Supporting Information

An organogel formed from a cyclic β-aminoalcohol

Chuanqing Kang, Zheng Bian, Yabing He, Fushe Han, Xuepeng Qiu, Lianxun Gao*

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Graduate School of Chinese Academy of Sciences; 5625 Renmin Street, Changchun 130022, China. Fax: +86-431-85262926; Tel: +86-431-85262352; E-mail: <u>lxgao@ciac.jl.cn</u>

Table of Contents

S1.	General remarks				
S2.	Synthesis and characterization				
	Synthesis of compound 1 and 22				
	Synthesis of 3 and 4				
	MALDI-TOF MS spectra (Fig. S1-4)				
	NMR spectra (Fig. S5-11)				
S3.	Gel tests (Tab. S2 and Fig. S12)10				
S4.	SEM pictures of xerogels (Fig. S13)				
S5.	Gel stability to cations (Tab. S2)12				
S6.	FTIR spectroscopies (Fig. S14)				
S7.	Single crystal of compound 1 (Fig. S15)14				
S8.	Geometry optimization of 3 (Fig. S16)15				
Refe	References				

S1. General remarks

All reagents and solvents were obtained from commercial suppliers and used directly without further purification unless otherwise stated. Chromatographic purification was conducted using 100-200 mesh silica gel. TLC was performed on aluminum TLC plate with silica gel GF254 and visualized using UV light.

Melting points were measured with a hot-stage XT-4 melting point meter with microscope and thermometer was not corrected. Optical rotations were measured on a Perkin Elmer 341LC polarimeter. HPLC analysis was performed with a Shimadzu Class-VP system on Chiralcel AD-H analytical column with hexane/isopropanol/triethylamine (95/5/0.1) as eluent. 1H NMR and 13C NMR spectra were recorded on a Bruker AV400 or AV600 spectrometer at 300K unless otherwise stated. Chemical shifts were reported in ppm with tetramethylsilane ($\delta = 0.00$) for ¹H NMR and with deuterated solvents (for deuterium chloride, $\delta = 77.00$) for ¹³C NMR. 2D NOESY experiment was performed on a Bruke AV600 spectrometer with a mixing time of 600 ms. MALDI-TOF-MS were recorded with Bruker Reflex III in positive-ion mode at an accelerating voltage of 20 kV equipped with a 337-nm nitrogen laser. Elemental analyses (EA) for C, H and N were carried out with a VarioEL instrument. FTIR spectra were performed on a Bio-Rad FTS135 infrared spectrometer with KBr pellets or with a cell for solution. UV-Vis spectra were recorded on a Shimidzu UV-2550 UV-vis spectrophotometer using a 0.5 mm cuvette. Scanning electronic microscopy (SEM) photo were taken using an XL 30 ESEM FEG field emission scanning electron microscope with 15 kV or 25 kV operating voltage. Powder XRD patterns were recorded by Rigaku D/max 2000 X-ray diffractometer with CuKa1 radiation source. X-ray crystallographic analysis was performed on a Bruker SMART APEX CCD diffractometer with graphite-monochromatic MoK α radiation ($\lambda = 0.71073$ Å) operated at 2.0 kW (50 kV, 40 mA). The structures were solved by direct methods using the program SHELXL-97 and refined with anisotropic thermal parameters by full matrix least squares on F^2 values with SHELXL-97. Hydrogen atoms were located from the expected geometry and were refined only with isotropic parameters.

S2. Synthesis and characterization

Synthesis of compound 1 and 2: As shown in scheme S1, both compounds 1 and 2 were prepared by reduction of corresponding ester *cis*-(1*S*, 3*S*)-6 and *trans*-(1*R*, 3*S*)-6 with LAH, respectively, and structures were confirmed with NMR spectra, MALDI-TOF MS and EA. The ester precursors *cis*-(1*S*, 3*S*)-6 and *trans*-(1*R*, 3*S*)-6 were prepared from *L*-DOPA according to procedures in literature with small modifications at the stage of Pictet-Spengler cyclization.^{S1} Methyl *L*-3,4-dimethoxyphenylalaninate trifluoroacetic acid salt 5 was neutrialized with sodium bicarbonate to acid-free form before used in the Pictet-Spengler reaction. The ¹H and ¹³C NMR spectra of both diastereomer 6s are in consistent with report,^{S2} but the optical rotations are not in agreement with that literature. Hitherto we confirm the structures with 2D NOESY, MALDI-TOF MS and EA, and the purity with chiral HPLC.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Scheme S1 Synthesis of compound **1** and **2**. Conditions: a) methanol, SOCl₂, reflux, 90%; b) Boc₂O, TEA, MeOH, r.t., 95%; c) MeI, K₂CO₃, butanone, reflux, 98%; d) TFA-DCM (5%), r.t., 80%; e) NaHCO₃; PhCHO, MS 3A, DCM, r.t.; TFA, reflux, 85%; f) LAH, THF, 0 °C-r.t., 87-89%.

Methyl *cis*-(1*S*, 3*S*)-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate, *cis*-(1*S*, 3*S*)-6 and methyl *trans*-(1*R*, 3*S*)-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate, *trans*-(1*R*, 3*S*)-6: A solution of 5 (23.76 g, 99.3 mmol) in dichloromethane (240 ml) was washed with aqueous saturated sodium bicarbonate and saturated brine and dried with magnesium sulfate, to which was added MS 3A (36.0 g) and phenylaldehyde (11.1 ml, 109.2 mmol) at 0 °C with ice-water bath under argon atmosphere. The reaction mixture was then stirred at room temperature overnight. The MS 3A was removed by filtration followed by evaporation to remove solvent. The residues were dissolved in TFA (350 ml) and heated to reflux for more than 8 hr under argon atmosphere. TFA was removed by distillation before addition of dichloromethane. The dichloromethane solution was then washed with aqueous saturated sodium bicarbonate (twice) and saturated brine, dried with magnesium sulfate and concentrated to dryness to give crude diastereomeric mixture (*cis/trans* ratio: 2/1 by ¹H NMR). The two isomers were separated by silica gel column with ethyl acetate/petroleum ether as eluent (1/5-2/5) to give *cis*-(1*S*, 3*S*)-6 (16.10 g) and *trans*-(1*R*, 3*S*)-6 (6.95 g), yield 49% and 21% respectively.

cis-(1*S*, 3*S*)-**6**: optical purity >99.9% ee, white powder, mp 112-114 °C, $[\alpha]_D^{25} = -47.2^\circ$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.33 (m, 5H, 1-ArH), 6.64 (s, 1H, 5-H), 6.17 (s, 1H, 8-H), 5.10 (s, 1H, 1-H), 3.90 (t, *J* = 5.2 Hz, 1H, 3-H), 3.86 (s, 3H, 6-CH₃O), 3.77 (s, 3H, 3-CO₂CH₃), 3.59 (s, 3H, 7-CH₃O), 3.08 (m, 4-CH₂). ¹³C NMR (100 MHz, CDCl₃): δ 172.88, 147.69, 147.33, 143.80, 130.15, 128.96, 128.25, 127.77, 125.99, 111.25, 110.49, 62.79, 56.47, 55.81, 55.77, 52.11, 32.14. MALDI-TOF MS: 328 ([M-H]⁺) and 330 ([M+H]⁺). EA: calculated C 69.71, H

6.47, N 4.28; found C 69.70, H 6.48, N 4.27.

trans-(1*R*, 3*S*)-**6**: optical purity 98.8%, pale yellow bulk, mp 58-61 °C, $[\alpha]_D^{25} = -50.8^\circ$ (c = 0.35, CHCl₃). ¹H NMR (400 MHz, CDCl₃): 7.30 (m, 3H, 1-ArH), 7.19 (d, J = 7.2 Hz, 2H, 1-ArH), 6.66 (s, 1H, 5-H), 6.34 (s, 1H, 8-H), 5.26 (s, 1H, 1-H), 3.88 (s, 3H, 6-CH₃O), 3.80 (t, *J* = 5.2 Hz, 1H, 3-H), 3.71 (s, 3H, 3-CO₂CH₃) 3.68 (s, 3H, 7-CH₃O), 3.16 (dd, *J* = 16.0 Hz, 5.2 Hz, 1H, 4-H_{β}), 3.01 (dd, *J* = 16.0 Hz, 8.8 Hz, 1H, 4-H_{α}). ¹³C NMR (100 MHz, CDCl₃): δ 173.82, 147.91, 147.44, 144.53, 128.67, 128.37, 127.95, 127.35, 125.65, 111.14, 110.85, 58.85, 55.82, 52.05, 51.38, 31.04. MALDI-TOF MS: 327 ([M-H]⁺) and 328 ([M+H]⁺). EA: calculated C 69.71, H 6.47, N 4.28; found C 69.69, H 6.49, N 4.27.

cis-(15, 35)-6,7-Dimethoxy-1-phenyl-3-hydroxymethyl-1,2,3,4-tetrahydroisoquinoline, 1 and *trans*-(15, 35)-6,7-Dimethoxy-1-phenyl-3-hydroxymethyl-1,2,3,4-tetrahydroisoquinoline, 2: To a suspension of LAH (1.08 g, 27.1 mmol) in THF (10 ml), was added dropwise a solution of *cis*-(1*S*, 3*S*)-6 (5.85 g, 24.6 mmol) in THF (60 ml) at 0 °C. The reaction mixture was then stirred overnight at room temperature followed by cooled to 0 °C and quenched with water. The insoluble precipitates were removed by filtration through celite and the mother liquid was concentrated. The residues was dissolved in dichloromethane and washed with saturated sodium bicarbonate and brine before dried with magnesium sulfate. Solvent was removed by evaporation to give compound 1, yield 89%. Optical purity >98.5% ee, offwhite powder, mp 165-167 °C, $[\alpha]_D^{25} = 22.8^\circ$ (c = 0.5, THF). ¹H NMR (CDCl₃): δ 7.32 (m, 5H: 1-ArH), 6.61 (s, 1H, 5-H), 6.17 (s, 1H, 8-H), 5.06 (s, 1H, 1-H), 3.86 (s, 3H, 6-CH₃O), 3.80 (dd, *J* = 10.69 Hz, 3.56 Hz, 1H, one of 3-CH₂OH), 3.59 (s, 3H, 7-CH₃O), 3.56 (dd, *J* = 10.84 Hz, 7.85 Hz, 1H, one of 3-CH₂OH), 3.25 (m, 1H, 3-H), 2.70 (m, 2H, 4-CH₂); ¹³C NMR (150 MHz, CDCl₃): δ 147.69, 147.14, 144.31, 130.59, 128.93, 128.56, 127.66, 126.87, 111.44, 110.70, 66.21, 62.72, 55.86, 55.83, 55.61, 31.52. MALDI-TOF MS: 298 ([M-H]⁺) and 300 ([M+H]⁺). EA: calculated: C 72.22, H 7.07, N 4.68; Found: C 72.20, H 7.09, N 4.69.

2: This compound was prepared from *trans*-(1*R*, 3*S*)-6 by reduction with LAH in similar procedure for synthesis of 1, yield 87%. Optical purity >97% ee, pale yellow powder, mp 114-116 °C, $[\alpha]_D^{25} = -21.3^\circ$ (c = 0.5, THF). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (m, 3H, 1-ArH), 7.16 (d, *J* = 8.10 Hz, 2H, 1-ArH), 6.62 (s, 1H, 5-H), 6.41 (s, 1H, 8-H), 5.22(s, 1H, 1-H), 3.88 (s, 3H, 6-CH₃O), 3.72 (s, 3H, 7-CH₃O), 3.66 (dd, *J* = 10.74 Hz, 3.77 Hz, one of 3-CH₂OH), 3.48 (dd, *J* = 10.92 Hz, 7.53 Hz, one of 3-CH₂OH), 3.09 (m, 1H, 3-H), 2.66 (m, 2H, 4-CH₂). ¹³C NMR (100 MHz, CDCl₃): δ 147.98, 147.26, 144.59, 128.70, 128.23, 128.15, 127.11, 126.75, 111.50, 110.95, 65.64, 58.92, 55.88, 55.84, 48.83, 30.55. MALDI-TOF MS: 298 ([M-H]⁺) and 300 ([M+H]⁺). EA: calculated: C 72.22, H 7.07, N 4.68; Found: C 72.18, H 7.08, N 4.67.

Synthesis of 3 and 4: (S)-6,7-Dimethoxy-3-hydroxymethyl-1,2,3,4-tetrahydroisoquinoline 3 was prepared from 7 by esterification and reduction as shown in Scheme S2.^{S2} Compound 7 was derived from compound 5 in same

procedure reported by O'Reilly and Lin.^{S3} Characterizations were in consistent with those literatures.

Scheme S2 Synthesis of (S)-6,7-dimethoxy-3-hydroxymethyl-1,2,3,4-tetrahydroisoquinoline **2**. Conditions: a) CH₂O, 37% HCl, H₂O, reflux, 57%; b) methanol, SOCl₂, reflux, 87%; c) LAH, THF, 0 °C-r.t., 89%.

As shown in scheme S3, (*S*)-3-hydroxymethyl-1,2,3,4-tetrahydroisoquinoline **4** was prepared from corresponding carboxylic acid **8** in same procedures for synthesis of **3** and characterizations were in consistent with the literature.^{S4}

Scheme S3 Synthesis of (*S*)-3-hydroxymethyl-1, 2, 3, 4-tetrahydroisoquinoline **1**. Conditions: a) ethanol, SOCl₂, reflux, 91%; b) LAH, THF, 78%.

MALDI-TOF MS spectra: The cyclic amines **1**, **2** and **6** show two molecular ion peaks corresponding to [M-H]⁺ and [M+H]⁺. This unexpected condition is less noticed except sole systematic report by Lou.^{S5} The ammonium, protonated amine by matrix, suffers 1, 2-dehydrogenation under laser irradiation to produce protonated imine as shown in the Scheme S4. The presence of two aryl groups on the methylene directly connected to amine should have played important role of promoting dehydrogenation and stabilizing result iminium ion. The MALDI-TOF spectra are shown in Fig. S1-4.

Scheme S4 Dehydrogenation of amines by laser irradiation in MALDI-TOF MS.⁸⁵

Figure S1 MALDI-TOF spectra of cis-(1S, 3S)-6

Figure S2 MALDI-TOF spectra of trans-(1R, 3S)-6

Figure S3 MALDI-TOF spectra of 1

Figure S4 MALDI-TOF spectra of 2

NMR spectra: The structures of **1**, **2** and **6** are assigned with ¹H, ¹³C and 2D NMR. The ¹H and ¹³C NMR spectra of both epimers of **6** are in agreement with literature.^{S2} The *cis* configuration of **6** and **1** are confirmed with 2D NOESY experiments in which a cross peak ascribed to two chiral center can be observed.

Figure S8 ¹H and ¹³C NMR of 1

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S10 2D NOESY of 1 (mixing time 600 ms)

S3. Gel tests

Preparation of gels: A suspension of **1** in a given solvent (1 ml) was heated to form a solution in a vial followed by cooling to room temperature. The solution in the vial was standing for about 30 minutes at room temperature. Gel formation was determined by inversed tube method. The gelation of various solvent by **1** was summarized in Table S1. Other compounds were not listed in the table for no gelation ability.

Figure S12 Gels of compound **1**. The bottom labels on caps are solvents for gelation: toluene, dioxane, dimethoxyethane, ethyl acetate, isopropanol, acetonitrile, methyl ethyl ketone, mesitylene, THF, *o*-xylene, ethanol and acetone from left to right.

Solvent	$C_{\rm gel}({\rm g\ ml}^{-1})$	transparency	$T_{\rm gel} (^{\circ}{\rm C})^{\rm b}$
toluene	0.8%	transparent	65
xylene	0.7%	transparent	74
mesitylene	0.7%	transparent	76
butanone	3.0%	opaque	38
isopropanol	3.6%	opaque	68
dioxane	4.1%	transparent	48
acetonitrile	4.7%	opaque	76
THF	5.7%	translucent	52
ethyl acetate	5.8%	opaque	82
acetone	6.7%	opaque	>70
DME	9.4%	opaque	78
ethanol	5.8%	translucent	67
methanol	PG (>10%)	-	-
MTBE	Ι	-	-
hexane	Ι	-	-

a) C_{gel} = minimal concentration for gelation; T_{gel} = sol-gel transition temperature; PG = partial gelation; I = insoluble or precipitate. b) measured by inverse tube method

S4. SEM pictures of xerogels

Figure S13 SEM pictures of xerogels from toluene (a), THF (b), mesitylene (c), dioxane (d), acetonitrile (e) and butanone (f).

S5. Gel stability to cations

The tests of gel stability to cations were carried out by covering a toluene gel of 1 (1 ml, 0.8% wt/vol) with a fresh solution of given cation (0.1 mmol in 1 ml water by metal ion) at room temperature. The two-layer sample (aqueous at upper layer) was standing for one week. The gels covered with FeCl₃, CuCl₂ and AgNO₂ were collapsed within 10 hours and displayed phase inversion that aqueous layer immersed at bottom and toluene solution at upper layer. Gels covered with other cations did not show any morphological change after one week. The results are summaried in Table S2.

Metal Salt	Morphological change or phase inversion		
HCl (PH = 2.5)	NO ^a		
LiCl	NO		
LiNO ₃	NO		
NaCl	NO		
KCl	NO		
MgCl ₂	NO		
CaCl ₂	NO		
Mn(OAc) ₂	NO		
CoCl ₂	NO		
NiCl ₂	NO		
ZnCl ₂	NO		
CdCl ₂	NO		
Yb(OTf) ₃	NO		
FeCl ₃	YES, within 8 hour ^{b)}		
CuCl ₂	YES, within 10 hour ^{b)}		
AgNO ₂	YES, within 6 hour ^{b)}		

Table S2. Cation response of toluene gel of 1 to cations

a) No change after 6 months. b) Morphorlogical change started within 1 hour and completed at time indicated.

S6. FTIR spectroscopies

FTIR measurement and data processing: The xerogel **1** was measured with KBr pellete and the data was used directly without further processing. The dichloromethane solution of **1** (2% g ml⁻¹) was measured with 10 mm cell and the data was processed by substrate of blank solvent. Since the signals are weak for the dilute solution, the resulted FTIR spectroscopy was gained for 15 times for convenience in comparison with that of xerogel.

Figure S14 FTIR spectra of xerogel 1 from toluene (a) and dilute solution of 1 in dichloromethane (b)

S7. Single crystal of compound 4

Empirical formula C10H13NO Formula weight 163.21 Temperature (K) 295(2) Crystal system, Space group Monoclinic, P21 $a = 9.6435(14)$ Å, $b = 6.500(1)$ Å, $c = 14.390(2)$ Å $a = 90^{\circ}, \beta = 106.698(2)^{\circ}, \gamma = 90^{\circ}$ Volume (Å ³) 864.0(2) Z, Calculated density (Mg/m ³) 4, 1.255 Absorption coefficient (mm ⁻¹) 0.081 F(000) 352 Crystal size (mm) 0.32 x 0.18 x 0.10 θ range for data collection (°) 2.20 to 26.21 Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique 4797/1863[$R_{imr} = 0.0295$] Completeness to θ 98.5% Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9919 and 0.9745 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1863/1/220 Goodness-of-fit on F^2 1.052 Final R indices [$I > 2\sigma(1)$] $R_1 = 0.0321, wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0322, wR_2 = 0.0820$ Largest diff	Compounds	4		
Formula weight 163.21 Temperature (K) 295(2) Crystal system, Space group Monoclinic, P21 $a = 9.6435(14) Å, b = 6.500(1) Å, c = 14.390(2) Å, a = 90°, \beta = 106.698(2)°, \gamma = 90° A Volume (Å3) 864.0(2) Z, Calculated density (Mg/m3) 4, 1.255 Absorption coefficient (mm-1) 0.081 F(000) 352 Crystal size (mm) 0.32 x 0.18 x 0.10 \theta range for data collection (°) 2.20 to 26.21 Limiting indices -11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17 Reflections collected / unique 4797/1863[R_{int} = 0.0295] Completeness to \theta 98.5% Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9919 and 0.9745 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1.052 Final R indices [I \ge 2\sigma(I)] R_1 = 0.0321, wR_2 = 0.0793 R indices (all data) R_1 = 0.0362, wR_2 = 0.0820 Largest diff. peak and hole (e, Å-3) 0.162 and -0.137 $	Empirical formula	C10H13NO		
Temperature (K) 295(2) Crystal system, Space group Monoclinic, P21 u nit cell dimensions $a = 9.6435(14) Å, b = 6.500(1) Å, c = 14.390(2) Å, a = 90°, \beta = 106.698(2)^\circ, \gamma = 90^\circ Volume (Å3) 864.0(2) Z, Calculated density (Mg/m3) 4, 1.255 Absorption coefficient (mm-1) 0.081 F(000) 352 Crystal size (mm) 0.32 x 0.18 x 0.10 \theta range for data collection (°) 2.20 to 26.21 Limiting indices -11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17 Reflections collected / unique 4797/1863[R_{int} = 0.0295] Completeness to \theta 98.5% Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9919 and 0.9745 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1863/1/220 Goodness-of-fit on F^2 1.052 Final R indices [I \ge 2\sigma(I)] R_1 = 0.0362, wR_2 = 0.0820 Largest diff. peak and hole (e.Å-3) 0.162 and -0.137 CCDC 823631 $	Formula weight	163.21		
Crystal system, Space group Monoclinic, P21 $a = 9.6435(14)$ Å, $b = 6.500(1)$ Å, $c = 14.390(2)$ Å $a = 90^{\circ}$, $\beta = 106.698(2)^{\circ}$, $\gamma = 90^{\circ}$ Volume (Å ³) 864.0(2) Z, Calculated density (Mg/m ³) 4, 1.255 Absorption coefficient (mm ⁻¹) 0.081 $F(000)$ 352 Crystal size (mm) 0.32 x 0.18 x 0.10 θ range for data collection (°) 2.20 to 26.21 Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique 4797/1863[$R_{int} = 0.0295$] Completeness to θ 98.5% Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9919 and 0.9745 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1863/1/220 Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\alpha(I)]$ $R_1 = 0.0321$. $wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0322$. $wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137 CCDC 823631	Temperature (K)	295(2)		
$a = 9.6435(14)$ Å, $b = 6.500(1)$ Å, $c = 14.390(2)$ Å $a = 90^{\circ}$, $\beta = 106.698(2)^{\circ}$, $\gamma = 90^{\circ}$ Volume (Å ³)864.0(2)Z, Calculated density (Mg/m ³)4, 1.255Absorption coefficient (mm ⁻¹)0.081 $F(000)$ 352Crystal size (mm)0.32 x 0.18 x 0.10 θ range for data collection (°)2.20 to 26.21Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le l \le 17$ Reflections collected / unique4797/1863[$R_{int} = 0.0295$]Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0322. wR_2 = 0.0820$ Largest diff. peak and hole (c.Å ⁻³)0.162 and -0.137CCDC823631	Crystal system, Space group	Monoclinic, P2 ₁		
$a = 90^{\circ}, \beta = 106.698(2)^{\circ}, \gamma = 90^{\circ}$ Volume (ų)864.0(2)Z, Calculated density (Mg/m³)4, 1.255Absorption coefficient (mm ⁻¹)0.081 $F(000)$ 352Crystal size (mm)0.32 x 0.18 x 0.10 θ range for data collection (°)2.20 to 26.21Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le l \le 17$ Reflections collected / unique4797/1863[$R_{int} = 0.0295$]Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³)0.162 and -0.137CCDC823631	Unit cell dimensions	a = 9.6435(14) Å, $b = 6.500(1)$ Å, $c = 14.390(2)$ Å		
Volume (Å3)864.0(2)Z, Calculated density (Mg/m3)4, 1.255Absorption coefficient (mm1)0.081 $F(000)$ 352Crystal size (mm)0.32 x 0.18 x 0.10 θ range for data collection (°)2.20 to 26.21Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique4797/1863[$R_{int} = 0.0295$]Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R rindices (all data) $R_1 = 0.0322. wR_2 = 0.0820$ Largest diff. peak and hole (e.Å-3)0.162 and -0.137CCDC823631	Unit cen dimensions	$\alpha = 90^{\circ}, \beta = 106.698(2)^{\circ}, \gamma = 90^{\circ}$		
Z, Calculated density (Mg/m³)4, 1.255Absorption coefficient (mm ⁻¹)0.081 $F(000)$ 352Crystal size (mm)0.32 x 0.18 x 0.10 θ range for data collection (°)2.20 to 26.21Limiting indices-11 ≤ h ≤ 8, -8 ≤ k ≤ 7, -17 ≤ 1 ≤ 17Reflections collected / unique4797/1863[R_{int} = 0.0295]Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R ridices (all data) $R_1 = 0.0322. wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³)0.162 and -0.137CCDC823631	Volume (Å ³)	864.0(2)		
Absorption coefficient (mm ⁻¹)0.081 $F(000)$ 352Crystal size (mm)0.32 x 0.18 x 0.10 θ range for data collection (°)2.20 to 26.21Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique4797/1863[$R_{int} = 0.0295$]Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1.863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³)0.162 and -0.137CCDC823631	Z, Calculated density (Mg/m ³)	4, 1.255		
$F(000)$ 352Crystal size (mm) $0.32 \times 0.18 \times 0.10$ θ range for data collection (°) 2.20 to 26.21 Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique $4797/1863[R_{int} = 0.0295]$ Completeness to θ 98.5% Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137	Absorption coefficient (mm ⁻¹)	0.081		
Crystal size (mm) $0.32 \times 0.18 \times 0.10$ θ range for data collection (°) 2.20 to 26.21 Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique $4797/1863[R_{int} = 0.0295]$ Completeness to θ 98.5% Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321, wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å- ³) 0.162 and -0.137 CCDC 823631	<i>F</i> (000)	352		
θ range for data collection (°)2.20 to 26.21Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le 1 \le 17$ Reflections collected / unique $4797/1863[R_{int} = 0.0295]$ Completeness to θ 98.5% Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(1)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137CCDC 823631	Crystal size (mm)	0.32 x 0.18 x 0.10		
Limiting indices $-11 \le h \le 8, -8 \le k \le 7, -17 \le l \le 17$ Reflections collected / unique $4797/1863[R_{int} = 0.0295]$ Completeness to θ 98.5% Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137 CCDC 823631	θ range for data collection (°)	2.20 to 26.21		
Reflections collected / unique $4797/1863[R_{int} = 0.0295]$ Completeness to θ 98.5% Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9919 and 0.9745 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321$. $wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362$, $wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137 CCDC 823631	Limiting indices	$-11 \le h \le 8, -8 \le k \le 7, -17 \le l \le 17$		
Completeness to θ 98.5%Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.9919 and 0.9745Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters1863/1/220Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³)0.162 and -0.137CCDC823631	Reflections collected / unique	$4797/1863[R_{\rm int} = 0.0295]$		
Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321$. $wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362$, $wR_2 = 0.0820$ Largest diff. peak and hole (e.Å- ³) 0.162 and -0.137 CCDC 823631	Completeness to θ	98.5%		
Max. and min. transmission 0.9919 and 0.9745 Refinement methodFull-matrix least-squares on F^2 Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321$. $wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362$, $wR_2 = 0.0820$ Largest diff. peak and hole (e.Å-3) 0.162 and -0.137 CCDC 823631	Absorption correction	Semi-empirical from equivalents		
Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 1863/1/220 Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137 CCDC 823631	Max. and min. transmission	0.9919 and 0.9745		
Data / restraints / parameters $1863/1/220$ Goodness-of-fit on F^2 1.052 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å-3) 0.162 and -0.137 CCDC 823631	Refinement method	Full-matrix least-squares on F^2		
Goodness-of-fit on F^2 1.052Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å-3)0.162 and -0.137CCDC823631	Data / restraints / parameters	1863/1/220		
Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0321. wR_2 = 0.0793$ R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å ⁻³)0.162 and -0.137CCDC823631	Goodness-of-fit on F^2	1.052		
R indices (all data) $R_1 = 0.0362, wR_2 = 0.0820$ Largest diff. peak and hole (e.Å-3)0.162 and -0.137CCDC823631	Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0321. \ wR_2 = 0.0793$		
Largest diff. peak and hole (e.Å ⁻³) 0.162 and -0.137 CCDC 823631	R indices (all data)	$R_1 = 0.0362, wR_2 = 0.0820$		
CCDC 823631	Largest diff. peak and hole $(e.Å^{-3})$	0.162 and -0.137		
	CCDC	823631		

S8. Geometry optimization of 1

The van der Waals size of molecule **1** is determined through geometry (energy) optimization with Gaussian 03 program through CS Chem3D. The Gaussian optimization is performed at the HF level with basic set 6-31G and R-closed shell wave function.^{S6} As shown in Fig. S16, the optimized geometry displays that the 1, 2, 3, 4-tetrahydroisoquinoline scaffold and hydroxymethyl at 3-position and methoxys on phenyl are located within an approximate plane. The distance of two far atoms (O<u>H</u> and C<u>H</u>₃) on each side is 10.8 Å, while that of O<u>H</u> and CH₃O is 9.4 Å. Thus, the long-axis length of **1** is estimated to be about 10 Å.

Figure S16 Geometry(energy) optimized 1 by gaussian with HF/6-31G of the theory.

References

- S1. S. Aubry, S. Pellet-Rostaing, R. Faure, M. Lemaire, J. Heterocyclic Chem. 2006, 43, 139.
- S2. Y. Haraguchi, S. Kozima, R. Yamaguchi, Tetrahedron Asymmetry 1996, 7, 443.
- S3. N. J. O'Reilly, W. S. Derwin, H. C. Lin, Synthesis 1990, 550.
- R. Yamaguchi, T. Hamasaki, T. Sasaki, T. Ohta, K. Utimoto, S. Kozima, H. Takaya, J. Org. Chem. 1993, 58, 1136.
- S5. X. Lou, A. J. H. Spiering, B. F. M. De Waal, J. L. J. Van Dongen, J. A. J. M. Vekemans, E. W. Meijer, J. Mass Spectrom. 2008, 43, 1110.
- Gaussian 03, Revision B.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,

K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.