Supporting information

Automated Solid Phase Synthesis of Teichoic Acids

Wouter F. J. Hogendorf,^{*a*} Nico Meeuwenoord,^{*a*} Herman S. Overkleeft,^{*a*} Dmitri V. Filippov,^{*a*} Diana Laverde,^{*b*} Andrea Kropec,^{*b*} Johannes Huebner,^{*b*} Gijsbert A. Van der Marel^{**a*} and Jeroen D. C. Codée^{**a*}

 ^a Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands. Fax: +31-5274307 Tel: +31-5274280; E-mail: jcodee@chem.leidenuniv.nl; marel_g@chem.leidenuniv.nl
^b Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Strasse 55, 79106

^{*} Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.

Experimental section

General

All chemicals (Acros, Fluka, Merck, Schleicher & Schuell, Sigma-Aldrich, Genscript) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 (0.040-0.063 mm). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with 20% H₂SO₄ in ethanol or with a solution of (NH₄)₆Mo₇O₂₄·4H₂O 25 g/l and (NH₄)₄Ce(SO₄)₄·2 H₂O 10 g/l, in 10% aqueous H₂SO₄ followed by charring at +/- 140 °C. Some unsaturated compounds were visualized by spraying with a solution of KMnO₄ (2%) and K₂CO₃ (1%) in water. Optical rotation measurements ($[\alpha]_D^{20}$) were performed on a Propol automated polarimeter (Sodium D-line, $\lambda = 589$ nm) with a concentration of 10 mg/ml (c = 1), unless stated otherwise. Infrared spectra were recorded on a Shimadzu FT-IR 8300. 31 P, ¹H, and ¹³C NMR spectra were recorded with a Bruker AV 400 (161.7, 400 and 125 MHz respectively) or a Bruker DMX 600 (600 and 150 MHz respectively). NMR spectra were recorded in CDCl₃ with chemical shift (δ) relative to tetramethylsilane, unless stated otherwise. When D₂O was used. ¹H-NMR spectra were recorded with chemical shift relative (δ) to HDO (4.755 ppm), ³¹P spectra were measured with chemical shift relative to 85 % H₃PO₄ (external standard) and ¹³C-NMR spectra were recorded with chemical shift relative to TMS (external standard). High resolution mass spectra (HRMS) were recorded by direct injection (2 μ l of a 2 μ M solution in water/acetonitrile; 50/50; v/v and either 0.1 % formic acid or 10mM ammonium formate for the oligomers) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275 °C) with resolution R = 60000 at m/z 400 (mass range m/z = 150-2000) and dioctylphthalate (m/z = 391.28428) as a lock mass. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan). LC-MS analysis was performed

Procedure for automated solid-phase synthesis, purification and global deprotection of TA oligomers

Aminopropyl modified controlled pore glass support (CPG, Fluka) was loaded with (glucosyl)glycerol succinates 1b or 2b and the loading was determined (loading: 100 µmol/g CPG) using the method described by Pon.¹ The automated syntheses were performed on a synthesizer (ÄKTA[™] oligopilot plusTM, GE Healthcare) on a scale of 100-150 mg functionalized CPG (10-15 µmol glycerol derivative) and started off with acidolysis of the dimethoxytrityl ether using 3 % dichloroacetic acid in toluene (15 ml, 3 min). After flushing with acetonitrile (5ml, 1 min), the resulting alcohol was reacted with phosphoramidites 1a or 2a (0.1 M in ACN, 5 eq) and 5-benzylthiotetrazole (BTT, 0.3M in acetonitrile, 22.5 eq) for 5 min using a cycled flow. After flushing with acetonitrile (5ml, 1 min), oxidation of the intermediate phosphite was performed using I₂ (0.05 M in pyridine/H₂O 9/1, 2 ml, 1 min). A flushing step with acetonitrile (5ml, 1 min) was followed by a capping step (1 ml of a 1/1 mixture of capping solution A (20 v/v % N-methylimidazole in acetonitrile) and capping solution B (20 v/v % Ac₂O, 15 v/v % 2,6-lutidine in acetonitrile for 12s). After flushing with acetonitrile (5ml, 1 min), a detritylation step was performed using the before mentioned cocktail and the molecule was elongated using phosphoramidites 1a or 2a using the same set of reactions (coupling, oxidation, capping, detritylation). The average coupling efficiency was measured by quantitative UV-detection (400 nm) of the dimethoxytrityl cation during each detritylation step. When the desired length was obtained, spacer phosphoramidite 3 (0.1 M in ACN, 2 x 5 eq, 2 x 5 min) was coupled to the CPG-TA-oligomer using BTT (0.3M in acetonitrile, 2 x 22.5 eq) and, subsequently treated with I_2 (0.05 M in pyridine/H₂O 9/1, 2 ml, 1 min), before it was released from the solid support using 25% NH₃OH (10 ml, 1 hr, the cyanoethyl protecting groups are concomitantly released at this stage). The solvents were then removed *in vacuo* before the crude oligomer was purified using method A or B.

Purification method A: RP-HPLC (Gilson preparative HPLC system; column: Alltima C18, particle size: 5 μ m, dimensions: 10/250 mm; eluent: (10 mM NH₄OAc in H₂O)/acetonitrile, 9/1 \rightarrow 1/9, detection: UV (215 and 254 nm), the fractions containing product were collected and the solvents were removed under reduced pressure. Repeated lyophilisation (twice) of the residue was followed by eluting the purified oligomer through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use). Lyophilisation gave the partially protected oligomer of which the integrity and purity was confirmed by LC-MS, HRMS and NMR (¹H, ¹³C, ³¹P) analysis

Purification method B: Anion-exchange chromatography (device: ÄKTA Explorer[™], GE Healthcare; column: Q-sepharose HR16/10, GE Healthcare; eluent: buffer A (50 mM NaOAc, 50 mM NaClO₄), buffer B (50mM NaOAc, 500mM NaClO₄), gradient $1/0 \rightarrow 0/1$) followed by desalination using size-exclusion chromatography (Sephadex G10 (hexamer **10**) or Sephadex G25 (all other oligomers), GE Healthcare, dimensions: 26/60 mm, eluent: 0.15 M NH₄HCO₃). The purified oligomer was lyophilized twice before it was eluted through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use). Lyophilisation gave the partially protected oligomer of which the integrity and purity was confirmed by LC-MS, HRMS and NMR (¹H, ¹³C, ³¹P) analysis.

Deprotection: The oligomers (1-5 μ mol) were dissolved in H₂O (3-6 ml) together with AcOH (3-6 drops) and treated for 3 days with Palladium black (20-40 mg)/H₂. Subsequently, the mixture was filtered and the solvents removed under reduced pressure before the residue was purified by size-exclusion chromatography (Sephadex HW40, Toyopearl, dimensions: 16/60 mm, eluent: 0.15 M Et₃NHOAc or 0.15 M NH₄OAc). After repeated lyophilisation, the purified product was eluted through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use). Lyophilisation gave the partially protected oligomer of which the integrity and purity was confirmed by HRMS and NMR (¹H, ¹³C, ³¹P) analysis.

1-O-(Triethylammonium succinate)-2-O-benzyl-3-O-(4,4'-dimethoxytrityl)-sn-glycerol (1b)

To a solution of 2-*O*-benzyl-3-*O*-(4,4'-dimethoxytrityl)-*sn*-glycerol⁵ (2.50 g, 5.16 mmol) and Et₃N (7.87 ml, 56.8 mmol) in DCM (35 ml) was added succinic anhydride (2.58 g, 25.8 mmol). The mixture was stirred for 10 minutes at 0 °C, followed by the addition of a catalytic amount of DMAP. After stirring 2 h at RT, the mixture was diluted with DCM (80 ml) and washed with 0.5 M HCl (50 ml), sat. aq. NaHCO₃ (40 ml) and brine (40 ml). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. Purification of the residue by column chromatography (MeOH/DCM/Et₃N), afforded glycerol succinate **1b** (3.26 g, 4.75 mmol, 92%) as white foam. $[\alpha]_D^{20}$ (MeOH): +8.2; IR: 829, 1034, 1177, 1250, 1609, 1736, 2343, 2359; ¹H NMR (400 MHz, CD₃CN): $\delta = 1.11$ (t, 9H, J = 7.3 Hz, 3 x CH₃ Et₃N), 2.35 - 2.45 (m, 4H, 2 x CH₂ succinyl), 2.85 (q, 6H, J = 7.3 Hz, 14.6 Hz, 3 x CH₂ Et₃N), 3.14 - 3.22 (m, 2H, 2 x CHH glycerol), 3.72 - 3.74 (m, 7H, 2 x OMe, CH glycerol), 4.15 - 4.23 (m, 2H, 2 x CHH glycerol), 4.57 (s, 2H, CH₂ Bn), 6.83 (d, 4H, J = 8.8 Hz, H_{arom}), 7.17 - 7.33 (m, 12H, H_{arom}), 7.44 (d, 2H, J = 7.6 Hz, H_{arom}); ¹³C NMR (100 MHz, CD₃CN): $\delta = 9.2$ (3 x CH₃ Et₃N), 30.9 (CH₂ succinyl), 31.7 (CH₂ succinyl), 45.9 (3 x CH₂ Et₃N), 55.8 (2 x OMe), 63.7 (CH₂ glycerol), 64.4 (CH₂ glycerol), 72.6 (CH₂ Bn), 77.2 (CH glycerol), 86.8 (C_q DMT), 113.9 (CH_{arom}), 127.6, 128.4, 128.6, 128.7, 128.8, 129.1, 130.8 (CH_{arom}), 136.9, 139.7, 146.1, 159.5 (C_q Bn, 4 x C_q DMTr), 173.8, 176.9 (2 x CO succinate); HRMS (free acid): C₃₅H₃₆O₈ + Na⁺ requires 607.2302, found 607.2298.

1-O-(*tert*-Butyldiphenylsilyl)-2-O-(2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl)-3-O-allyl-sn-glycerol (6)

A solution of glucose donor **4** (2.70 g, 5.00 mmol), TTBP (2.86 g, 11.5 mmol) and Ph₂SO (1.11 g, 5.50 mmol) in freshly distilled DCM (100 ml), together with activated MS 3Å, was stirred under argon at RT for 30 min. The mixture was then cooled to -75 °C and stirred for another 15 min. After the addition of Tf₂O (0.93 ml, 5.5 mmol) the mixture was stirred for 45 min at -75 °C and, subsequently, glycerol acceptor **5** (2.22 g, 5.99 mmol) was added. After stirring for 2 hrs at -75 °C, the mixture was allowed to warm to room temperature overnight. The reaction was by the addition of moist Et₃N (3.4 ml, 25 mmol) and stirred for 30 minutes. After washing with sat. aq. NaHCO₃ (30 ml) and brine (30

ml), the organic layer was dried over MgSO₄ and concentrated in vacuo. The resulting oil was dissolved in pyridine (50 ml) and Ac₂O (10 ml) and stirred for 2 hrs. The solvents were removed in vacuo before the residue was redissolved in Et₂O (125 ml) and washed with H₂O (2 x 40 ml) and brine (40 ml). The organic layer was dried over $MgSO_4$ and the solvent removed under reduced pressure. Column chromatography (EtOAc/PE) of the residue gave α -glucoside **6** (3.10 g, 3.87 mmol, 78 %), as a colourless oil with a minor amount (< 7 %, based on ¹H-NMR analysis) of the β -product. $[\alpha]_D^{20}$ $(CHCl_3)$; +4.2; IR: 737, 1088, 1369, 1454, 1751, 2855, 2924; ¹H NMR (400 MHz, α -anomer); $\delta = 1.05$ (s, 9H, 3 x CH₃ TBDPS), 3.53 - 3.69 (m, 4H, CH glycerol, CHH glycerol, H-2, H-6), 3.71 - 3.81 (m, 3H, 3 x CHH glycerol), 3.86 - 3.92 (m, 1H, H-5), 3.99 - 4.04 (m, 5H, CH₂ allyl, H-3, H-4, H-6), 4.74 (d, 1H, J = 12.0 Hz, C<u>H</u>H Bn), 4.78 (d, 1H, J = 11.8 Hz, C<u>H</u>H Bn), 4.80 (d, 1H, J = 11.2 Hz, C<u>H</u>H Bn), 4.87 (d, 1H, J = 11.3 Hz, CHH Bn), 5.16 (dd, 1H, J = 1.3 Hz, 10.4 Hz, CHH allyl), 5.26 (dd, 1H, J = 1.6 Hz, 17.2 Hz, CHH allyl), 5.26 (d, 1H, J = 3.8 Hz, H-1), 5.50 (s, 1H, CH benzylidene), 5.88 (ddd, 1H, J = 5.2 Hz, 10.4 Hz, 22.4 Hz, CH allyl), 7.24 - 7.46 (m, 21H, H_{arom}), 7.65 - 7.68 (m, 4H, H_{arom}); ¹³C NMR (100 MHz, α -anomer): δ = 19.2 (C_q t-butyl, 26.8 (3 x CH₃ TBDPS), 62.4 (C-5), 63.9 (CH₂ glycerol), 68.8 (C-6), 70.8 (CH₂ glycerol), 72.3 (CH₂ allyl), 72.5 (CH₂ Bn), 75.2 (CH₂ Bn), 76.7, 78.2 (C-3, C-4), 79.0 (CH glycerol), 82.1 (C-2), 97.2 (C-1), 101.2 (CH benzylidene), 116.9 (CH₂ allyl), 126.0 - 129.7 (CH_{arom}), 133.1, 133.2 (2 x C_q phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 137.5, 138.3, 138.8 (2 x C_q Bn, C_q benzylidene); HRMS: $C_{49}H_{56}O_8Si + Na^+$ requires 823.3637, found 823.3631.

$1-O-(tert-Butyldiphenylsilyl)-2-O-(2,3-di-O-benzyl-4,6-O-benzylidene-\alpha-D-glucopyranosyl)-sn-glycerol (7)$

A solution of glycoside 6 (0.400 g, 0.499 mmol) in freshly distilled THF (3.0 ml) was stirred under argon for 30 min. After the addition of Ir(COD)(Ph₂MeP)₂PF₆ (0.042 g, 10 mol %) the solution turned red and the mixture was purged with H_2 (g) until the solution turned colourless again (~30s). After stirring under argon for 2 hrs, the mixture was diluted with THF (7.0 ml) and sat. aq. NaHCO₃ (25 ml). Upon addition of I_2 (0.190 g, 0.75 mmol), the mixture was allowed to stir for 1.5 hrs at room temperature. The mixture was then diluted with EtOAc (100 ml) and washed with, respectively, sat. aq. NaS₂O₃ (2 x 20 ml) and brine (20 ml). The organic layer was dried over MgSO₄ and concentrated in vacuo. Column chromatography (EtOAc/toluene/PE) afforded 7 (281 mg, 0.369 mmol, 74 %) as a colourless oil. $[\alpha]_D^{20}$ (CHCl₃): +3.2; IR: 737, 995, 1030, 1076, 1369, 1736, 2858, 2932; ¹H NMR (400 MHz): $\delta = 1.05$ (s, 9H, 3 x CH₃ TBDPS), 3.17 (bs, 1H, OH), 3.53 - 3.68 (m, 5H, 2 x C<u>H</u>H glycerol, H-2, H-4, H-6), 3.72 - 3.90 (m, 4H, 2 x CHH glycerol, CH glycerol, H-5), 3.99 (dd, 1H, J = 4.9 Hz, 10.1 Hz, H-6), 4.04 (at, 1H, J = 9.3 Hz, H-3), 4.70 (d, 1H, J = 11.6 Hz, C<u>H</u>H Bn), 4.78 (d, 1H, J = 11.2 Hz, C<u>H</u>H Bn), 4.86 (d, 1H, *J* = 3.9 Hz, H-1), 4.88 (d, 1H, *J* = 11.7 Hz, C<u>H</u>H Bn), 4.93 (d, 1H, *J* = 11.2 Hz, CHH Bn), 5.50 (s, 1H, CH benzylidene), 7.25 - 7.46 (m, 21H, H_{arom}), 7.63 - 7.66 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.1 (C_q t-butyl, 26.8 (3 x CH₃ TBDPS), 62.7 (C-5), 62.9 (CH₂ glycerol), 63.9 (CH₂ glycerol), 68.8 (C-6), 74.5 (CH₂ Bn), 75.2 (CH₂ Bn), 78.9 (C-2, C-3), 81.8 (CH glycerol), 82.3 (C-4), 99.6 (C-1), 101.2 (CH benzylidene), 126.0 - 129.8 (CH_{arom}), 133.0, 133.1 (2 x C_q phenyl), 135.5 (CH_{arom}), 137.3, 137.5, 138.5 (2 x C_g Bn, C_g benzylidene); HRMS: $C_{46}H_{52}O_8Si + Na^+$ requires 783.3324, found 783.3325.

1-*O*-(*tert*-Butyldiphenylsilyl)-2-*O*-(2,3-di-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranosyl)-3-*O*-(4,4'-dimethoxytrityl)-*sn*-glycerol (8)

To a solution of alcohol **7** (4.68 g, 6.14 mmol) in DCM (50 ml) were added, respectively, DIPEA (1.61 ml, 9.22 mmol) and DMTr-Cl (2.50 g, 7.37 mmol). The mixture was allowed to stir overnight after which it was quenched by the addition of MeOH (5.0 ml). After stirring 15 min the mixture was washed with H₂O (20 ml) and brine (20 ml) and the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the residue by column chromatography (EtOAc/PE/Et₃N) yielded **8** (6.51 g, 6.12 mmol, 100 %) as white foam. $[\alpha]_D^{20}$ (MeOH): +17.2; IR: 1034, 1088, 1250, 1508, 2343, 2361; ¹H NMR (400 MHz): $\delta = 0.97$ (s, 9H, 3 x CH₃ TBDPS), 3.30 (dd, 1H, *J* = 6.2 Hz, 9.8 Hz, C<u>H</u>H glycerol), 3.46 (dd, 1H, *J* = 4.4 Hz, 10.0 Hz), 3.52 - 3.64 (m, 3H, H-2, H-4, H-6), 3.72 - 3.80 (m, 8H, 2 x C<u>H</u>H glycerol, 2 x OMe), 3.90 - 3.97 (m, 1H, H-5), 4.00 - 4.07 (m, 3H, CH glycerol, H-3, H-6), 4.59 (d, 1H, *J* = 12.4 Hz, C<u>H</u>H Bn), 4.64 (d, 1H, *J* = 12.0 Hz, C<u>H</u>H Bn), 4.79 (d, 1H, *J* = 11.6 Hz, C<u>H</u>H Bn), 4.87 (d, 1H, *J* = 11.2 Hz, C<u>H</u>H Bn), 5.21 (d, 1H, *J* = 3.6 Hz, H-1), 5.50 (s, 1H, CH benzylidene), 6.74 - 6.76 (m, 4H, H_{arom}), 7.12 - 7.46 (m, 30H, H_{arom}), 7.58 - 7.62 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): $\delta = 19.1$ (C_q *t*-butyl, 26.8 (3 x CH₃ TBDPS), 55.1 (2 x OMe), 62.6 (C-5), 64.1 (2 x CH₂ glycerol), 68.9 (C-6), 72.5 (CH₂ Bn), 75.2 (CH₂ Bn), 77.5, 78.3 (CH glycerol, C-3), 78.9 (C-2), 82.2 (C-4), 86.5 (C_q DMTr), 97.2 (C-1), 101.3 (CH benzylidene), 113.1 (CH_{arom}), 126.1 - 130.1 (CH_{arom}), 133.2, 133.3 (2 x C_g

phenyl), 135.5 (CH_{arom}), 136.0, 136.0, 137.6, 138.1, 138.8 (2 x C_q Bn, C_q benzylidene, 5 x C_q DMTr); HRMS: $C_{67}H_{70}O_{10}Si + H^+$ requires 1063.4811, found 1063.4804.

$2-O-(2,3-di-O-Benzyl-4,6-O-benzylidene-\alpha-D-glucopyranosyl)-3-O-(4,4'-dimethoxytrityl)-sn-glycerol (9)$

Compound **8** (6.33 g, 5.95 mmol) was dissolved in THF (60 ml) and after addition of TBAF (1M in THF, 10.7 ml) stirred overnight. After evaporation of the solvents under reduced pressure the resulting oil was purified by column chromatography (EtOAc/PE/Et₃N), giving alcohol **9** (4.37 g, 5.30 mmol, 89 %) as a white foam. $[\alpha]_D^{20}$ (MeOH): +29.2; IR: 1032, 1076, 1250, 1508, 1609, 2343, 2361; ¹H NMR (400 MHz): $\delta = 2.40$ (bs, 1H, OH), 3.28 (dd, 1H, J = 6.3 Hz, 9.8 Hz, CH₂ glycerol), 3.34 (dd, 1H, J = 5.4 Hz, 9.9 Hz, CH₂ glycerol), 3.54 (dd, 1H, J = 3.8 Hz, 9.4 Hz, H-2), 3.61 (at, 1H, J = 9.5 Hz, H-4), 3.66 - 3.77 (m, 9H, CH₂ glycerol, H-6, 2 x OMe), 3.87 (ddd, 1H, J = 3.5 Hz, 6.1 Hz, 11.8 Hz, CH glycerol), 3.98 (dd, 1H, J = 4.8 Hz, 10.0 Hz, H-5), 4.02 (at, 1H, J = 9.3 Hz, H-3), 4.25 (dd, 1H, J = 4.9 Hz, 10.2 Hz, H-6), 4.59 (d, 1H, J = 11.3 Hz, CH₂ Bn), 4.68 (d, 1H, J = 12.1 Hz, CH₂ Bn), 4.80 (d, 1H, J = 11.3 Hz, CH₂ Bn), 4.90 (d, 1H, J = 5.1 (2 x OMe), 62.9 (C-5), 63.3 (CH₂ glycerol), 63.9 (C-4), 86.6 (C_q DMT), 97.4 (C-1), 101.2 (CH benzylidene), 113.1 (CH_{arom}), 126.0 - 130.0 (CH_{arom}), 133.0 (2 x C_q phenyl), 135.8, 137.3, 137.9, 138.7, 144.6, 158.5 (2 x C_q Bn, C_q benzylidene, 5 x C_q DMTr); HRMS: C₅₁H₅₂O₁₀ + Na⁺ requires 847.3453, found 847.3455.

1-O-([N,N-diisopropylamino]-2-cyanoethoxy-phosphite)-2-O-(2,3-di-O-benzyl-4,6-O-benzylidene- $<math>\alpha$ -D-glucopyranosyl)-3-O-(4,4)-dimethoxytrityl)-sn-glycerol (2a)

To a cooled (0 °C) solution of **9** (1.24 g, 1.50 mmol) and DIPEA (0.42 ml, 2.4 mmol) in freshly distilled DCM (30 ml) was added 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (0.462 g, 1.95 mmol). After stirring overnight, the reaction was quenched by the addition of H₂O (2.0 ml) and washed with, respectively, H₂O (10 ml) and brine (10 ml). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. Purification of the residue by column chromatography (EtOAc/PE/Et₃N) gave phosphoramidite **2a** (1.50 g, 1.46 mmol, 98 %) as white foam. ³¹P NMR (161.7 MHz, CD₃CN): δ = 149.0, 149.3 (diastereoisomers); ¹H NMR (400 MHz, CD₃CN): δ = 1.07 - 1.15 (m, 12H, 4 x CH₃ isopropylamino), 2.46 - 2.50 (m, 2H, CH₂ cyanoethoxy), 3.11 - 3.29 (m, 2H, 2 x CH isopropylamino), 3.51 - 4.27 (m, 19H, CH₂ cyanoethoxy, 2 x OMe, 2 x CH₂ glycerol, CH glycerol, H-2, H-3, H-4, H-5, H-6, H-6), 4.57 - 4.62 (m, 2H, CH₂ Bn), 4.79 (m, 2H, C₂ Bn), 5.15 (m, 1H, H-1), 5.60 (s, 1H, CH benzylidene), 6.80 (d, 4H, *J* = 8.1 Hz, H_{arom}), 7.11 - 7.47 (m, 24H, H_{arom}); HRMS: C₆₀H₆₉N₂O₁₁P + H⁺ requires 1025.4712, found 1025.4720.

1-O-(Triethylammonium $succinate)-2-O-(2,3-di-O-benzyl-4,6-O-benzylidene-\alpha-D-glucopyranosyl)-3-O-(4,4'-dimethoxytrityl)-sn-glycerol (2b)$

To a solution of 9 (3.21 g, 3.89 mmol) and Et₃N (5.93 ml, 42.8 mmol) in DCM (40 ml) was added succinic anhydride (1.95 g, 19.45 mmol). A catalytic amount of DMAP was added and the reaction was stirred for 100 min.. The mixture was diluted with DCM (50 ml) and washed with H₂O (2 x 50 ml) after which the organic layer was concentrated under reduced pressure. The triethylammonium salt of succinyl ester **2b** (3.93 g, 3.83 mmol, 99 %) was obtained as white foam. $[\alpha]_D^{20}$ (MeOH): +31.6 °; IR: 829, 1034, 1250, 1508, 1738, 2343, 2361; ¹H NMR (400 MHz, CD₃CN): δ = 1.11 (t, 9H, J = 7.3 Hz, 3 x CH₃ Et₃NH), 2.36 - 2.39 (m, 2H, CH₂ succinyl), 2.47 - 2.50 (m, 2H, CH₂ succinyl), 2.82 (q, 6H, J =7.3 Hz, 14.6 Hz, 3 x CH₂ Et₃N), 3.21 (m, 2H, CH₂ glycerol), 3.56 (dd, 1H, J = 3.7 Hz, 9.3 Hz, H-2), 3.64 (at, 1H, J = 9.5 Hz, H-4), 3.69 - 3.75 (m, 7H, 2 x OMe, H-6), 3.87 (at, 1H, J = 9.3 Hz, H-3), 3.94 -4.00 (m, 2H, CH glycerol, H-5), 4.15 (dd, 1H, J = 6.4 Hz, 11.6 Hz, CH₂ glycerol), 4.23 - 4.26 (m, 2H, CH₂ glycerol, H-6), 4.58 (s, 2H, CH₂ Bn), 4.79 (s, 2H, CH₂ Bn), 5.10 (d, 1H, J = 3.7 Hz, H-1), 5.61 (s, 1H, CH benzylidene), 6.84 (d, 4H, J = 8.9 Hz, H_{arom}), 7.14 - 7.50 (m, 24H, H_{arom}); ¹³C NMR (100 MHz, CD₃CN): δ = 9.5 (3 x CH₃ Et₃N), 30.9 (CH₂ succinyl), 31.7 (CH₂ succinyl), 45.9 (3 x CH₂ Et₃N), 55.9 (2 x OMe), 63.7 (CH₂ glycerol), 63.7 (C-5), 65.0 (CH₂ glycerol), 69.5 (C-6), 73.4 (CH₂ Bn), 75.3 (CH₂ Bn), 75.7 (CH glycerol), 79.0 (C-3), 80.3 (C-2), 82.6 (C-4), 87.3 (C_q DMT), 114.1 (CH_{arom}), 127.2 - 131.0 (CH_{arom}), 136.7, 136.8, 138.9, 139.4, 140.1, 146.0, 159.6 (2 x C_q Bn, 4 x C_q DMT, C_q benzylidene), 174.0, 176.8 (2 x CO succinate); HRMS (as free acid): $C_{55}H_{56}O_{13} + Na^+$ requires 947.3613, found 947.3627.

Hexaglycerolphosphate (16)

Synthesis on 10 µmol scale (100 mg glycerol-CPG). Average coupling efficiency: 98.3 % (5 couplings). Purification method A gave the semiprotected hexamer (10) as white amorphous solid (3.4 mg, 1.8 µmol, 18 %). Method B (synthesis on 15 µmol scale) gave 10 as white amorphous solid (2.7 mg, 1.5 μ mol, 10 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile 1/0 \rightarrow 1/9 in 13.5 min): r.t. 5.85 min, $C_{74}H_{99}NO_{33}P_6 + H^+$ requires 1716.5 found 1716.6.; ³¹P-NMR (162 MHz, D₂O): $\delta = 1.0$ (4P), 1.1 (1P), 1.2 (1P); ¹H-NMR (600 MHz, D₂O); $\delta = 1.12$ (m, 4H, 2 x CH₂ hexylspacer), 1.26 (m, 2H, CH₂ hexylspacer), 1.42 (m, 2H, CH₂ hexylspacer), 2.92 (t, 2H, J = 6.9 Hz, CH₂-N hexylspacer), 3.50 - 3.61 (m, 3H, CH glycerol, CH₂ glycerol), 3.68 - 3.93 (m, 29H, CH₂-O hexylspacer, 11 x CH₂ glycerol, 5 x CH glycerol), 4.41 - 4.54 (m, 12H, 6 x CH₂ Bn), 4.92 (s, 2H, CH₂ benzylcarbamate), 7.16 - 7.32 (m, 35H, H_{arom}); ¹³C NMR (150 MHz, D_2O): $\delta = 25.6$, 26.5, 29.7, 30.7 (4 x CH₂ hexylspacer), 41.3 (CH₂-N hexylspacer), 61.4 (CH₂ glycerol), 65.1, 65.4, 65.5 - 65.7, 67.2, 67.6 (CH₂-O hexylspacer, 11 x CH₂ glycerol, CH₂ benzylcarbamate), 72.7, 73.0 (6 x CH₂ Bn), 78.0 - 78.1 (5 x CH glycerol), 79.2 (CH glycerol), 128.6 - 129.7 (CH_{arom}), 137.5, 138.4 - 138.5 (6 x C_q Bn, C_q benzylcarbamate), 159.2 (C_q benzylcarbamate); HRMS: $[C_{74}H_{99}NO_{33}P_6 + 2H]^{2+}$ requires 858.7335, found 858.7340; Deprotection: The semiprotected hexamer (10, 4.7 mg, 2.5 µmol) was deprotected using the standard procedure yielding hexamer 16 (1.9 mg, 1.6 µmol, 65 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): $\delta = 1.2$ (1P), 1.2 (3P), 1.3 (2P); ¹H-NMR (600 MHz): $\delta = 1.36 - 1.38$ (m, 4H, 2 x CH₂) hexylspacer), 1.58 - 1.64 (m, 4H, 2 x CH₂ hexylspacer), 2.94 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.54 (dd, 1H, J = 6.1 Hz, 11.8 Hz, CHH glycerol), 3.62 (dd, 1H, J = 4.2 Hz, 11.8 Hz, CHH glycerol), 3.78 - 3.91 (m, 25H, CH₂-O hexylspacer, 11 x CH₂ glycerol, CH glycerol), 3.96 - 4.01 (m, 5H, 5 x CH glycerol); ¹³C NMR (150 MHz, D₂O): δ = 25.4, 26.1, 27.6, 30.3 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 63.0 (CH₂ glycerol), 66.9 - 67.3 (CH₂-O hexylspacer, 11 x CH₂ glycerol), 70.4 - 70.6, 71.7 (6 x CH glycerol); HRMS: $C_{24}H_{57}NO_{31}P_6 + H^+$ requires 1042.1413, found 1042.1425.

14-mer (17)

Synthesis on 10 µmol scale (100 mg glycerol-CPG). Average coupling efficiency: 98.0 % (9 couplings). Purification method A gave the semiprotected decamer (11) as white amorphous solid (8.5 mg, 2.9 µmol, 29 %). Method B (synthesis on 15 µmol scale) gave the semiprotected decamer (11) as white amorphous solid (7.1 mg, 2.4 μ mol, 16 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile 1/0 \rightarrow 1/9 in 13.5 min): r.t. 6.15 min, [C₁₁₄H₁₅₁NO₅₃P₁₀ + 2H]²⁺ requires 1346.8 found 1346.8.; ³¹P-NMR (162 MHz, D₂O): $\delta = 1.0$ (8P), 1.1 (1P), 1.2 (1P); ¹H-NMR (600 MHz, D₂O): $\delta =$ 1.03 (m, 2H, CH₂ hexylspacer), 1.08 (m, 2H, CH₂ hexylspacer), 1.20 (m, 2H, CH₂ hexylspacer), 1.38 (m, 2H, CH₂ hexylspacer), 2.86 (m, 2H, CH₂-N hexylspacer), 3.49 - 3.59 (m, 3H, CH glycerol, CH₂ glycerol), 3.64 - 3.92 (m, 49H, CH₂-O hexylspacer, 19 x CH₂ glycerol, 9 x CH glycerol), 4.33 - 4.47 (m, 20H, 10 x CH₂ Bn), 4.82 (bs, 2H, CH₂ benzylcarbamate), 7.00 - 7.22 (m, 55H, H_{arom}); ¹³C NMR $(150 \text{ MHz}, D_2 \text{O}): \delta = 25.7, 26.6, 29.8, 30.7 (4 \text{ x CH}_2 \text{ hexylspacer}), 41.2 (CH_2-N \text{ hexylspacer}), 61.3$ (CH₂ glycerol), 65.1, 65.5 - 65.6, 67.1, 67.5 (CH₂-O hexylspacer, 19 x CH₂ glycerol, CH₂ benzylcarbamate), 72.6, 72.8 - 72.9 (10 x CH₂ Bn), 78.0 - 78.1 (9 x CH glycerol), 79.2 (CH glycerol), 128.6 - 129.6 (CH_{arom}), 138.4 - 138.5 (10 x C_q Bn, C_q benzylcarbamate) 158.9 (C_q benzylcarbamate); HRMS: $[C_{114}H_{151}NO_{53}P_{10} + 2Na]^{2+}$ requires 1369.3173, found 1369.3181; Deprotection: The partially protected decamer (11, 7.10 mg, 2.44 µmol) was deprotected using the standard procedure yielding decameric GTA 17 (3.6 mg, 1.9 µmol, 78 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): $\delta = 1.2$ (1P), 1.3 (7P), 1.3 (2P); ¹H-NMR (600 MHz, D₂O): $\delta = 1.36 - 1.39$ (m, 4H, 2 x CH₂) hexylspacer), 1.58 - 1.65 (m, 4H, 2 x CH₂ hexylspacer), 2.95 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.55 (dd, 1H, J = 6.1 Hz, 11.8 Hz, CHH glycerol), 3.62 (dd, 1H, J = 4.2 Hz, 11.8 Hz, CHH glycerol), 3.72 (m, 1H, CHH glycerol), 3.80 - 4.02 (m, 49H, CH₂-O hexylspacer, 18 x CH₂ glycerol, 1 x CHH glycerol, 10 x CH glycerol); ¹³C NMR (150 MHz, D₂O): $\delta = 25.4$, 26.0, 27.5, 30.3 (4 x CH₂) hexylspacer), 40.3 (CH₂-N hexylspacer), 63.0 (CH₂ glycerol), 66.9 - 67.3 (CH₂-O hexylspacer, 19 x CH₂ glycerol), 70.4 - 70.5, 71.3, 71.6, 71.7 (10 x CH glycerol); HRMS: $C_{36}H_{85}NO_{51}P_{10} + H^+$ requires 1658.1537, found 1658.1553.

14-mer (18)

Synthesis on 10 µmol scale (100 mg glycerol-CPG). Average coupling efficiency: 98.1 % (13 couplings). Purification method A gave the semiprotected 14-mer (**12**) as white amorphous solid (3.0 mg, 0.75 µmol, 8 %). Method B gave the semiprotected 14-mer (**12**) as white amorphous solid (8.2 mg, 2.1 µmol, 21 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile $1/0 \rightarrow 1/9$ in 13.5 min): r.t. 5.84 min, $[C_{154}H_{203}NO_{73}P_{14} + 3H]^{3+}$ requires 1224.0 found 1224.4.; ³¹P-NMR (162 MHz, D₂O): $\delta = 0.7$ - 1.1 (14P); ¹H-NMR (600 MHz, D₂O): $\delta = 0.99$ (m, 2H, CH₂ hexylspacer), 1.05 (m, 2H, CH₂)

hexylspacer), 1.15 (m, 2H, CH₂ hexylspacer), 1.35 (m, 2H, CH₂ hexylspacer), 2.83 (m, 2H, CH₂-N hexylspacer), 3.47 - 3.58 (m, 3H, CH glycerol, CH₂ glycerol), 3.60 - 3.92 (m, 69H, CH₂-O hexylspacer, 27 x CH₂ glycerol, 13 x CH glycerol), 4.29 - 4.44 (m, 28H, 14 x CH₂ Bn), 4.72 (bs, 2H, CH₂ benzylcarbamate), 6.91 - 7.15 (m, 75H, H_{arom}); ¹³C NMR (150 MHz, D_2O): $\delta = 24.7, 25.6, 28.9, 29.8$ (4 x CH₂ hexylspacer), 40.3 (CH₂-N hexylspacer), 60.2 (CH₂ glycerol), 64.1, 64.4 - 64.6, 66.1, 66.4 (CH₂-O hexylspacer, 27 x CH₂ glycerol, CH₂ benzylcarbamate), 71.6, 71.8 (14 x CH₂ Bn), 77.0 - 77.1 (13 x CH glycerol), 78.2 (CH glycerol), 127.6 - 128.6 (CH_{arom}), 137.5 - 137.6 (14 x C_q Bn, C_q benzylcarbamate); HRMS: $[C_{154}H_{203}NO_{73}P_{14} + 2Na]^{2+}$ requires 1857.4174 found 1857.4167; Deprotection: The semiprotected 14-mer (12, 5.5 mg, 1.4 µmol) was deprotected using the standard procedure yielding 14-mer glycerol TA 18 (3.0 mg, 1.2 µmol, 84 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): δ = 1.1 - 1.3 (14P); ¹H-NMR (600 MHz, D₂O): δ =1.37 - 1.41 (m, 4H, 2 x CH₂ hexylspacer), 1.60 - 1.67 (m, 4H, 2 x CH₂ hexylspacer), 2.97 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.57 (dd, 1H, J = 6.1 Hz, 11.8 Hz, CHH glycerol), 3.64 (dd, 1H, J = 4.1 Hz, 11.8 Hz, CHH glycerol), 3.71 - 3.76 (m, 1H, CHH glycerol), 3.78 - 4.04 (m, 69H, CH₂-O hexylspacer, 26 x CH₂ glycerol, C<u>H</u>H glycerol, 14 x CH glycerol); ¹³C NMR (150 MHz, D₂O): δ = 25.4, 26.1, 27.6, 30.4 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 63.1 (CH₂ glycerol), 65.8 (CH₂ glycerol), 67.3 - 67.7 (CH₂-O hexylspacer, 26 x CH₂ glycerol), 70.5 - 70.6, 71.3, 71.7 (14 x CH glycerol); HRMS: $C_{48}H_{112}NO_{71}P_{14} + H^+$ requires 2273.1584, found 2273.1562.

20-mer (19)

Synthesis on 15 µmol scale (150 mg glycerol-CPG). Average coupling efficiency: 98.5 % (19 couplings). Purification method B gave the semiprotected 20-mer (13) as white amorphous solid (20.2 mg, 3.62 μ mol, 24 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile 9/1 \rightarrow 1/9 in 13.5 min): r.t. 5.23 min, $[C_{214}H_{281}NO_{103}P_{20} + 4H]^{4+}$ requires 1284.6 found 1284.8.; ³¹P-NMR (162 MHz, D₂O): δ = 0.8 (1P), 1.0 (18P), 1.1 (1P); ¹H-NMR (600 MHz, D_2O): δ = 0.96 (m, 2H, CH₂ hexylspacer), 1.03 (m, 2H, CH₂ hexylspacer), 1.13 (m, 2H, CH₂ hexylspacer), 1.33 (m, 2H, CH₂ hexylspacer), 2.82 (m, 2H, CH₂-N hexylspacer), 3.43 - 3.55 (m, 3H, CH glycerol, CH₂ glycerol), 3.57 - 4.08 (m, 99H, CH₂-O hexylspacer, 39 x CH₂ glycerol, 19 x CH glycerol), 4.17 - 4.44 (m, 40H, 20 x CH₂ Bn), 4.69 (bs, 2H, CH₂ benzylcarbamate), 6.85 - 7.13 (m, 105H, H_{arom}), 7.68 (s, 1H, NH); 13 C NMR (150 MHz, D₂O): δ = 25.7, 26.6, 30.0, 30.7 (4 x CH₂ hexylspacer), 41.3 (CH₂-N hexylspacer), 61.1 (CH₂ glycerol), 64.9 -65.6, 67.1, 67.2, 67.6 (CH₂-O hexylspacer, 39 x CH₂ glycerol, CH₂ benzylcarbamate), 72.5 - 72.8 (20 x CH₂ Bn), 77.7 - 78.1 (19 x CH glycerol), 79.1 (CH glycerol), 128.6 - 129.6 (CH_{arom}), 137.5, 138.4 -138.7 (20 x C_q Bn, C_q benzylcarbamate), 158.4 (C_q benzylcarbamate); HRMS: $[C_{214}H_{296}N_6O_{103}P_{20} + 3H]^{3+}$ (mass + 5 x NH₃) requires 1740.7715, found 1740.7691; Deprotection: The partially protected 20-mer (13, 6.2 mg, 1.1 µmol) was deprotected using the standard procedure yielding 20-mer glycerol TA **19** (3.8 mg, 1.1 μ mol, 95 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): $\delta = 1.2$ -1.4 (20P); ¹H-NMR (600 MHz, D_2O): $\delta = 1.36 - 1.40$ (m, 4H, 2 x CH₂ hexylspacer), 1.59 - 1.71 (m, 4H, 2 x CH₂ hexylspacer), 2.95 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.56 (dd, 1H, J = 6.2 Hz, 11.8 Hz, CHH glycerol), 3.63 (dd, 1H, J = 4.3 Hz, 11.9 Hz, CHH glycerol), 3.72 (m, 1H, CHH glycerol), 3.81 - 4.04 (m, 99H, CH₂-O hexylspacer, 38 x CH₂ glycerol, C<u>H</u>H glycerol, 20 x CH glycerol); ¹³C NMR (150 MHz, D₂O): δ = 25.4, 26.0, 27.6, 30.4 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 63.0 (CH₂ glycerol), 65.7 (CH₂ glycerol), 66.9 - 67.5 (CH₂-O hexylspacer, 37 x CH₂ glycerol), 67.7 (CH₂ glycerol), 70.4 - 70.7, 71.3, 71.7 (20 x CH glycerol); HRMS: $[C_{66}H_{155}NO_{101}P_{20} + 2H]^{2+}$ requires 1599.5961, found 1599.5971.

glucosylated hexamer (20)

Synthesis on 15 µmol scale (150 mg glycerol-CPG). Average coupling efficiency: 98.2 % (5 couplings). Purification method B gave the semiprotected hexamer (**14**) as white amorphous solid (10.5 mg, 4.86 µmol, 32 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile 9/1 \rightarrow 1/1 in 25 min): r.t. 13.80 min, $[C_{94}H_{119}NO_{38}P_6 + 2H]^{2+}$ requires 1029.3 found 1029.2.; ³¹P-NMR (162 MHz, D₂O): $\delta =$ 1.0 (1P), 1.1 (3P), 1.1 (1P), 1.2 (1P); ¹H-NMR (600 MHz, D₂O): $\delta =$ 0.85 - 1.17 (m, 6H, 3 x CH₂ hexylspacer), 1.37 (m, 2H, CH₂ hexylspacer), 2.84 (m, 2H, CH₂-N hexylspacer), 3.34 - 4.11 (m, 38H, CH₂-O hexylspacer, 12 x CH₂ glycerol, 6 x CH glycerol, H-2, H-3, H-4, H-5, 2 x H-6), 4.29 - 4.71 (m, 16H, 7 x CH₂ Bn, CH₂ benzylcarbamate), 5.22 (bs, 1H, H-1), 5.28 (bs, 1H, CH benzylidene), 6.86 - 7.43 (m, 45H, H_{arom}); HRMS: $[C_{94}H_{119}NO_{38}P_6 + NH_4 + H]^{2+}$ requires 1037.3123, found 1037.3120; Deprotection: The partially protected hexamer (**14**, 10.5 mg, 4.86 µmol) was deprotected using the standard procedure yielding hexamer monoglucosylglycerol TA **20** (4.4 mg, 3.3 µmol, 68 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): $\delta = 0.9$ (1P), 1.2 (3P), 1.3 (1P), 1.3 (1P); ¹H-NMR (600 MHz, D₂O): $\delta = 1.36 - 1.40$ (m, 4H, 2 x CH₂ hexylspacer), 1.58 - 1.65 (m, 4H, 2 x CH₂

hexylspacer), 2.94 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.34 (at, 1H, J = 9.6 Hz, H-4), 3.46 (dd, 1H, J = 3.7 Hz, 9.9 Hz, H-2), 3.55 (dd, 1H, J = 6.1 Hz, 11.8 Hz, CH glycerol), 3.62 (dd, 1H, J = 4.2 Hz, 11.8 Hz, CH glycerol), 3.69 - 3.72 (m, 3H, H-3, H-5, H-6), 3.79 - 4.00 (m, 30H, CH₂-O hexylspacer, 11 x CH₂ glycerol, 5 x CH glycerol, H-6), 4.05 (m, 1H, CH glycerol), 5.11 (d, 1H, J = 3.7 Hz, H-1); ¹³C NMR (150 MHz, D₂O): $\delta = 25.4$, 26.1, 27.6, 30.4 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 61.5 (C-6), 63.0 (CH₂ glycerol), 65.2 (CH₂ glycerol), 66.1 (CH₂ glycerol) 67.0 - 67.4 (CH₂-O hexylspacer, 9 x CH₂ glycerol), 70.4 - 70.6 (4 x CH glycerol, C-4), 71.7 (CH glycerol), 72.5 (C-2), 72.8 (C-5), 73.9 (C-3), 76.3 (CH glycerol), 98.7 (C-1); HRMS: C₃₀H₆₇NO₃₆P₆ + H⁺ requires 1204.1941, found 1204.1957.

glucosylated hexamer (21)

Synthesis on 15 µmol scale (150 mg glucosylglycerol-CPG). Average coupling efficiency: 96.9 % (5 couplings). Purification method B gave the semiprotected hexamer (15) as white amorphous solid (11.6 mg, 5.37 µmol, 36 %). LC-MS (gradient: 10 mM NH₄OAc in H₂O/acetonitrile 9/1 \rightarrow 1/1 in 25 min): r.t. 13.55 min, $C_{94}H_{119}NO_{38}P_6 + H^+$ requires 2057.6 found 2058.0.; ³¹P-NMR (162 MHz, D₂O): $\delta = 1.0$ - 1.3 (6P); ¹H-NMR (600 MHz, D_2O): $\delta = 0.90 - 1.15$ (m, 6H, 3 x CH₂ hexylspacer), 1.33 (m, 2H, CH₂ hexylspacer), 2.80 (m, 2H, CH₂-N hexylspacer), 3.22 - 4.18 (m, 38H, CH₂-O hexylspacer, 12 x CH₂ glycerol, 6 x CH glycerol, H-2, H-3, H-4, H-5, 2 x H-6), 4.30 - 4.69 (m, 16H, 7 x CH₂ Bn, CH₂ benzylcarbamate), 5.12 - 5.20 (m, 2H, H-1, CH benzylidene), 6.86 - 7.26 (m, 45H, H_{arom}); HRMS: $[C_{94}H_{119}NO_{38}P_6 + 2H]^{2+}$ requires 1028.7991, found 1028.7996; Deprotection: The partially protected hexamer (15, 2.2 mg, 0.99 µmol) was deprotected using the standard procedure yielding hexamer monoglucosyl TA 21 (1.1 mg, 0.85 µmol, 86 %) as an amorphous off-white solid. ³¹P-NMR (162 MHz, D₂O): $\delta = 1.2$ (1P), 1.2 (3P), 1.3 (1P), 1.3 (1P); ¹H-NMR (600 MHz, D₂O): $\delta = 1.36 - 1.40$ (m, 4H, 2 x CH₂ hexylspacer), 1.59 - 1.65 (m, 4H, 2 x CH₂ hexylspacer), 2.94 (at, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.36 (at, 1H, J = 9.7 Hz, H-4), 3.48 (dd, 1H, J = 3.8 Hz, 9.9 Hz, H-2), 3.68 - 3.73 (m, 4H, H-3, 2 x H-6, CHH glycerol), 3.77 - 4.02 (m, 32H, CH2-O hexylspacer, 11 x CH2 glycerol, CHH glycerol, 6 x CH glycerol, H-5), 5.12 (d, 1H, J = 3.7 Hz, H-1); ¹³C NMR (150 MHz, D₂O): $\delta = 25.4$, 26.0, 27.6, 30.3 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 61.5 (CH₂ glycerol), 62.2 (C-6), 65.2 (CH₂ glycerol), 66.9 - 67.2 (CH₂-O hexylspacer, 11 x CH₂ glycerol), 70.4 - 70.6 (5 x CH glycerol, C-4), 72.4 (C-2), 72.9 (C-5), 73.8 (C-3), 77.8 (CH glycerol), 98.8 (C-1); HRMS: $C_{30}H_{67}NO_{36}P_6 + H^+$ requires 1204.1941, found 1204.1956.

Opsonophagocytic killing assay

White blood cells (WBC) were prepared from fresh human blood collected from healthy adult volunteers. 25 ml were mixed with an equal volume of dextran-heparin buffer and incubated at 37°C for 1 h. The upper layer containing the leukocytes was collected, the cells were pelleted by centrifugation, and hypotonic lysis of the remaining erythrocytes was accomplished by resuspension of the cell pellet in 1% NH₄Cl and incubation for 10 min at room temperature. WBC were then washed and resuspended with RPMI with 15% FBS (RPMI-FBS). With trypan blue staining to differentiate dead from live leukocytes, the final WBC count was adjusted to 5 x 10⁶ WBC per mL.

The complement source (1 mL of baby rabbit serum diluted 1:15 in RPMI-FBS) was adsorbed with target bacteria at 4°C for 30 min with continual mixing. After adsorption, the complement solution was centrifuged and filter sterilized.

The test sera were diluted with RPMI-FBS.

The bacterial strains to be evaluated were grown in TSB and a 1:100 dilution in RPMI-FBS was made for use in the killing assay. The actual phagocytic killing assay was performed by mixing 100 μ L (each) of the WBC suspension, target bacteria, dilutions of test sera, and the complement source. The reaction mixture was incubated on a rotor rack at 37°C for 90 min; samples were taken at time zero and after 90 min. A 10-fold dilution was made in TSB, and samples were plated onto tryptic soy agar plates. Tubes lacking any serum were used as controls, as were tubes containing serum and complement but lacking WBC to control for potential aggregation of bacteria by the antibody, which would reduce the apparent CFU counts at the end of the assay. The percentage of killing was calculated by determining the ratio of the number of CFU surviving in the tubes with bacteria, leukocytes, complement, and sera to the number of CFU surviving in tubes lacking sera but containing bacteria, complement, and leukocytes. For inhibition studies, serum was diluted and incubated for 60 min at 4°C with an equal volume of a solution containing 100 μ g/mL of synthetic TA oligomers **16-21**. Subsequently, the antiserum was used in the opsonophagocytic assay as described above. Inhibition of >40% was considered biologically significant, as this represented twice the upper limit of nonspecific inhibition seen in control tubes containing irrelevant polysaccharide antigens as inhibitors.

In table 1 the results from the opsonophagocytic inhibition assay (given is percentual killing of the bacteria), using synthetic TAs **16-21** (at a concentration of 100 μ g/ml) are depicted. Native LTA is used as a positive control at the same concentration.²

ТА	16	17	18	19	20	21	native LTA	α-LTA 12030
								(1:200)
Experiments 1-4	35	50	45	25	20	8	4	79
	37	58	46	29	9	4	7	78
	30	65	65	18	18	18	7	88
	7	42	30	30	7	7	-5	100
Mean	27	54	47	26	13	9	3	86

Table 1. Killing (%) in an opsonophagocytic inhibition assay using synthetic TA 16-21 (100 ug/ml).

Reference

1) Pon, R.T. *Methods in Molecular Biology*; Agrawal, S., Ed. ; Humana Press, Totowa, New Jersey, 1993, Vol. 20, pp 465-496.

2) C. Theilacker, Z. Kaczynski, A. Kropec, F. Fabretti, T. Sange, O. Holst, J. Huebner, *Inf. Immun.*, 2006, **74**, 5703.

LC traces compounds 10-15 (UV 215nm)

Hexamer **10** after 24 hr with 25 % NH₃OH at RT

10-mer 11 (gradient: 10 mM NH₄OAc in H₂O/acetonitrile $1/0 \rightarrow 1/9$ in 13.5 min): r.t. 6.15 min.

Т

9.5

10.0

8.5

9.0

8.0

7.5

7.0

-2000

0.0

5.0 f1 (ppm)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

5.5

Т

6.5

6.0

10.0

-8000

-7000

-6000

-5000

-4000

-5500

-5000

-4500

Ī

-4000

50

-3500 -

-3000

--500

-2500

Т 9.5 8.5 8.0 7.5 7.0 6.5 5.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 10.0 9.0 6.0 5.5 4.5 4.0 0.5 0.0

190

180

-16000

-16000

-15000

-14000

-13000

-12000

8.5

9.0

10.0

9.5

7.5

7.0

8.0

Т

6.5

6.0

5.5

5.0 f1 (ppm) 4.5

4.0

3.5

-17000

0.0

-16000 -15000 -14000 -13000 -12000 -11000 -10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 -0 --1000 -2000

2.5

3.0

2.0

1.5

1.0

0.5

-3000

ັf1 (ppm)ັ

-10

-10000

-9000

-8000

-10000

-9000

--2000

190

-17000

-16000

-15000

-14000

-13000

-12000

-11000

-10000

-9000

-8000 -7000

0.0

2.5

3.0

2.0

1.5

1.0

0.5

Т 9.5 8.5 7.5 6.5 5.0 f1 (ppm) 9.0 8.0 7.0 6.0 5.5 4.5 4.0 3.5

190

180

-21000

-20000

-19000

-18000

-3400

190

