74, 127.69 (2C) (20x CH-Ph), 80.4 (C-3), 79.2 ($\underline{C} \equiv \mathrm{CH}$), 76.7 ($\mathrm{C} \equiv \underline{\mathrm{CH}}$), 75.4 (C2), $75.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.0(\mathrm{C}-4), 73.7,73.5,73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.9$ (C-5), 68.9 (C-6), 67.5 (C-1). IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3281,3087,3062,3029,2902,2870,1723,1496,1454,1368,1269,1208,1098$, 736, 698. FAB-MS: $m / z(\%)=49.4[M+H]^{+}(70), 571.4[\mathrm{M}+\mathrm{Na}]^{+}(100)$. FAB-HRMS: calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: m / z=549.2641$, found: 549.2664. Anal. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{5}$ calcd: $\mathrm{C} 78.81, \mathrm{H}$ 6.61; found: $\mathrm{C} 79.28, \mathrm{H} 6.77 .[\alpha]^{20} \mathrm{D}: 32.2\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (these data match those reported in the literature $)^{7}$

A solution of o-iodoaniline ($789 \mathrm{mg}, 2.12 \mathrm{mmol}$), acetylene $\mathbf{1 2}(1.06 \mathrm{mg}, 1.92 \mathrm{mmol}), \mathrm{PPh}_{3}$ $(54 \mathrm{mg}, 0.21 \mathrm{~mol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(30 \mathrm{mg}, 13 \mathrm{mmol})$, in $\mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{ml})$ and DMF (5 ml) was
stirred at $70^{\circ} \mathrm{C}$ for 16.5 h . The mixture was diluted with EtOAc and washed with saturated aqueous NaHCO_{3}, and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 10:1) to give compound $\mathbf{1 3}$ ($1.19 \mathrm{mg}, 78 \%$). (this compound was prepared to according to Nishikawa et al. and the data match those reported in the literature ${ }^{7}$)

13: yellow oil; $R_{f}=0.43$ (cyclohexane/EtOAc, $3: 1$); ${ }^{1} \mathrm{H}$ NMR, COSY, HMBC, HSQC $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.16\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\text {indole }}\right.$), 7.50 (part of a $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{X}$ spinsystem, $2 \mathrm{H}, \mathrm{H}-3,5^{\mathrm{Ts}}$), 7.42 (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\text {indole }}\right)$, $7.35-7.37$ (m, 2H, H-Ph), 7.187.37 (m, 15H, H-Ph), 7.15-7.17 (m, 1H, H-Ph), 7.09-7.12 (m, 2H, H-Ph), 6.91-6.95 (m, 5H; this multiplet contains: $\left.\mathrm{H}-4,6^{\text {Ts }}, \mathrm{H}-3^{\text {indole }}\right), 5.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{g}^{\text {gal }}\right), 4.74\left(\mathrm{~d},{ }^{2} J=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(\mathrm{~d},{ }^{2} J=11.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46\left(\mathrm{~d},{ }^{2} J=\right.$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.38-4.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\text {gal }}\right), 4.31\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.24 (dd, $\left.{ }^{3} J_{2,3}=4.6 \mathrm{~Hz},{ }^{3} J_{2,1}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{gal}}\right), 4.13\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.09\left(\mathrm{~d},{ }^{2} J=11.9\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H} \mathrm{CH}_{2} \mathrm{Ph}\right), 4.05\left(\mathrm{dd},{ }^{3} J=5.8 \mathrm{~Hz},{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {gal }}\right), 3.94-4.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{H}}-6 \mathrm{a}^{\mathrm{gal}}\right)$, 3.73-3.79 (m, 2H, H-3 $\left.3^{\text {gal }}, \mathrm{H}^{2}-6 \mathrm{~b}^{\mathrm{gal}}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}{ }^{\mathrm{Ts}}\right) .{ }^{13} \mathrm{C}$ NMR, DEPT, HMBC, HSQC $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.9\left(\mathrm{C}-4^{\mathrm{Ts}}\right)$, 138.73, 138.68, 138.6, $137.9\left(4 \mathrm{x} \mathrm{C}^{\mathrm{Ch}}\right)$, $137.73(\mathrm{C}-$ $\left.2^{\text {indole }}\right), 137.66\left(\mathrm{C}-1{ }^{\text {Ts }}\right), 135.59\left(\mathrm{C}-7 \mathrm{a}^{\text {indole }}\right), 130.3\left(\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right), 129.9\left(\mathrm{C}-3,5^{\mathrm{Ts}}\right), 128.53,128.47$, $128.43,128.40,128.30,127.94,127.93,127.83,127.82,127.69,127.60(\mathrm{CH}-\mathrm{Ph}), 126.49$ (C$\left.4,6^{\text {Ts }}\right), 124.6,124.0\left(\mathrm{C}-5^{\text {indole }}, \mathrm{C}-6^{\text {indole }}\right), 121.1\left(\mathrm{C}-7^{\text {indole }}\right), 115.5\left(\mathrm{C}-4^{\text {indole }}\right), 113.5\left(\mathrm{C}-3^{\text {indole }}\right)$, $76.1\left(\mathrm{C}-2^{\mathrm{gal}}\right), 75.3\left(\mathrm{C}-4^{\mathrm{gal}}\right), 74.9\left(\mathrm{C}-3^{\mathrm{gal}}\right), 73.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.1\left(\mathrm{C}-5^{\mathrm{gal}}\right), 72.4$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.8\left(\mathrm{C}-6^{\text {gal }}\right), 65.8\left(\mathrm{C}-1^{\text {gal }}\right), 21.6\left(\mathrm{TsCH}_{3}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2924,2854$, 1597, 1452, 1368, 1172, 1148, 1091, 1027, 746, 697, 581, 542. ESI-MS: $m / z(\%)=794.7$ $[\mathrm{M}+\mathrm{H}]^{+}(55)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{NO}_{7} \mathrm{~S}+\mathrm{Na}\right]^{+}: m / z=816.2971$, found: 816.2994. $[\alpha]^{20} \mathrm{D}:+95.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

A solution of the N-tosylindole 13 ($320 \mathrm{mg}, 0.403 \mathrm{mmol}$) in a mixture of THF (3 ml) and $\mathrm{MeOH}(15 \% \mathrm{KOH}, 2 \mathrm{ml})$ was stirred at room temperature for 11 d . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced
pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 20:1) to give compound 14 ($208 \mathrm{mg}, 82 \%$). (these data match those reported in the literature) ${ }^{7}$
14: colorless oil; $R_{f}=0.49$ (cyclohexane/EtOAc, 5:1); ${ }^{1} \mathrm{H}$ NMR, COSY, HMBC, HSQC (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.56\left(\mathrm{~d},{ }^{3} J_{4,5}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}\right), 7.26-7.38(\mathrm{~m}, 20 \mathrm{H}$, $\mathrm{H}-\mathrm{Ph}$), 7.13 (dd, ${ }^{3} J_{7,6}=8.1 \mathrm{~Hz},{ }^{4} J_{7,5}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\text {indole }}$), $7.04\left(\mathrm{mc}, 1 \mathrm{H}, \mathrm{H}-6^{\text {indole }}\right), 6.98$ $\left(\mathrm{mc}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right), 6.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3^{\text {indole }}\right), 5.38\left(\mathrm{~s},{ }^{3} J_{1,2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}\right), 4.87\left(\mathrm{~d},{ }^{2} J=11.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65-4.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{2} J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.31\left(\mathrm{mc}, 1 \mathrm{H}, \mathrm{H}-2^{\text {gal }}\right), 3.96(\mathrm{mc}, 1 \mathrm{H}$, $\mathrm{H}-5^{\text {gal }}$), 3.90 (pseudo-t, ${ }^{3} J_{\text {app, } 4,3 / 5}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {gal }}$), 3.84 (dd, $1 \mathrm{H},{ }^{3} J_{3,2}=9.0 \mathrm{~Hz},{ }^{3} J_{3,4}=2.8$ $\left.\mathrm{Hz}, \mathrm{Hz}, \mathrm{H}-3^{\mathrm{gal}}\right), 3.78\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{a}, 6 \mathrm{~b}}=10.0 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{gal}}\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{6 \mathrm{~b}, 6 \mathrm{a}}=\right.$ $\left.10.0 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{bb}, 5}=5.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}\right) .{ }^{13} \mathrm{C}$ NMR, DEPT, $\mathrm{HMBC}, \mathrm{HSQC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 138.7 (2C), 138.4, $138.2\left(4 x, C-1{ }^{\text {Ph }}\right.$), 135.9 (C-7a $^{\text {indole }}$), 135.3 ($\mathrm{C}-2^{\text {indole }}$), 128.7 (2C), 128.6 (4C), 128.5 (2C), 128.4 (2C), ($10 \times \mathrm{CH}-\mathrm{Ph}$), 128.3 ($\mathrm{C}-3 \mathrm{a}^{\text {indole }}$), 128.2 (2C), 128.1, 127.89 (3C), $127.86(2 \mathrm{C}) 127.8(2 \mathrm{C}, 10 \mathrm{x} \mathrm{CH}-\mathrm{Ph}), 127.1\left(\mathrm{C}-3 \mathrm{a}^{\text {indol }}\right), 121.8$ (C-6 $\left.6^{\text {indole }}\right), 120.6$ (C-4 $\left.4^{\text {indole }}\right)$, 119.8 (C-5 $\left.5^{\text {indole }}\right)$, $111.1\left(\mathrm{C}^{\text {- }}{ }^{\text {indole }}\right), 102.0\left(\mathrm{C}-3^{\text {indole }}\right), 78.9\left(\mathrm{C}-3^{\text {gal }}\right), 78.0\left(\mathrm{C}-2^{\text {gal }}\right), 74.4\left(\mathrm{C}-4^{\text {gal }}\right)$, 72.2 , $73.6\left(2 \mathrm{C}, 3 \mathrm{x} \mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{C}-5^{\mathrm{gal}}\right), 73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.0\left(\mathrm{C}-1^{\mathrm{gal}}\right), 68.9\left(\mathrm{C}-6^{\mathrm{gal}}\right) . \mathrm{IR} \tilde{v}\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right): 3423,3029,2867,1496,1454,1326,1206,1092,735,697,516$. EI-MS: $m / z(\%)=91$ $\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}(100), 639[M]^{+}(10)$. FAB-HRMS: calcd for $[M]: m / z=639.2985$, found: 639.3002; calcd for $\left[\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{NO}_{5}+\mathrm{H}\right]^{+}: m / z=640.3063$, found: 640.3037. $[\alpha]^{20}{ }_{\mathrm{D}}{ }^{2}+52.32\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a cooled $\left(-60^{\circ} \mathrm{C}\right)$, stirred mixture of compound $\mathbf{1 4}(31 \mathrm{mg}, 0.032 \mathrm{mmol})$, compound $\mathbf{3}$ (36 $\mathrm{mg}, 0.073 \mathrm{mmol}$), activated $4-\AA ̊$ molecular sieves (1.4 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 ml) was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.01 \mathrm{ml}, 0.08 \mathrm{mmol})$. Stirring was continued for 2 h and the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. The mixture was filtered diluted with EtOAc and washed with and washed with saturated aqueous NaHCO_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was that was purified by flash chromatography (eluent cyclohexane/EtOAc, 3:1), and subsequent HPLC-chromatography (n -
hexane/i-propanol, 97:3) to afford compound to afford compound 15 ($7 \mathrm{mg}, 23 \%$). (For a similar procedure, see: ${ }^{5}$).

15: colorless oil; $R_{f}=0.34$ (cyclohexane/EtOAc, 5:1); ${ }^{1} \mathrm{H}$ NMR, COSY, HSQC, NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.90\left(\mathrm{~d},{ }^{3} J_{4,5}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {indole }}\right), 7.22-$ 7.38 (m, 19H, H-Ph), 7.08-7.16 (m, 3H, H-6 ${ }^{\text {indole }}, \mathrm{H}^{\mathrm{H}} 7^{\text {indole }}, \mathrm{H}-\mathrm{Ph}$), 7.04 (ddd, ${ }^{3} J_{5,4}=8.0 \mathrm{~Hz}$, $\left.{ }^{3} J_{5,6}=6.8 \mathrm{~Hz},{ }^{4} J_{5,7}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {indole }}\right), 5.51\left(\mathrm{~d},{ }^{3} J_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {gal }}\right), 5.44\left(\mathrm{dd},{ }^{3} J_{2,3}\right.$ $\left.=3.5 \mathrm{~Hz},{ }^{3} J_{2,1}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{man}}\right), 5.40\left(\mathrm{t},{ }^{3} J_{4,3 / 5}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{man}}\right), 5.36(\mathrm{~s}$, broad, 1 H , $\left.\mathrm{H}-1^{\mathrm{man}}\right), 5.17\left(\mathrm{dd},{ }^{3} J_{3,4}=10.1 \mathrm{~Hz},{ }^{3} J_{3,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{man}}\right), 4.76\left(\mathrm{~d},{ }^{2} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.55\left(\mathrm{~d},{ }^{2} J=\right.$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.53\left(\mathrm{~d},{ }^{2} J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.47-4.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.36(\mathrm{~d}$, broad, $\left.{ }^{2} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11-4.22\left(\mathrm{~m}, 4 \mathrm{H}\right.$, this multiplet contains: $4.20\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{a}, 6 \mathrm{~b}}=\right.$ $\left.12.1 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=4.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{man}}\right), 4.13\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=12.1 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=2.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{man}}\right), \mathrm{H}-2^{\text {gal }}$, $\left.\mathrm{H}-5^{\mathrm{gal}}\right), 3.97\left(\mathrm{dd},{ }^{3} J_{4,5}=3.9 \mathrm{~Hz},{ }^{3} J_{4,3}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right.$), $3.92-3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\mathrm{gal}}\right), 3.84$ (dd, $\left.{ }^{3} J_{3,2}=7.3 \mathrm{~Hz},{ }^{3} J_{3,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {gal }}\right), 3.58-3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\text {man }}, \mathrm{H}-6^{\text {gal }}\right), 2.00,1.90$, $1.58\left(3 \mathrm{x} \mathrm{s}\right.$, each $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR, $\operatorname{HSQC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,170.4,170.2$, $170.0(\mathrm{C}=\mathrm{O}), 138.5,138.4(2 \mathrm{C}), 137.8\left(4 \mathrm{x} \mathrm{C}^{\mathrm{C}} 1^{\mathrm{Ph}}\right), 135.4$ (C-7 $\left.\mathrm{a}^{\text {indole }}\right)$, 131.4 (C-2 indole $), 128.7$ (6C), 128.6 (2C), 128.3 (2C), 128.2, 128.09 (2C), 128.06 (2C), 127.98 (3C), 127.94, 127.85 ($20 \times \mathrm{H}-\mathrm{Ph}$), $127.0\left(\mathrm{C}-3 \mathrm{a}^{\text {indole }}\right), 122.2,122.0\left(\mathrm{C}-4^{\text {indole }}, \mathrm{C}-6^{\text {indole }}\right), 119.6\left(\mathrm{C}-5^{\text {indole }}\right), 111.0(\mathrm{C}-$ $\left.7^{\text {indole }}\right), 100.2\left(\mathrm{C}-3^{\text {indole }}\right), 78.7\left(\mathrm{C}-5^{\mathrm{gal}}\right), 76.7\left(\mathrm{C}-3^{\mathrm{gal}}\right), 76.2\left(\mathrm{C}-5^{\mathrm{man}}\right), 74.5\left(\mathrm{C}-1^{\mathrm{man}}\right), 74.2\left(\mathrm{H}-4^{\mathrm{gal}}\right.$, $\left.\mathrm{H}-2^{\mathrm{gal}}\right), 74.1,73.5,73.4,72.9\left(\mathrm{BnCH}_{2}\right), 72.5\left(\mathrm{H}-3^{\mathrm{man}}\right), 71.7\left(\mathrm{C}-2^{\mathrm{man}}\right), 68.4\left(\mathrm{C}-6^{\mathrm{man}}\right), 67.6(\mathrm{C}-$ $\left.1^{\text {gal }}\right), 66.7\left(\mathrm{C}-4^{\mathrm{man}}\right), 63.4\left(\mathrm{C}-6^{\mathrm{gal}}\right), 21.0(2 \mathrm{C}), 20.9,20.7\left(\mathrm{COCH}_{3}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3423,3029$, 2867, 17.42, 1496, 1461, 1346, 1210, 1065, 741, 697, 516. FAB-HRMS: calcd for $\left[\mathrm{C}_{56} \mathrm{H}_{59} \mathrm{NO}_{14}+\mathrm{H}\right]: m / z=970.4008$, found: 970.4007; calcd for $\left[\mathrm{C}_{56} \mathrm{H}_{59} \mathrm{NO}_{14}+\mathrm{Na}\right]: m / z=$ 992.3828, gef.: 992.3835 .

Allyl alcohol ($70.0 \mathrm{ml}, 1.03 \mathrm{~mol}$) was slowly added to a mixture of acetyl chloride $(5.5 \mathrm{ml}, 77$ $\mathrm{mmol})$. To this solution was added fucose $(5.00 \mathrm{~g}, 31.2 \mathrm{mmol})$ and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 40 h . The reaction was quentched with NaHCO_{3} filtered over a pad of Celite and concentrated in vacuo. The residue was purified by flash chromatography (eluent
cyclohexane/EtOAc, 15:1) to afford O-allyl- α / β-D-fucopyranose ($5.18 \mathrm{~g}, 80 \%, \alpha: \beta=4.25: 1$, determined by NMR-spectroscopy). \%). (For a similar procedure, see: ${ }^{8}$)
colorless oil; $R_{f}=0.49\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}, 3: 1: 0.1\right)$. Characteristic NMR-signals to determine the anomeric ratio: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 4.80\left(\mathrm{~d},{ }^{3} J_{1,2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-1^{\text {fuc } \alpha}\right), 4.23\left(\mathrm{~d},{ }^{3} J_{1,2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {fuc } \beta}\right.$). Spectroscopic data of O-allyl- α-D-fucopyranose: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=5.98$ (dddd, ${ }^{3} J_{\mathrm{CH}, \mathrm{CH} 2}=5.4,5.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH},=\mathrm{CH} 2}=10.5$, 17.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.34 (d-pseudo-q, ${ }^{2} J_{a p p,=\mathrm{CH} 2 \mathrm{a},=\mathrm{CH} 2 \mathrm{~b} / \mathrm{CH} 2}=1.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{CH} 2, \mathrm{CH}}=17.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2 \mathrm{a}}$), 5.18 (d-pseudo-q, ${ }^{2} J_{\text {app },=\mathrm{CH} 2 \mathrm{a},=\mathrm{CH} 2 \mathrm{~b} / \mathrm{CH} 2}=1.5 \mathrm{~Hz},{ }^{3} J_{=\mathrm{CH} 2 \mathrm{~b}, \mathrm{CH}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2 \mathrm{~b}}\right), 4.82\left(\mathrm{~d},{ }^{3} J_{1,2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.18\left(\mathrm{ddt},{ }^{4} \mathrm{~J}_{\mathrm{CH} 2,=\mathrm{CH} 2}=1.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH} 2, \mathrm{CH}}=5.3\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{CH} 2, \mathrm{CH} 2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{a}} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.04\left(\mathrm{ddt},{ }^{4} J_{\mathrm{CH} 2,=\mathrm{CH} 2}=1.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH} 2, \mathrm{CH}}=6.0 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{CH} 2, \mathrm{CH} 2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.97\left(\mathrm{qd},{ }^{3} J_{5,4}=1.1 \mathrm{~Hz},{ }^{3} J_{5,6}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)$, 3.76-3.77 (m, 2H, this multiplet contains: 3.78 ($\mathrm{dd},{ }^{3} J_{3,4}=2.6 \mathrm{~Hz},{ }^{3} J_{3,2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $\left.3.75\left(\mathrm{dd},{ }^{3} J_{2,1}=3.1 \mathrm{~Hz},{ }^{3} J_{2,3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)\right), 3.68\left(\mathrm{dd},{ }^{3} J_{4,5}=1.1 \mathrm{~Hz},{ }^{3} J_{4,3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-4), 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{6,5}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 135.9$ $\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 117.5\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 99.8(\mathrm{C}-1), 73.8(\mathrm{C}-4), 71.9(\mathrm{C}-2), 70.2(\mathrm{C}-3), 69.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 67.8(\mathrm{C}-5), 16.7(\mathrm{C}-6)$.

To a solution of O-allyl- α / β-D-fucopyranose ($5.1 \mathrm{~g}, 25.0 \mathrm{mmol}$) in anhydrous DMF (105 ml) was slowly added $\mathrm{NaH}(6.14 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 165 mmol). After stirring for 45 min at room temperature, benzyl bromide $(9.08 \mathrm{ml}, 76.1 \mathrm{mmol})$ was added and stirring was continued for 16 h . The reaction was quenched with methanole and concentrated under reduced pressure. The residue was purified by flash chromatography (eluent cyclohexane/EtOAc, 20:1) to give O-allyl-2,3,4,6-tetra- O-benzyl- α / β-d-fucopyranose (10.8 g , $91 \% ; \alpha: \beta=9: 2$, determined by NMR-spectroscopy).
colorless oil; $R_{f}=0.76$ (cyclohexane/EtOAc, 2:1). Characteristic NMR-signals to determin the anomeric ratio: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.84\left(\mathrm{~d},{ }^{3} J_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.1^{\text {fuca }}\right), 4.36\left(\mathrm{~d},{ }^{3} J_{1,2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {fuc }}\right)$. Spectroscopic data of allyl 2,3,4,6-tetra- O-benzyl-α-D-fucopyranoside: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.40(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 5.91$ (dddd, ${ }^{3} J_{\mathrm{CH},=\mathrm{CH} 2}=17.0,10.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH}, \mathrm{CH} 2}=6.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.29 (d-pseudo-q,
${ }^{3} J_{\mathrm{CH} 2, \mathrm{CH}}=17.1 \mathrm{~Hz},{ }^{2} J_{\text {app },=\mathrm{CH} 2,=\mathrm{CH} 2 / \mathrm{CH} 2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2 \mathrm{a}}$), 5.17 (d-pseudo-q, $\left.{ }^{3} J_{=\mathrm{CH} 2, \mathrm{CH}}=10.3 \mathrm{~Hz},{ }^{2} J_{\text {app }}=\mathrm{CH} 2,=\mathrm{CH} 2 / \mathrm{CH} 2=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2 \mathrm{~b}}\right), 4.97\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.87\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.84\left(\mathrm{~d},{ }^{3} J_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.79\left(\mathrm{~d},{ }^{2} J=\right.$ $\left.12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.64\left(\mathrm{~d},{ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.11\left(\mathrm{ddt},{ }^{2} J_{\mathrm{CH} 2, \mathrm{CH} 2}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH} 2, \mathrm{CH}}=5.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{CH} 2,=\mathrm{CH} 2}\right.$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.97-4.05 (m, 2 H , this multiplet contains: $4.03\left(\mathrm{dd}, J_{2,3}=10.1\right.$ $\left.\mathrm{Hz}, J_{2,1}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.06\left(\mathrm{ddt},{ }^{2} J_{\mathrm{CH} 2, \mathrm{CH} 2}=13.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{CH} 2, \mathrm{CH}}=6.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{CH} 2,=\mathrm{CH} 2}=1.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2 b} \mathrm{CH}=\mathrm{CH}_{2}\right)$), $3.95\left(\mathrm{dd},{ }^{3} J_{3,2}=10.1 \mathrm{~Hz},{ }^{3} J_{3,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.88\left(\mathrm{qd},{ }^{3} J_{5,6}=\right.$ $\left.6.4 \mathrm{~Hz},{ }^{3} J_{5,4}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.64\left(\mathrm{dd},{ }^{3} J_{4,3}=2.8 \mathrm{~Hz},{ }^{3} J_{4,5}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 1.09\left(\mathrm{~d},{ }^{3} J_{6,5}\right.$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6)$. MS (ESI): $497.2[\mathrm{M}+\mathrm{Na}]^{+}$(100), $513.2[\mathrm{M}+\mathrm{K}]^{+}$(75). HRMS (ESI): calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$: 497.2304; found: 497.2299; calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{5}+\mathrm{K}\right]^{+}$: 513.2038; found: 513.2041.

A solution of 1,5-cyclooctadien-bis(methyldiphenylphosphine)iridium(I)hexafluorophosphate ($359 \mathrm{mg}, 0.424 \mathrm{mmol}$) in dry THF (500 ml) was stirred under hydrogen atmosphere for 10 min . This solution was added to allyl- α-D-mannopyranoside ($2.90 \mathrm{~g}, 6.12$ mmol) and stirring was continued for 16 h at room temperature. The mixture was concentrated under reduced pressure and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were subsequently washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was dissolved in a mixture of THF $(100 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(63 \mathrm{ml})$ and $\mathrm{NaHCO}_{3}(1.88 \mathrm{~g}, 22.3 \mathrm{mmol})$ and $\mathrm{I}_{2}(3.75 \mathrm{~g}, 14.8 \mathrm{~mol})$ were added. After stirring for 16 h at room temperature, the reaction is quenched with NaHSO_{3}. The mixture was diluted with EtOAc and the organic phases were washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 4:1) to give $2,3,4,6$-tetra- O-benzyl- α / β-D-fucopyranose ($2.23 \mathrm{~g}, 84 \%$, $\alpha: \beta=8: 3$, determined by NMR-spectroscopy). (For a similar procedure, see: ${ }^{8}$)
yellow solid; mp.: $84-85^{\circ} \mathrm{C} ; R_{f}=0.51$ (cyclohexane/EtOAc, 5:1). Characteristic NMRsignals to determine the anomeric ratio: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-6^{\text {fuc }}$), 1.13 (d, ${ }^{3} J_{6,5}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6^{\text {fuc } \alpha}$). Spectroscopic data of 2,3,4,6-tetra-benzyl-
α-D-fucopyranoside: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.40(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 5.25(\mathrm{~d}$, $\left.{ }^{3} J_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.96\left(\mathrm{~d},{ }^{2} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.82\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.81\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70\left(\mathrm{~d},{ }^{2} J=\right.$ $\left.11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65\left(\mathrm{~d},{ }^{2} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.09\left(\mathrm{dq},{ }^{3} J_{5,6}=6.5 \mathrm{~Hz},{ }^{3} J_{5,4}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.03 (dd, ${ }^{3} J_{2,3}=9.9 \mathrm{~Hz},{ }^{3} J_{2,1}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.88 (dd, ${ }^{3} J_{3,2}=9.9 \mathrm{~Hz},{ }^{3} J_{3,4}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.65\left(\mathrm{dd},{ }^{3} J_{4,3}=2.8 \mathrm{~Hz},{ }^{3} J_{4,5}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 1.13\left(\mathrm{~d},{ }^{3} J_{6,5}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\mathrm{H}-6) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.9,138.8,138.4$ ($3 \mathrm{x}, \mathrm{C}-1{ }^{\mathrm{Ph}}$), 128.63 (4C), 128.60 (2C), 128.4 (2C), 128.2 (2C), 128.0, 127.83, 127.80, 127.7 (2C), ($15 \mathrm{x} \mathrm{H}-\mathrm{Ph}$), 92.1 (C-1), 79.3 $(\mathrm{C}-3), 77.6(\mathrm{C}-4), 76.8(\mathrm{C}-2), 75.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.9(\mathrm{C}-5), 16.9(\mathrm{C}-$ 6). IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 697,735,1064,1098,1360,1454,1496,2924,3062,3405 . \mathrm{MS}$ (ESI): $457.1990[\mathrm{M}+\mathrm{Na}]^{+}(100), 891.4080[2 \mathrm{M}+\mathrm{Na}]^{+}(50) . \mathrm{HRMS}(\mathrm{ESI})$: calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$: 457.1991; found: 457.1990.

A solution of 2,3,4,6-tetra-O-benzyl- α / β-D-fucopyranose ($1.07 \mathrm{~g}, 2.45 \mathrm{mmol}$), pyridine (128 $\mathrm{ml})$ and acetic anhydride ($0.98 \mathrm{ml}, 10.4 \mathrm{mmol}$,) was stirred at room temperature for 17 h and then concentrated in vacuo. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 7:1) to give 1 -acetyl-2,3,4,6-tetra- O-benzyl- α / β-D-fucopyranoside (1.09 g, $93 \%, \alpha: \beta=5: 6$, determined by NMR-spectroscopy). (For a similar procedure, see: ${ }^{4}$).
colorless solid; $R_{f}=0.47$ (cyclohexane/EtOAc, 2:1). Characteristic NMR-signals to determine the anomeric ratio: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.36\left(\mathrm{~d},{ }^{3} J_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1^{\text {Fuc }}$), $5.54\left(\mathrm{~d},{ }^{3} J_{1,2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {Fuc } \beta}\right)$. Spectroscopic data of 1-acetyl-2,3,4,6-tetra-O-benzyl- α / β-D-fucopyranose: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.39\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{H}-\mathrm{Ph}^{\alpha, \beta}\right)$, $6.36\left(\mathrm{~d},{ }^{3} J_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\alpha}\right), 5.54\left(\mathrm{~d},{ }^{3} J_{1,2}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\beta}\right), 4.97\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{BnCH}_{2}{ }^{\alpha, \beta}\right), 4.85\left(\mathrm{~d},{ }^{3} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\alpha, \beta}\right), 4.83\left(\mathrm{~d},{ }^{3} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\alpha, \beta}\right), 4.63-$ $7.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}^{\alpha, \beta}\right), 4.15\left(\mathrm{dd},{ }^{3} J_{2,1}=3.7 \mathrm{~Hz},{ }^{3} J_{2,3}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\alpha}\right), 3.96\left(\mathrm{dq},{ }^{3} J_{5,4}=\right.$ $\left.0.9 \mathrm{~Hz},{ }^{3} J_{5,6}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\alpha}\right), 3.94\left(\mathrm{ddd},{ }^{2} J_{2,4}=1.1 \mathrm{~Hz},{ }^{3} J_{2,1}=8.1 \mathrm{~Hz},{ }^{3} J_{2,3}=10.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2^{\beta}$), $3.87\left(\mathrm{dd},{ }^{3} J_{3,4}=2.8 \mathrm{~Hz},{ }^{3} J_{3,2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\alpha}\right), 3.69\left(\mathrm{dd},{ }^{3} J_{4,5}=0.9 \mathrm{~Hz},{ }^{3} J_{4,3}=\right.$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\alpha}$), 3.57-3.62 (m, 3H, H-3 $\left.{ }^{\beta}, \mathrm{H}-4^{\beta}, \mathrm{H}-5^{\beta}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}{ }^{\alpha}\right), 2.02(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCCH}_{3}{ }^{\beta}\right), 1.16\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6^{\beta}\right), 1.13\left(\mathrm{~d},{ }^{3} J_{6,5}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6^{\beta}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8,169.7\left(\mathrm{C}=\mathrm{O}^{\alpha, \beta}\right), 139.0,138.7$, 138.64, 138.60, 138.5, 138.3 (6 x
$\left.\mathrm{C}-\mathrm{I}^{\mathrm{Ph}, \alpha, \beta}\right), 128.7$ (4C), 128.60 (2C), 128.57 (3C), 128.55 (2C), 128.46 (2C), 128.43 (2C), 128.2 (2C), 128.1 (2C), 127.94, 127.92, 127.89 (3C), 127.85, 127.82 (2C), 127.76, 127.6 (2C, $\left.\mathrm{H}-\mathrm{Ph}^{\alpha, \beta}\right), 94.5\left(\mathrm{C}-1^{\beta}\right), 91.1\left(\mathrm{C}-1^{\alpha}\right), 83.0\left(\mathrm{C}-3^{\beta}\right)$, $79.2\left(\mathrm{C}-3^{\alpha}\right), 78.3\left(\mathrm{C}-2^{\beta}\right), 77.7\left(\mathrm{C}-4^{\alpha}\right), 76.3$ $\left(\mathrm{C}-4^{\beta}\right), 75.6\left(\mathrm{C}-2^{\alpha}\right), 75.5,75.2,74.9,73.5,73.44,73.36\left(\mathrm{CH}_{2} \mathrm{Ph}^{\alpha, \beta}\right), 71.7\left(\mathrm{C}-5^{\beta}\right), 69.3\left(\mathrm{C}-5^{\alpha}\right)$, 21.4, $21.3\left(\mathrm{C}^{\alpha}{ }^{\alpha}, \mathrm{C}-6^{\beta}\right), 16.9\left(2 \mathrm{C}, \mathrm{COCH}_{3}{ }^{\alpha, \beta}\right)$. MS (ESI): $457.1990\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NaO}_{6}\right]^{+}(100)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3029,2876,1748,1496,1453,1366,1229,1101,1057,734,697$. ESI-MS: $m / z(\%)$ $=499.2[\mathrm{M}+\mathrm{Na}]^{+}(100)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}: m / z=499.2091$, found: 499.2092.

A mixture of 1-acetyl-2,3,4-tri- O-benzyl- α / β-D-fucopyranose ($480 \mathrm{mg}, 1.01 \mathrm{mmol}$), tributylstannyl(trimethylsilyl)ethyne ($624 \mathrm{mg}, 1.61 \mathrm{mmol}$), activated $4-\AA$ molecular sieves (1.08 g), and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was mixture was stirred at room temperature for 30 min. Then, TMSOTf ($0.36 \mathrm{ml}, 0.0016 \mathrm{mmol}$) was added dropwise. The dark brown was stirred at room temperature for additional 1 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 15:1) to give trimethyl-(2,3,4-tri-O-benzyl- α-D-fucosyl-2-ylethynyl)silane ($472 \mathrm{mg}, 91 \%$). (For a similar procedure, see: ${ }^{6}$).
colorless Oil; $R_{f}=0.70$ (cyclohexane/EtOAc, 5:1), ${ }^{1} \mathrm{H}$ NMR, HSQC (400 MHz , CDCl_{3}): $\delta=7.23-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 4.95\left(\mathrm{~d},{ }^{2} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.82\left(\mathrm{~d},{ }^{2} J=12.1\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.80\left(\mathrm{~d},{ }^{3} J_{1,2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.73\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72(\mathrm{~d}$, $\left.{ }^{2} J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(\mathrm{~d},{ }^{2} J=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), $4.05\left(\mathrm{dd},{ }^{3} J_{2,3}=9.7 \mathrm{~Hz},{ }^{3} J_{2,1}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.99\left(\mathrm{qd},{ }^{3} J_{5,6}=6.4 \mathrm{~Hz},{ }^{3} J_{5,4}=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.83\left(\mathrm{dd},{ }^{3} J_{3,2}=9.7 \mathrm{~Hz},{ }^{3} J_{3,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.59\left(\mathrm{dd},{ }^{3} J_{4,3}=2.8 \mathrm{~Hz},{ }^{3} J_{4,5}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.12\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6\right), 0.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR, HSQC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.1,138.9,138.8$ ($3 \mathrm{x}, \mathrm{C}^{\mathrm{Ph}}$), 128.7 (2C), 128.5 (2C), 128.42 (2C), 128.41 (2C), 127.9 (2C), 127.81, 127.78 (2C), 127.7, 27.6 ($15 \mathrm{x}, \mathrm{H}-\mathrm{Ph}$), 101.3 (fuc- $\underline{\mathrm{C}} \equiv \mathrm{CSi}\left(\mathrm{CH}_{3}\right)_{3}$), 93.3 (fuc- $\left.\mathrm{C} \equiv \underline{\mathrm{CSi}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $79.8(\mathrm{C}-3)$, $77.8(\mathrm{C}-4)$, $75.7(\mathrm{C}-2), 75.1,73.3$, $72.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.9(\mathrm{C}-5), 67.5(\mathrm{C}-1), 17.1(\mathrm{C}-6), 0.2\left(\mathrm{Si}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) .} \mathrm{IR} \tilde{v}\left(\mathrm{~cm}^{-1}\right): 3030,2898\right.$,

1496, 1454, 1332, 1250, 844, 737, 697. MS (ESI): $537.2431[\mathrm{M}+\mathrm{Na}]^{+}$(100). ESI-MS: m / z $(\%)=537.2431[\mathrm{M}+\mathrm{Na}]^{+}(100)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}\right]^{+}: m / z=515.2612$, found: 515.2614. Anal. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$ calcd: C 74.67 , H 7.44 , found: $\mathrm{C} 74.61, \mathrm{H} 7.43$. $[\alpha]^{20}{ }^{\mathrm{D}}$: -95.5 (c 1.00, CHCl_{3}).

To a solution of trimethyl-(2,3,4-tri- O-benzyl- α-D-fucosyl-2-ylethynyl)-silane ($412 \mathrm{mg}, 0.800$ mmol), in THF/ $\mathrm{H}_{2} \mathrm{O}$ ($6 \mathrm{ml}, 5: 1$) was added TBAF (0.66 ml , 1 M in THF, 0.66 mmol). The reaction was stirred at room temperature for 16 h , diluted with EtOAc and washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent $\mathrm{EtOAc} / \mathrm{MeOH}, 5: 1$) to give (2,3,4-Tri-O-benzyl- α-D-fucosyl)acetylene ($320 \mathrm{mg}, 90 \%$). (For a similar procedure, see: ${ }^{6}$).
colorless oil; $R_{f}=0.47$ (cyclohexane/EtOAc, $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.24-7.39 (m, 15H, H-Ph), $4.96\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.87\left(\mathrm{~d},{ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.69-4.79 (m, 4H, H-1, 3x CH2 Ph), $4.63\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.07 (dd, ${ }^{3} J_{2,1}$ $\left.=5.8 \mathrm{~Hz},{ }^{3} J_{2,3}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.02\left(\mathrm{qd},{ }^{3} J_{5,4}=1.2 \mathrm{~Hz},{ }^{3} J_{5,6}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.87(\mathrm{dd}$, $\left.{ }^{3} J_{3,4}=2.8 \mathrm{~Hz},{ }^{3} J_{3,2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.64\left(\mathrm{dd},{ }^{3} J_{4,5}=1.2 \mathrm{~Hz},{ }^{3} J_{4,3}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 2.47$ $\left(\mathrm{d},{ }^{4} J_{\mathrm{C}=\mathrm{CH}, 1}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}\right), 1.13\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}): $\delta=139.1,138.8,138.5$ ($3 \mathrm{x}, \mathrm{C}-1^{\mathrm{Ph}}$), 128.7 (2C), 128.6 (4C), 128.4 (2C), 128.2 (2), 127.9, 127.8, 127.73, 127.70 (2C), (15x, H-Ph), 80.8 (C-3), 79.6 ($\mathrm{C} \equiv \mathrm{CH}$), 77.8 (C-4), 76.0 $(\mathrm{C} \equiv \underline{\mathrm{CH}}), 75.3$ (C-2), 75.2, 73.6, 73.4 ($3 \mathrm{x} \mathrm{CH}_{2} \mathrm{Ph}$), 70.0 (C-5), 67.3 (C-1), 17.1 (C-6). IR \tilde{v} $\left(\mathrm{cm}^{-1}\right): 3287,2924,1652,1454,1073$. ESI-MS: $m / z(\%)=465.2036[\mathrm{M}+\mathrm{Na}]^{+}(100)$. ESIHRMS: calcd for: $\left[\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: m / z=465.2036$, found: 465.2036. Anal. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4}$ calcd for: $\mathrm{C} 78.71, \mathrm{H} 6.83$; found: $\mathrm{C} 78.43, \mathrm{H} 6.90 .[\alpha]^{20}{ }_{\mathrm{D}}$: $-129.32\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

A mixture of o-iodoaniline ($1.25 \mathrm{~g}, 5.71 \mathrm{mmol}$), and D-galactose ($0.82 \mathrm{~g}, 4.57 \mathrm{mmol}$) in ethanol (30 ml), water (dest., 1 ml), and $\mathrm{AcOH}(0.3 \mathrm{ml})$ was refluxed for 2 h and then
concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent MeOH/EtOAc:, 5:1) to give compound 16 ($670 \mathrm{mg}, 31 \%$). (For a similar procedure, see: ${ }^{3}$).

16: brownish solid; mp.: $135-136{ }^{\circ} \mathrm{C} ; R_{f}=0.46\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}, 5: 1: 0.1\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.65$ (dd, ${ }^{3} J_{3,4}=7.8 \mathrm{~Hz},{ }^{4} J_{3,5}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {aniline }}$), 7.21 (ddd, ${ }^{3} J_{5,6}=8.3 \mathrm{~Hz},{ }^{3} J_{5,4}=7.3 \mathrm{~Hz},{ }^{4} J_{5,3}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {aniline }}$), $6.93\left(\mathrm{dd},{ }^{3} J_{6,5}=8.3 \mathrm{~Hz},{ }^{4} J_{6,4}\right.$ $\left.=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\text {aniline }}\right), 6.52\left(\mathrm{ddd},{ }^{3} J_{4,3}=7.8 \mathrm{~Hz},{ }^{3} J_{4,5}=7.3 \mathrm{~Hz},{ }^{4} J_{4,6}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {aniline }}\right.$), $4.53\left(\mathrm{~d},{ }^{3} J_{1,2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{gal}}\right), 3.92\left(\mathrm{dd},{ }^{3} J_{4,3}=3.4 \mathrm{~Hz},{ }^{3} J_{4,5}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right), 3.64-$ $3.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\text {gal }}, \mathrm{H}-3^{\text {gal }}, \mathrm{H}-6^{\text {gal }}\right), 3.58\left(\mathrm{dd}, J_{3,2}=9.4 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {gal }}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=147.7\left(\mathrm{C}-1^{\text {aniline }}\right), 140.3\left(\mathrm{C}-3^{\text {aniline }}\right), 130.6\left(\mathrm{C}-5^{\text {aniline }}\right), 121.6$ ($\mathrm{C}-$ $\left.4^{\text {aniline }}\right), 114.6\left(\mathrm{C}-6^{\text {aniline }}\right), 87.7\left(\mathrm{C}-1^{\text {gal }}\right), 86.2\left(\mathrm{C}-2^{\text {aniline }}\right), 77.6\left(\mathrm{C}-5^{\text {gal }}\right), 76.1\left(\mathrm{C}-3^{\text {gal }}\right), 72.3(\mathrm{C}-$ $\left.2^{\text {gal }}\right), 70.8\left(\mathrm{C}-4^{\mathrm{gal}}\right), 62.7\left(\mathrm{C}-6^{\mathrm{gal}}\right) . \mathrm{IR} \tilde{v}\left(\mathrm{~cm}^{-1}\right): 3500,2947,2897,2870,1633,1589,1517$, 1460, 1435, 1417, 1311, 1268 1142, 1083, 1069, 973, 929, 742, 499. ESI-MS: $m / z(\%)=$ \left.$403.9965{[M+N a]^{+}}^{+} 50\right), 382.0147[\mathrm{M}+\mathrm{H}]^{+}, 219.9615\left[\mathrm{o}\right.$-iodoaniline+H] ${ }^{+}$(100). ESI-HRMS: calcd for: $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{INO}_{5}+\mathrm{H}\right]^{+}: m / z=382.0151$, found: 382.0147 ; calcd for: $\left[\mathrm{C}_{12} \mathrm{H}_{16}[\mathrm{NO}+\mathrm{Na}]^{+}\right.$: $m / z=403.9971$, found: 403.9965. $[\alpha]^{20}{ }_{\mathrm{D}}:+13.8(\mathrm{c}=1.00, \mathrm{MeOH})$.

A solution of the aniline $\mathbf{1 6}(168 \mathrm{mg}, 0.441 \mathrm{mmol})$, acetylene $\mathbf{1 7}(112 \mathrm{mg}, 0.294 \mathrm{mmol}), \mathrm{PPh}_{3}$ ($8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.018 \mathrm{mmol})$, in $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml})$ and DMF (3 ml) was stirred at $70^{\circ} \mathrm{C}$ for 18.5 h . The mixture was diluted with EtOAc and washed with saturated aqueous NaHCO_{3}, and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash chromatography (eluent cyclohexane/EtOAc, 1:2) to give to give compound $\mathbf{1 8}$ (134 mg, 66\%). \%). (For a similar procedure, see: ${ }^{7}$)
colorless oil; $R_{f}=0.37\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{HOAc}, 10: 1: 0.1\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{COSY}, \mathrm{HSQC}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-7.43\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{H}-\mathrm{Ph}, \mathrm{H}-4{ }^{\text {aniline }}, \mathrm{H}-6^{\text {aniline }}\right.$), 6.82 (dd, ${ }^{3} J_{3,4}=7.9$ $\left.\mathrm{Hz},{ }^{4} J_{3,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\text {aniline }}\right), 6.76\left(\mathrm{td},{ }^{3} J_{5,4 / 6}=7.5 \mathrm{~Hz},{ }^{4} J_{5,3}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\text {aniline }}\right), 5.74$ (d, broad, $\left.{ }^{3} J_{\mathrm{NH}, 1 \mathrm{gal}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right), 5.16\left(\mathrm{~d},{ }^{3} J_{1,2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\text {fuc }}\right), 4.91\left(\mathrm{~d},{ }^{2} J=11.5\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.82\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(\mathrm{~d},{ }^{2} J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCH}_{2}\right), 4.73$
$\left(\mathrm{d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.63\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.57\left(\mathrm{~d},{ }^{2} J=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), 4.25-4.31 (m, 2H, this multiplet contains: 4.29 (dd, ${ }^{3} J_{2,3}=10.1 \mathrm{~Hz},{ }^{3} J_{2,1}=5.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\mathrm{fuc}}\right), 4.26\left(\mathrm{dd},{ }^{3} J_{1,2}=9.4 \mathrm{~Hz},{ }^{3} J_{1, \mathrm{NH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\mathrm{gal}}\right)$), $4.09\left(\mathrm{dq},{ }^{3} J_{5,6}=6.4 \mathrm{~Hz},{ }^{3} J_{5,4}\right.$ $\left.=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{fuc}}\right), 3.98\left(\mathrm{dd},{ }^{3} J_{3,2}=10.1 \mathrm{~Hz},{ }^{3} J_{3,4}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{fuc}}\right), 3.90\left(\mathrm{dd},{ }^{3} J_{6 \mathrm{a}, 6 \mathrm{~b}}=\right.$ $\left.11.9 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{a}, 5}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{gal}}\right), 3.86\left(\mathrm{dd},{ }^{3} J_{4,3}=3.4 \mathrm{~Hz},{ }^{3} J_{4,5}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\mathrm{gal}}\right), 3.79$ $\left(\mathrm{dd},{ }^{3} J_{4,3}=2.6,{ }^{3} J_{4,5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\text {fuc }}\right), 3.75\left(\mathrm{dd},{ }^{2} J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.9 \mathrm{~Hz},{ }^{3} J_{6 \mathrm{~b}, 5}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.6 \mathrm{~b}^{\mathrm{gal}}\right), 3.56\left(\mathrm{ddd},{ }^{3} J_{5,6 \mathrm{a}}=6.8 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=4.0 \mathrm{~Hz},{ }^{3} J_{5,4}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}\right), 3.40\left(\mathrm{dd},{ }^{3} J_{3,2}=\right.$ $\left.9.4 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\mathrm{gal}}\right), 2.92\left(\mathrm{t},{ }^{3} J_{3,1 / 2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\mathrm{gal}}\right), 1.23\left(\mathrm{~d},{ }^{3} J_{6,5}=6.4 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{H}-6{ }^{\text {fuc }}\right) .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=148.3$ ($\left.\mathrm{C}-2^{\text {aniline }}\right)$, 138.6, 138.5, 137.4
 128.5 (2C), 128.4 (2C), 128.0, 127.9, 127.6 (2C), ($15 \mathrm{x}, \mathrm{H}-\mathrm{Ph}$), 118.9 (C-5 ${ }^{\text {aniline }}$), 112.4
 $76.7\left(2 \mathrm{C}, \mathrm{C}-2^{\mathrm{fuc}}, \mathrm{C}-4^{\mathrm{fuc}}\right), 75.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.1\left(\mathrm{C}-5^{\mathrm{gal}}\right), 74.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8\left(\mathrm{C}-3^{\mathrm{gal}}\right), 71.5$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.2\left(\mathrm{C}-2^{\mathrm{gal}}\right), 70.1\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 69.5\left(\mathrm{C}-4^{\mathrm{gal}}\right), 67.6\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 63.0\left(\mathrm{C}-6^{\mathrm{gal}}\right), 17.4\left(\mathrm{C}-6^{\mathrm{fuc}}\right)$. IR $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3512,3395,3359,3062,3034,2886,2217,1955,1874,1813,1658,1602,1577$, $1506,1453,1383,1333,1311,1269,1212,1067,834,745,699$. ESI-MS: $m / z(\%)=696.3168$ $[\mathrm{M}+\mathrm{H}]^{+}(100), 534.2637[\mathrm{M}-\mathrm{gal}+2 \mathrm{H}]^{+}(40)$. ESI-HRMS: calcd for: $\left[\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{NO}{ }_{9}+\mathrm{H}\right]: m / z=$ 696.3167, found: 696.3168. $[\alpha]^{20}{ }_{\mathrm{D}}$: -65.1 ($c 1.00$, DMSO- d_{6}).

2,3,4,6-Tetra- O-acetyl- β-D-galactopyranosylamine ($213 \mathrm{mg}, 0.61 \mathrm{mmol}$) was dissolved in anhydrous THF 84 mL). To this solution N-ethylmorpholine ($0.08 \mathrm{ml}, 0.64 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was added and the resulting mixture was stirred for 10 minutes. o-Iodobenzoic acid chloride ($168 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.03 \mathrm{eq}$.) was dissolved in anhydrous THF (1 mL) and precooled to $0{ }^{\circ} \mathrm{C}$ before addition of the above mixture. After complete addition, the reaction was stirred for an additional 30 minutes. The amine hydrochloride was filtered off and washed with THF. The resulting solution was concentrated under reduced pressure and the crude product was
purified by flash chromatography (eluent EtOAc/cylohexane, 3:1) to give 2-iodo- N ($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ 'tetra- O-acetyl- β-D-galactopyranosyl)-benzamide ($315 \mathrm{mg}, 90.2 \%$). (For a similar procedure, see: ${ }^{9}$).
colourless crystals; Smp.: $181.5-185{ }^{\circ} \mathrm{C} ; R_{f}=0.47$ (EtOAc/cyclohexane, 2:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=9.38$ (d, $1 \mathrm{H},{ }^{3} J_{\mathrm{N}-\mathrm{H}, \mathrm{H}-1}=9.4 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}$), 7.88 (dd, 1 H , $\left.{ }^{4} J_{4,6}=1.3 \mathrm{~Hz},{ }^{3} J_{5,6}=7.9 \mathrm{~Hz}, \mathrm{H}-6\right), 7.44\left(\mathrm{dt}, 1 \mathrm{H},{ }^{4} J_{3,5}=1.6 \mathrm{~Hz},{ }^{3} J_{4,5}=7.5 \mathrm{~Hz}, \mathrm{H}-5\right), 7.22(\mathrm{dd}$, $\left.1 \mathrm{H},{ }^{3} J_{3,4}=7.6 \mathrm{~Hz},{ }^{4} J_{3,5}=1.6 \mathrm{~Hz}, \mathrm{H}-3\right), 7.18\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{3,4}=7.6 \mathrm{~Hz},{ }^{3} J_{4,5}=7.5 \mathrm{~Hz}, \mathrm{H}-4\right), 5.52$ (pseudo-t, $1 \mathrm{H},{ }^{3} J_{\mathrm{N}-\mathrm{H}, \mathrm{H}-1}=9.4 \mathrm{~Hz}, \mathrm{H}-1^{\text {gal }}$), 5.33 (dd, $1 \mathrm{H},{ }^{3} J_{2,3}=9.9 \mathrm{~Hz},{ }^{3} J_{3,4}=3.6 \mathrm{~Hz}, \mathrm{H}-3^{\text {gal }}$), $5.30\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{3,4}=3.6 \mathrm{~Hz},{ }^{3} J_{4,5}=0.9 \mathrm{~Hz}, \mathrm{H}-4^{\text {gal }}\right.$), 5.13 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.4 \mathrm{~Hz},{ }^{3} J_{2,3}$ $\left.=9.9 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{gal}}\right), 4.39\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{4,5}=0.9 \mathrm{~Hz},{ }^{3} J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{gal}}\right), 4.05\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{5,6}\right.$ $\left.=6.5 \mathrm{~Hz}, \mathrm{H}-6^{\mathrm{gal}}\right), 2.10,2.03,2.01,1.92\left(4 \mathrm{x} \mathrm{s}, 4 \mathrm{x} 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=171.4,170.5,170.1,169.9(4 \mathrm{xCOC}=\mathrm{O}), 169.1\left(\mathrm{C}=\mathrm{O}^{\text {amide }}\right), 140.7(\mathrm{C}-2), 140.5(\mathrm{C}-3), 131.9$ (C-4), 128.2 (C-5), 127.7 (C-6), 92.2 (C-2), 78.9 (C-1 $\left.1^{\text {gal }}\right), 72.7,71.1,68.5,67.3$ (C-2 ${ }^{\text {gal }}, \mathrm{C}-$ $\left.3^{\text {gal }}, \mathrm{C}-4^{\text {gal }}, \mathrm{C}-5^{\mathrm{gal}}\right), 61.2\left(\mathrm{C}-6^{\mathrm{gal}}\right), 21.3,20.8,20.7,20.5(4 \mathrm{x} \mathrm{AcCH} 3)$. ESI-MS: $m / z(\%)=577.9$ $[\mathrm{M}+\mathrm{H}]^{+}(100), 599.9[\mathrm{M}+\mathrm{Na}]^{+}(87)$.

$$
[\alpha]_{D}^{28}=+24.5\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) .
$$

23

2-Iodo- N-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)-benzamide ($121 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in anhydrous DMF (2.9 mL) together with bis-triphenylphosphinepalladium(II)dichloride ($5.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 3.8 \mathrm{~mol} \%$) and copper(I)iodide (3.0 mg , $16 \mu \mathrm{~mol}, 7.2 \mathrm{~mol} \%)$. To this solution anhydrous $\mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 1 h at room temperature. Then, $2-C-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra- O -benzyl- α-D-mannopyranosyl)-acetylene ($136 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.2 \mathrm{eq}$.) dissolved in anhydrous DMF (2.9 mL) was added and the solution was warmed to $60{ }^{\circ} \mathrm{C}$ and stirred at this
temperature overnight. The resulting dark brown mixture was coevaporated twice with toluene (3 mL). The crude product was redissolved in CHCl_{3} washed with water (3 x 10 mL), dried over anhydous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography (eluent cylohexane/EtOAc, 2:1) to give N-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)-2-ethynyl- C-(2', $3^{\prime ’,} 4^{\prime \prime}, 6$ '"-tetra- O-benzyl- α-D-mannopyranosyl)-benzamide ($199 \mathrm{mg}, 76 \%$). (For a similar procedure, see: ${ }^{10}$).
slightly yellow oil; $\mathrm{R}_{\mathrm{f}}=0.51\left(\right.$ EtOAc/cyclohexane, 3:2). ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}(400 \mathrm{MHz}$, CDCl_{3}) $\delta=7.44-7.11$ (m, $24 \mathrm{H}, \mathrm{H}-\mathrm{Ph}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$), 7.17-7.19 (m, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}$), 5.37 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.2 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{gal}}$), 5.31 (dd, $1 \mathrm{H},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz},{ }^{3} J_{4.5}=0.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{gal}}$), 5.18 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.2 \mathrm{~Hz},{ }^{3} J_{2,3}=10.3 \mathrm{~Hz}, \mathrm{H}-2^{\text {gal }}$), $5.15\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=2.1 \mathrm{~Hz}\right.$, $\mathrm{H}-1^{\mathrm{man}}$), $5.09\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=10.3 \mathrm{~Hz},{ }^{3} J_{3,4}=3.4 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{gal}}\right), 4.92\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=10.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.81\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77-4.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; 4.68\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=\right.$ $12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=10.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.26$ (dd, $1 \mathrm{H},{ }^{3} J_{3,4}=9.3 \mathrm{~Hz},{ }^{3} J_{2,3}=2.9 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{man}}$), 4.11 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{3,4}=9.3 \mathrm{~Hz},{ }^{3} J_{4,5}=9.6$ $\mathrm{Hz}, \mathrm{H}-4^{\mathrm{man}}$), 4.05-4.01 (m, $4 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\mathrm{gal}}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}, \mathrm{H}-5^{\mathrm{man}}, \mathrm{H}-2^{\mathrm{man}}$), 3.88 (dd, $1 \mathrm{H},{ }^{3} J_{5,6}=4.4 \mathrm{~Hz}$, ${ }^{3} J=10.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{man}}$), 3.78 (dd, $1 \mathrm{H},{ }^{3} J_{5,6}=1.3 \mathrm{~Hz},{ }^{2} J=10.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{man}}$), $3.69\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{4,5}\right.$ $\left.=0.8 \mathrm{~Hz}, \mathrm{H}-5^{\mathrm{gal}}\right), 2.06,2.01,2.00,1.98\left(4 \mathrm{x} \mathrm{s}, 4 \mathrm{x} 3 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=171.3,170.4,170.1,169.8(4 \mathrm{x} \mathrm{AcC=O}), 169.6\left(\mathrm{C}=\mathrm{O}^{\text {amide }}\right)$, 138.7, 138.6, 138.5, $138.2\left(4 \mathrm{x} \mathrm{C}^{\mathrm{Ph}}\right), 134.2(\mathrm{C}-1), 129.1(\mathrm{C}-2), 128.4,128.3,128.2,128.1,128.0,127.8,127.7$, 127.6, 127.5, 127.4 (C-3, C-4, C-5, C-6, CH-Ph), 90.3 ($\mathrm{C}^{\text {alkyne }}-\mathrm{man}$), 83.2 ($\mathrm{C}^{\text {alkyne }}-$ arom), 80.6 $\left(\mathrm{C}-3^{\mathrm{man}}\right), 79.2\left(\mathrm{C}-\mathrm{g}^{\mathrm{gal}}\right), 77.4\left(\mathrm{C}-5^{\mathrm{man}}\right), 75.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 75.4\left(\mathrm{C}-2^{\mathrm{man}}\right), 75.1\left(\mathrm{C}-4^{\mathrm{man}}\right), 73.6$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.5\left(\mathrm{C}-5^{\text {gal }}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.1\left(\mathrm{C}-3^{\text {gal }}\right), 69.7\left(\mathrm{C}-6^{\mathrm{man}}\right), 68.7(\mathrm{C}-$ $\left.2^{\mathrm{gal}}\right), 67.4\left(\mathrm{C}-4^{\mathrm{gal}}\right), 67.0\left(\mathrm{C}-1^{\mathrm{man}}\right), 61.2\left(\mathrm{C}-6^{\mathrm{gal}}\right), 20.7,20.6,20.5,20.4\left(4 \mathrm{x} \mathrm{COCH}_{3}\right)$. FAB-MS: $m / z(\%)=998.1[M]^{+}(100)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{57} \mathrm{H}_{59} \mathrm{NO}_{15}+\mathrm{H}\right]: m / z=998.3957$, found: 998.3965. $[\alpha]_{D}^{22}=+15.7\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

17

2-Iodo- N-($2^{\prime}, 3^{\prime}, 4$ ', 6'-tetra- O-acetyl- β-D-galactopyranosyl)-benzamide ($96 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in anhydrous DMF (2.9 mL) together with bis-triphenylphosphinepalladium(II)dichloride ($4.7 \mathrm{mg}, 8.0 \mu \mathrm{~mol}, 3.8 \mathrm{~mol} \%$) and copper(I)iodide (2.3 mg , $16.0 \mu \mathrm{~mol}, 7.2 \mathrm{~mol} \%)$. To this solution, anhydrous $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ were added dropwise and the reaction mixture was stirred for 1 h at room temperature. Then, $2-C-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra- O -benzyl- α-L-fucopyranosyl)-acetylene ($89 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.2 \mathrm{eq}$.) dissolved in anhydrous DMF (2.9 mL) was added and the solution was warmed to $80{ }^{\circ} \mathrm{C}$ and stirred at this temperature overnight. The resulting dark brown mixture was coevaporated twice with toluene (3 mL). The crude product was redissolved in CHCl_{3} washed with water (3 x 10 mL), dried over anhydous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography (eluent cylohexane/EtOAc, 2:1) to give N-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)-2-ethynyl- C-(2', $3^{\prime \prime}, 4$ '"-tri- O-benzyl- α-L-fucopyranosyl)-benzamide $(90 \mathrm{mg}, 60 \%)$. (For a similar procedure, see: ${ }^{10}$).
colourless oil; $\mathrm{R}_{\mathrm{f}}=0.56$ (EtOAc/cyclohexane 3:2). ${ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , CDCl_{3}) $\delta=7.95-7.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H} 6), 7.49-7.28(\mathrm{~m}, 17 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{CH}-\mathrm{Ph}), 5.47$ (d, $1 \mathrm{H},{ }^{3} J_{1,2}=8.9 \mathrm{~Hz}, \mathrm{H}-{ }^{\text {gal }}$), $5.44\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3,4}=3.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{gal}}\right.$), 5.25 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=8.9$ $\left.\mathrm{Hz},{ }^{3} J_{2,3}=9.9 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{gal}}\right), 5.21\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=5.7 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{fuc}}\right), 5.09\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=9.9 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3,4}=3.8 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{Gal}}\right), 4.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.83-4.81 (m, 3 H, CH 2 Ph), $4.66\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.22-4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\text {fuc }}\right.$, H-5 $\left.5^{\text {fuc }}\right)$, 4.12-4.06 (m, $\left.2 \mathrm{H}, \mathrm{H}-6^{\mathrm{gal}}\right), 4.04-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}, \mathrm{H}-3^{\text {fuc }}\right), 3.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{4,5}=1.9\right.$ $\left.\mathrm{Hz}, \mathrm{H}-4^{\mathrm{fuc}}\right), 1.21\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{5, \mathrm{CH} 3}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\mathrm{fuc}}\right), 2.06,2.02,1.98,1.94(4 \mathrm{x} \mathrm{s}, 4 \mathrm{x} 3 \mathrm{H}$, COCH_{3}). ${ }^{13} \mathrm{C}-\mathrm{NMR}, \operatorname{HSQC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.6,170.3,170.2,169.7(4 \mathrm{x} \mathrm{AcC=O})$, $166.2\left(\mathrm{C}=\mathrm{O}^{\text {amide }}\right), 138.9,138.7,138.6$ ($3 \mathrm{x} \mathrm{C}^{\mathrm{C}} \mathrm{1}^{\mathrm{Ph}}$), 134.5 (C-1), 131.1 (C-2), 129.4, 128.8, $128.4,128.3,128.2,127.8,127.6,127.5,127.4$ (C-3, C-4, C-5, C-6, CH-Ph), 92.9 (C ${ }^{\text {alkyne }}$ fuc), 85.3 ($\mathrm{C}^{\text {alkyne }}$-arom), $80.5\left(\mathrm{C}-3^{\text {fuc }}\right), 79.4\left(\mathrm{C}-1^{\mathrm{gal}}\right), 77.6\left(\mathrm{C}-4^{\text {fuc }}\right), 75.7\left(\mathrm{C}-2^{\text {fuc }}\right), 75.2$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.9\left(\mathrm{C}-5^{\text {gal }}\right), 71.4\left(\mathrm{C}-3^{\text {gal }}\right), 70.5\left(\mathrm{C}-5^{\text {fuc }}\right), 68.5\left(\mathrm{C}-2^{\text {gal }}\right)$, $67.9\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 67.3\left(\mathrm{C}-4^{\mathrm{gal}}\right), 61.4\left(\mathrm{C}-6^{\mathrm{gal}}\right), 20.6,20.6,20.5,20.5(4 \mathrm{x} \mathrm{COCH} 3), 17.2\left(\mathrm{CH}_{3}{ }^{\text {fuc }}\right)$. FAB-MS: $m / z(\%)=998.1[M]^{+}(100)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{53} \mathrm{NO}_{14}+\mathrm{H}\right]: m / z=$ 892.3539, found: 892.3532, calcd for [$\left.\mathrm{C}_{50} \mathrm{H}_{53} \mathrm{NO}_{14}+\mathrm{Na}\right]: m / z=914.3358$, found: 914.3351. $[\alpha]_{D}^{22}=-76.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

N-(2', $3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)-2-ethynyl- C-(2', $3^{\prime}{ }^{\prime}, 4^{\prime \prime}, 6{ }^{\prime \prime}$-tetra- O -benzyl- α-D-mannopyranosyl)-benzamide ($199 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(49.4 \mathrm{mg}, 0.57$ mmol, 3 eq.) were suspended in acetonitrile (19.9 mL) under an argon atmosphere. At room temperature iodine ($144 \mathrm{mg}, 0.57 \mathrm{mmol}, 3 \mathrm{eq}$.) was added and the resulting brown mixture was stirred overnight. The reaction was diluted with ether and washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution (2x 15 mL). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After flash chromatography (eluent cylohexane/EtOAc, $\quad 2: 1) \quad$ (E)-3-((2', 3 '", 4 '", $6^{\prime \prime}$-tetra- O-benzyl- α-D-mannopyranosyl)iodomethylene)- N -($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)isoindolinone was obtained ($202 \mathrm{mg}, 94 \%$). (For a similar procedure, see: ${ }^{11}$).
yellow oil; $\mathrm{R}_{\mathrm{f}}=0.58\left(\mathrm{EtOAc} /\right.$ cyclohexane 3:2). ${ }^{1} \mathrm{H}$ NMR, COSY, NOESY $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.79\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3,4}=8.1 \mathrm{~Hz}, \mathrm{H}-3\right), 7.99,\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{5,6}=7.7 \mathrm{~Hz}, \mathrm{H}-6\right), 7.67$ (pseudo-t, $1 \mathrm{H},{ }^{3} J_{4,3}=8.05 \mathrm{~Hz},{ }^{3} J_{4,5}=7.4 \mathrm{~Hz}, \mathrm{H}-4$), 7.58 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{4,5}=7.4 \mathrm{~Hz},{ }^{3} J_{5,6}=7.7 \mathrm{~Hz}$, H-5), 7.36-7.09 (m, 20H, CH-Ph), 5.34-5.28 (m, 2H, H-2 $\left.{ }^{\text {gal }}, \mathrm{H}-4^{\text {gal }}\right), 5.27\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=8.5\right.$ $\left.\mathrm{Hz}, \mathrm{H}-\mathrm{1}^{\mathrm{gal}}\right), 5.09\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=9.1 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{man}}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=9.4 \mathrm{~Hz},{ }^{3} J_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-\right.$ $3^{\text {gal }}$), 4.66-4.58 (m, 4H, CH 2 Ph), $4.54\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45-4.32(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}-5^{\text {man }}\right), 4.12-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}^{\text {gal }}, \mathrm{H}-6 \mathrm{a}^{\text {man }}\right), 4.05-3.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\text {man }}, \mathrm{H}-3^{\text {man }}, \mathrm{H}-\right.$ $6 \mathrm{~b}^{\text {man }}$), $3.97\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H} 6 \mathrm{~b}, 5}=6.8 \mathrm{~Hz},{ }^{2} J=10.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\text {gal }}\right), 3.83\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz},{ }^{3} J_{4,5}\right.$ $\left.=1.8 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{man}}\right), 3.57\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-5^{\text {gal }}\right), 2.14,1.99,1.91,1.58(4 \mathrm{x} \mathrm{s}, 4 \mathrm{x} 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \operatorname{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.4,170.3,169.9,169.8(4 \mathrm{x}$ $\mathrm{AcC}=\mathrm{O}$), 155.9 (C-1), 150.2 (C-3), 138.4, 138.3, 138.2, 138.0 ($4 \mathrm{x} \mathrm{C-1}{ }^{\mathrm{Ph}}$), 135.7 (C-3a), 132.5 (C-5), 131.5 (C-7a), 131.2 (C-6), 128.5, 128.4, 128.4, 128.2, 127.9, 127.9, 127.8, 127.8, 127.7, 127.6, 127.4 (CH-Ph), 124.9 (C-4), 124.7 (C-7), 85.7 (C-I), 81.7 (C-1 gal), 77.1 (C$\left.2^{\text {man }}\right), 75.0\left(\mathrm{C}-5^{\mathrm{man}}\right), 74.7\left(\mathrm{C}-4^{\mathrm{man}}\right), 73.1\left(\mathrm{C}-3^{\mathrm{man}}\right), 72.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4\left(\mathrm{C}-5^{\mathrm{gal}}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$,
$71.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.6\left(\mathrm{C}-3^{\mathrm{gal}}\right), 69.9\left(\mathrm{C}-2^{\mathrm{gal}}\right), 68.8\left(\mathrm{C}-6^{\mathrm{man}}\right), 68.4\left(\mathrm{C}-1^{\mathrm{man}}\right), 67.6\left(\mathrm{C}-4^{\mathrm{gal}}\right), 61.9$ $\left(\mathrm{C}-6^{\mathrm{gal}}\right), 20.9,20.8,20.7,20.4(4 \mathrm{x} \mathrm{COCH} 3)$. FAB-MS: $m / z(\%)=1124.3[\mathrm{M}]^{+}(100)$. ESIHRMS: calcd for $\left[\mathrm{C}_{57} \mathrm{H}_{58} \mathrm{INO}_{15}+\mathrm{H}\right]: m / z=892.3539$, found: 892.3532, calcd for $\left[\mathrm{C}_{57} \mathrm{H}_{58} \mathrm{INO}_{15}+\mathrm{Na}\right]: m / z=914.3358$, found: 914.3351.

$$
[\alpha]_{D}^{22}=+32.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) .
$$

22

24
 L-fucopyranosyl)-benzamide ($78 \mathrm{mg}, 0.087 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(24 \mathrm{mg}, 0.26 \mathrm{mmol}, 3 \mathrm{eq}$.) were suspended in acetonitrile (10.8 mL) under an argon atmosphere. At room temperature, iodine ($70 \mathrm{mg}, 0.26 \mathrm{mmol}, 3 \mathrm{eq}$.) was added and the brown suspension was stirred overnight. The next day the reaction was diluted with ether and washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution (2 x 8 mL). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting brown oil was purified by flash chromatography (eluent: cylohexane/EtOAc, 3:1) to obtain (E)-3-((2', $3^{\prime \prime}, 4$ ''-tri- O-benzyl- α-L-fucopyranosyl)iodomethylene)- N -($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ 'tetra- O-acetyl- β-D-galactopyranosyl)isoindolinone ($53 \mathrm{mg}, 60 \%$).(For a similar procedure, see: ${ }^{11}$).
yellow oil; $\mathrm{R}_{\mathrm{f}}=0.59\left(\mathrm{EtOAc} /\right.$ cyclohexane 3:2). ${ }^{1} \mathrm{H}$ NMR, COSY, NOESY $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.78\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3,4}=7.9 \mathrm{~Hz}, \mathrm{H}-3\right), 7.95\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{5,6}=7.7 \mathrm{~Hz}, \mathrm{H}-6\right), 7.66$ (pseudo-t, $1 \mathrm{H},{ }^{3} J_{3,4}=7.9 \mathrm{~Hz},{ }^{3} J_{4,5}=7.5 \mathrm{~Hz}, \mathrm{H}-4$), 7.56 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{4,5}=7.5 \mathrm{~Hz},{ }^{3} J_{5,6}=7.7 \mathrm{~Hz}, \mathrm{H}-5$), 7.41-7.22 (m, 12H, CH-Ph), 7.13-7.06 (m, 3H, CH-Ph), 5.22 (s broad, $1 \mathrm{H}, \mathrm{H}-1^{\text {fuc }}$), 5.19 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.14 \mathrm{~Hz},{ }^{3} J_{2,3}=9.8 \mathrm{~Hz}, \mathrm{H}-2^{\text {gal }}$), $5.06\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=9.14 \mathrm{~Hz}, \mathrm{H}^{\text {gal }}\right), 5.04$ $\left(\mathrm{d}, 1 \mathrm{H},{ }^{3} J_{3,4}=3.26 \mathrm{~Hz}, \mathrm{H}-4^{\text {gal }}\right.$), $4.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=9.83\right.$ $\left.\mathrm{Hz},{ }^{3} J_{3,4}=3.26 \mathrm{~Hz}, \mathrm{H}-3^{\text {gal }}\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.8 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53-4.47\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{XCH}_{2} \mathrm{Bn}, \mathrm{H}-5^{\mathrm{fuc}}\right.$), 4.10, (dd,
$1 \mathrm{H},{ }^{3} J_{3,4}=2.7 \mathrm{~Hz},{ }^{3} J_{4,5}=5.7 \mathrm{~Hz}, \mathrm{H}-4^{\text {fuc }}$), 4.06-3.98 (m, 2H, H-6 ${ }^{\text {gal }}$), 3.95 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{2,3}$ $=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=2.7 \mathrm{~Hz}, \mathrm{H}-3^{\text {gal }}$), 3.87-3.83 (m, $1 \mathrm{H}, \mathrm{H}-2^{\text {fuc }}$), 2.94 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{5,6}=6.55$ $\left.\mathrm{Hz},{ }^{3} J_{5,6}=6.25 \mathrm{~Hz}, \mathrm{H}-5^{\text {gal }}\right), 2.12,2.06,1.96,1.77\left(4 \mathrm{XCCH}_{3}\right), 1.64\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{5, \mathrm{CH} 3}=6.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{3}{ }^{\text {fuc }}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.5,170.3,169.9,169.5$ (4 x $\mathrm{AcC}=\mathrm{O}$), 155.5 ($\mathrm{C}-1$), 146.4 (C-3), 139.2, 138.6, 137.4 ($3 \times \mathrm{C}-1^{\mathrm{Ph}}$), 135.6 (C-3a), 132.5 (C-5), 130.89 (C-7a), 130.89 (C-6), 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.8, 127.7, 127.5, $127.0(\mathrm{CH}-\mathrm{Ph}), 124.8(\mathrm{C}-4), 124.5(\mathrm{C}-7), 86.4\left(\mathrm{C}-1^{\mathrm{gal}}\right), 81.3(\mathrm{C}-\mathrm{I}), 78.5\left(\mathrm{C}-2^{\mathrm{fuc}}\right), 75.9\left(\mathrm{C}-3^{\mathrm{fuc}}\right)$, $74.7\left(\mathrm{C}-4^{\text {fuc }}\right), 73.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.7\left(\mathrm{C}-5^{\mathrm{gal}}\right), 71.7$ (C-5 $\left.5^{\text {fuc }}\right), 71.1\left(\mathrm{C}-3^{\mathrm{gal}}\right), 70.4\left(\mathrm{C}-2^{\text {gal }}\right), 67.6\left(\mathrm{C}-4^{\mathrm{gal}}\right), 63.9\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 61.9\left(\mathrm{C}-6^{\text {gal }}\right), 20.9,20.8,20.7$, $20.6\left(4 \mathrm{x} \mathrm{COCH}_{3}\right)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{NO}_{14}+\mathrm{H}\right]: m / z=1018.2505$, found: 1018.2493, calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{INO}_{14}+\mathrm{Na}\right]: m / z=1040.2332$, found: 1040.2322.

$$
[\alpha]_{D}^{22}=+114.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)
$$

Acetylene 17 ($44.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in N, N-dimethyl acetamide (1.5 mL). After successive addition of azide 27 ($108 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ eq.) and $\mathrm{Cp}{ }^{*} \operatorname{RuCl}(\mathrm{COD})(2.3 \mathrm{mg}$, $0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%$) the reaction mixture was placed in the microwave for 30 min . at $100^{\circ} \mathrm{C}$ and 120 W . The dark brown solution was diluted with EtOAc and washed with water ($3 \times 2 \mathrm{~mL}$). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After flash chromatography, 1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ 'tetra- O-pivaloyl- β-D-galactopyranosyl)-5-(2', 3 '", $\mathbf{4}^{\prime \prime}$-tri- O-benzyl- α-L-fucopyranosyl)- $1 H$-1,2,3-triazole ($58 \mathrm{mg}, 60 \%$) could be obtained (eluent: cyclohexane/EtOAc, 6:1). (For a similar procedure, see: ${ }^{12}$).

Greenish-yellow resin; Smp.: 83-85.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.54$ (EtOAc/cyclohexane 1:1). ${ }^{1} \mathrm{H}$ NMR, COSY, NOESY $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{H} \text {-triazole,C-1-Fuc }}=0.4 \mathrm{~Hz}, \mathrm{H}^{\text {triazole }}\right)$, 7.37-7.27 (m, 13H, CH-Ph), 7.22-7.19 (m, 2H, CH-Ph), 6.38 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.6 \mathrm{~Hz}$, $\left.{ }^{3} J_{2,3}=10.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{gal}}\right), 6.10\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=9.6 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{gal}}\right), 5.52\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{3,4}=3.0 \mathrm{~Hz},{ }^{3} J_{4,5}=\right.$ $\left.0.6 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{gal}}\right), 5.37\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=5.9 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{fuc}}\right), 5.20\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=10.1 \mathrm{~Hz},{ }^{3} J_{3,4}=3.0\right.$
$\left.\mathrm{Hz}, \mathrm{H}-3^{\mathrm{gal}}\right), 4.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.86\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.80(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{2} J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.74\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.4 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.38\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{1,2}=6.1 \mathrm{~Hz},{ }^{3} J_{2,3}=9.8 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.2^{\text {fuc }}\right), 4.16-4.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}\right), 4.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{5,6}=7.6 \mathrm{~Hz}, \mathrm{H}-6^{\mathrm{gal}}\right), 3.91\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=9.8\right.$ $\left.\mathrm{Hz},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz}, \mathrm{H}-3^{\mathrm{fuc}}\right), 3.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3,4}=2.2 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{fuc}}\right), 3.21\left(\mathrm{q}, 1 \mathrm{H},{ }^{3} J_{5, \mathrm{CH} 3}=6.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.5^{\text {fuc }}\right), 1.29,1.16\left(2 \mathrm{x} \mathrm{s}, 2 \mathrm{x} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.14\left(\mathrm{~m}, 12 \mathrm{H}, 1 \mathrm{x} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CH}_{3}{ }^{\text {fuc }}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=177.8,177.7,177.0,175.3$ ($4 \mathrm{x} \operatorname{PivC}=\mathrm{O}$), 138.3, 138.2, 137.8 ($3 \mathrm{x} \mathrm{C}^{\mathrm{Ph}}$), 135.6 (C-4), 133.5 (C-5), 128.7, 128.6, 128.5, 128.4, 128.0, $127.8,127.7,127.7\left(\mathrm{CH}^{\mathrm{Ph}}\right), 83.9\left(\mathrm{C}-1^{\mathrm{gal}}\right), 78.8\left(\mathrm{C}-3^{\text {fuc }}\right), 76.5\left(\mathrm{C}-4^{\mathrm{fuc}}\right), 75.5\left(\mathrm{C}-2^{\mathrm{fuc}}\right), 74.9$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8\left(\mathrm{C}-5^{\mathrm{gal}}\right), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.4\left(\mathrm{C}-3^{\mathrm{gal}}\right), 69.9\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 67.4\left(\mathrm{C}-1^{\mathrm{fuc}}\right)$, $66.8\left(\mathrm{C}-4^{\mathrm{gal}}\right), 66.0\left(\mathrm{C}-2^{\mathrm{gal}}\right), 61.1\left(\mathrm{C}-6^{\mathrm{gal}}\right), 39.3,38.9,38.8,38.6\left(4 \mathrm{x} \mathrm{Cq}^{\mathrm{Piv}}\right), 27.3,27.2,27.2$, $26.8\left(12 \mathrm{x} \mathrm{CH}_{3}{ }^{\text {Piv }}\right), 16.9\left(\mathrm{CH}_{3}{ }^{\text {fuc }}\right)$. ESI-MS: $m / z(\%)=984.4[\mathrm{M}+\mathrm{H}](100), 1006.4[\mathrm{M}+\mathrm{Na}](7)$. ESI-HRMS: calcd for $\left[\mathrm{C}_{55} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{O}_{13}+\mathrm{Na}\right]: m / z=1006.5041$, found: 1006.5051.
$[\alpha]_{D}^{22}=-29.9\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

Acetylene $\mathbf{1 7}(44.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in N, N-dimethyl acetamide (1.5 mL). After successive addition of azide $26(74.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 2 \mathrm{eq}$.$) and \mathrm{Cp}{ }^{*} \mathrm{RuCl}(\mathrm{COD})(2.3 \mathrm{mg}$, $0.006 \mathrm{mmol}, 6 \mathrm{~mol} \%$) the reaction mixture was placed in the microwave for 30 min . at $100^{\circ} \mathrm{C}$ and 120 W . The dark brown solution was diluted with EtOAc and washed with water (3 x 2 $\mathrm{mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After flash chromatography, 1-($2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra- O-acetyl- β-D-galactopyranosyl)-5-(2', $3^{\prime \prime}, 4^{\prime \prime}$-tri-$O$-benzyl- α-L-fucopyranosyl)- 1 H -1,2,3-triazole ($62 \mathrm{mg}, 76 \%$) could be obtained (eluent: cyclohexane/EtOAc, 6:1-3:1). (For a similar procedure, see: ${ }^{12}$).
colourless resin; $\mathrm{R}_{\mathrm{f}}=0.54$ (EtOAc/cyclohexane 1:1). ${ }^{1} \mathrm{H}$ NMR, H-H COSY, NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.85$ (s broad, $1 \mathrm{H}, \mathrm{H}-4$), $7.36-7.28$ ($\mathrm{m}, 13 \mathrm{H}, \mathrm{CH}-\mathrm{Ph}$), 7.23-7.20 (m, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ph}$), 6.30 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.6 \mathrm{~Hz},{ }^{3} J_{2,3}=9.8 \mathrm{~Hz}, \mathrm{H}-2^{\text {gal }}$), $6.04\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=9.6\right.$ $\left.\mathrm{Hz}, \mathrm{H}-\mathrm{I}^{\mathrm{gal}}\right), 5.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{3,4}=3.2 \mathrm{~Hz}, \mathrm{H}-4^{\mathrm{gal}}\right), 5.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=5.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{r}^{\mathrm{fuc}}\right), 5.15(\mathrm{dd}$,
$1 \mathrm{H},{ }^{3} J_{2,3}=9.8 \mathrm{~Hz},{ }^{3} J_{3,4}=3.2 \mathrm{~Hz}, \mathrm{H}-3^{\text {gal }}$), $4.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.80 (s broad, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.60(\mathrm{~d}$, $\left.1 \mathrm{H},{ }^{2} J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.32\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{1,2}=5.2 \mathrm{~Hz},{ }^{3} J_{2,3}=8.2 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{fuc}}\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{5,6 \mathrm{a}}=5.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\mathrm{gal}}\right), 4.07-4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\mathrm{gal}}\right), 4.01\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=10.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{5,6 \mathrm{~b}}=6.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}\right), 3.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{2,3}=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\text {fuc }}\right), 3.67\left(\mathrm{~s}\right.$ broad, $\left.1 \mathrm{H}, \mathrm{H}-4^{\text {fuc }}\right), 3.32(\mathrm{~s}$ broad, $\left.1 \mathrm{H}, \mathrm{H}-5^{\text {fuc }}\right), 2.16,2.01,1.98,1.83\left(4 \mathrm{X} \mathrm{COCH}_{3}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{5, \mathrm{CH} 3}=5.8 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\text {fuc }}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.4,170.3,170.3,168.2$ ($4 \mathrm{x} \mathrm{AcC=O}$), 138.2, 138.2, 137.7 (3x C-1 ${ }^{\mathrm{Ph}}$), 135.5 (C-4), 134.1 (C-5), 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8 (CH-Ph), $84.2\left(\mathrm{C}-1^{\mathrm{gal}}\right), 77.9\left(\mathrm{C}-3^{\mathrm{fuc}}\right)$, 76.1 (C-4 $\left.{ }^{\text {fuc }}\right), 75.5\left(\mathrm{C}-2^{\mathrm{fuc}}\right), 74.6$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.7\left(\mathrm{C}-5^{\mathrm{gal}}\right), 73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 72.2\left(\mathrm{C}-5^{\mathrm{gal}}\right), 70.2\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 67.1\left(\mathrm{C}-4^{\mathrm{gal}}\right)$, $66.7\left(\mathrm{C}-\mathrm{f}^{\mathrm{fuc}}\right), 66.7\left(\mathrm{C}-2^{\mathrm{gal}}\right), 61.3\left(\mathrm{C}-6^{\mathrm{gal}}\right), 20.8,20.7,20.7,20.6\left(\mathrm{COCH}_{3}\right), 16.3\left(\mathrm{CH}_{3}{ }^{\text {fuc }}\right)$. ESIMS: $m / z(\%)=816.3[\mathrm{M}+\mathrm{H}](100), 838.3[\mathrm{M}+\mathrm{Na}]$ (17). ESI-HRMS: calcd for [$\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{13}+\mathrm{Na}$]: $m / z=838.3163$, found: 838.3156. $[\alpha]_{D}^{22}=-30.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

Acetylene 17 ($58.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in N, N-dimethyl formamide (2 mL). After successive addition of azide 26 ($51.4 \mathrm{mg}, 0.13 \mathrm{mmol}$), copper(I)iodide ($3.9 \mathrm{mg}, 0.01 \mathrm{mmol}$) and N, N-diisopropyl-ethylamine $(45.0 \mu \mathrm{~L})$ the reaction mixture was placed in the microwave for 50 min . at $80^{\circ} \mathrm{C}$ and 120 W . The brown solution was diluted with EtOAc and washed with water ($3 \times 2 \mathrm{~mL}$). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After flash chromatography, $1-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra- O-acetyl- β-D-galactopyranosyl)-4($2^{\prime \prime}, 3$ '',4''-tri- O-benzyl- α-L-fucopyranosyl)- $1 H$-1,2,3-triazole ($80.1 \mathrm{mg}, 75 \%$) could be obtained (eluent: cyclohexane/EtOAc, 6:1-3:1). (For a similar procedure, see Ref. ${ }^{13}$).
colourless resin; $\mathrm{R}_{\mathrm{f}}=0.54$ (EtOAc/cyclohexane 1:1). ${ }^{1} \mathrm{H}$ NMR, H-H COSY, NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.90$ (s broad, $1 \mathrm{H}, \mathrm{H}-4$), $7.38-7.25$ (m, 13H, CH-Ph), 7.16-7.14 (m, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ph}$), $5.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=9.2 \mathrm{~Hz}, \mathrm{H}-1^{\text {gal }}\right.$), 5.56 (pseudo-t, $1 \mathrm{H},{ }^{3} J_{1,2}=9.6 \mathrm{~Hz},{ }^{3} J_{2,3}=10.1$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\text {gal }}\right), 5.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\text {gal }}\right), 5.31\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{1,2}=4.3 \mathrm{~Hz}, \mathrm{H}-1^{\mathrm{fuc}}\right), 5.24\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{2,3}=10.1\right.$ $\mathrm{Hz},{ }^{3} J_{3,4}=3.3 \mathrm{~Hz}, \mathrm{H}-3^{\text {gal }}$), $4.77\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.74 (s broad, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.61 $\left(\mathrm{d}, 1 \mathrm{H},{ }^{2} J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.52\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.8 \mathrm{~Hz}\right.$,
$\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.24-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\text {fuc }}, \mathrm{H}-5^{\text {gal }}\right), 4.18\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{a}}=6.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}^{\text {gal }}\right.$), $4.11\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J_{5,6 \mathrm{~b}}=6.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\mathrm{gal}}\right), 4.08-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\text {fuc }}, \mathrm{H}-5^{\text {fuc }}\right), 3.84$ (pseudo-t, $\left.1 \mathrm{H},{ }^{3} J_{4,5}=2.9 \mathrm{~Hz}, \mathrm{H}-4^{\text {fuc }}\right), 2.19,2.04,2.01,1.82\left(4 \mathrm{xCCH}_{3}\right), 1.30\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{5, \mathrm{CH} 3}=\right.$ $\left.5.5 \mathrm{~Hz}, \mathrm{CH}_{3}{ }^{\text {fuc }}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.5,170.1,169.9,169.1$ ($4 \mathrm{x} \mathrm{AcC}=\mathrm{O}$), $146.5(\mathrm{C}-5), 138.8,138.6,138.3\left(3 \mathrm{x} \mathrm{C-1}{ }^{\mathrm{Ph}}\right), 128.5,128.4,128.2,128.0,127.8$, 127.7, 127.6 ($\mathrm{CH}-\mathrm{Ph}$) 122.1 (C-4), $86.3\left(\mathrm{C}-1^{\mathrm{gal}}\right), 77.6$ (C-3 $\left.{ }^{\text {fuc }}\right), 76.6\left(\mathrm{C}-2^{\mathrm{fuc}}\right), 75.8\left(\mathrm{C}-4^{\mathrm{fuc}}\right)$, $73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3\left(\mathrm{C}-5^{\text {gal }}\right), 73.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.9\left(\mathrm{C}-3^{\text {gal }}\right), 70.2\left(\mathrm{C}-5^{\mathrm{fuc}}\right), 67.9(\mathrm{C}-$ $\left.2^{\text {gal }}\right), 67.2\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 66.9\left(\mathrm{C}-4^{\mathrm{gal}}\right), 61.3\left(\mathrm{C}-6^{\mathrm{gal}}\right), 20.8,20.6,20.3\left(\mathrm{COCH}_{3}\right), 15.5\left(\mathrm{CH}_{3}{ }^{\mathrm{fuc}}\right)$. ESIMS: $m / z(\%)=816.3[\mathrm{M}+\mathrm{H}](100), 838.3[\mathrm{M}+\mathrm{Na}](44)$.
$[\alpha]_{D}^{21}=-62.9\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

3. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra

2

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

8	7	6	5	4	3	2	1	0

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

15

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

16

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]

20

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]
\qquad
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^3]
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	150	PPM ${ }^{100}$	50	0

[^4]

200	150	${ }_{\text {PPM }}^{100}$	50	0

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

27

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

28

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

\qquad

T	1	1	1	T	1	1	1	1	
10	9	8	7	6	5	4	3	2	1

${ }^{1} \mathrm{H}$-NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^5]
References

1 R. R. Schmidt, J. Michel and M. Roos, Liebigs Ann. Chem., 1984, 1343-1357.
2 M. Mori, Y. Ito and T. Ogawa, Carbohydr. Res., 1990, 195, 199-224.
3 S. Messaoudi, M. Sancelme, V. Polard-Housset, B. Aboab, P. Moreau and M. Prudhomme, Eur. J. Med. Chem., 2004, 39, 453-458.
4 R. Meuwly and A. Vasella, Helv. Chim. Acta, 1986, 69, 25-34.
5 D. J. Armitt, M. G. Banwell, C. Freeman and C. R. Parish, J. Chem. Soc., Perkin Trans. 1, 2002, 1743-1745.
6 A. Dondoni, G. Mariotti and A. Marra, J. Org. Chem., 2002, 67, 4475-4486.
7 T. Nishikawa, Y. Koide, S. Kajii, K. Wada, M. Ishikawa and M. Isobe, Org. Biomol. Chem., 2005, 3, 687-700.
8 U. Zaehringer, B. Lindner, U. Seydel, E. T. Rietschel, H. Naoki, F. M. Unger, M. Imoto, S. Kusumoto and T. Shiba, Tetrahedron Lett., 1985, 26, 6321-6324.
9 I. Christiansen-Brams, M. Meldal and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1993, 14611471.

10 N. G. Kundu and M. W. Khan, Tetrahedron, 2000, 56, 4777-4792.
11 T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 1432-1437.
12 J. R. Johansson, P. Lincoln, B. Norden and N. Kann, J. Org. Chem., 2011, 76, 2355-2359.
13 C. M. Lo, D. Grotto, A. Chambery, A. Dondoni and A. Marra, Chem. Commun.
(Cambridge, U. K.), 2011, 47, 1240-1242.

[^0]: ${ }^{13} \mathrm{C}$-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

