Supplementary Information

Synthesis of the glycan moiety of ganglioside HPG-7 with an unusual trimer of sialic acid as the inner sugar residue[†]

Yuki Iwayama,^{a,b} Hiromune Ando,^{*a,b} Hide-Nori Tanaka,^{a,b} Hideharu Ishida^a and Makoto Kiso^{*a,b}

^aDepartment of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan E-mail: hando@ gifu-u.ac.jp; Fax: +81-58-293-3452; Tel.: +81-58-293-3452

^bInstitute for Integrated Cell-Material Sciences (WPI program), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan

Experimental

General procedures: ¹H and ¹³C NMR spectra were recorded with JEOL JNM-ECX400P, JNM-ECA500, JMN-ECA600, and Bruker Avance III 500 spectrometers. Chemical shifts are expressed in ppm (δ) relative to the signal of Me₄Si as an internal standard. High-resolution mass spectrometry (HRMS) was performed with a Bruker Daltonics micrOTOF (ESI-TOF) mass spectrometer. Specific rotations were determined with a Horiba SEPA-300 high-sensitivity polarimeter. Molecular sieves were purchased from Wako Chemicals Inc. and dried at 300 °C for 2 h in a muffle furnace prior to use. Drierite was powdered and dried at 300 °C for 6 h in a muffle furnace prior to use. Solvents as reaction media were dried over molecular sieves and used without further purification. TLC analysis was performed on Merck TLC plates (silica gel 60F₂₅₄ on glass). Compounds were visualized either by exposure to UV light (254 nm) or by spraying 10 % H₂SO₄ solution in EtOH, 20 % phosphomolybdic acid solution in EtOH, or ninhydrin reagent, followed by heating. Flash column chromatography on silica gel (Fuji Silysia Co., 80 mesh and 300 mesh) or Sephadex (Pharmacia LH-20) was performed with the solvent system (v/v) specified. Evaporation and concentration were conducted in vacuo.

Drierite (2.00 g) was added to a solution of 2-(Trimethylsilyl)ethyl (methyl 3,5-dideoxy-5-trifluoroacetamido-D-glycero- α -D-galacto-2-nonulopyranosylonate)-(2 \rightarrow 6)-3,4-di-*O*-benzyl-2-*O*-*p*-methoxybenzyl- β -D-glucopyranoside **S1** (1.00 g, 1.06 mmol) in MeOH (111 mL) and the suspension was stirred for 1 h at room temperature. A 28 % solution of sodium methoxide in MeOH (602 µL) was added and the resulting mixture was stirred for 45 h under reflux. The suspension was stirred under a hydrogen stream for 5 h at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 10:1), whereupon the reaction mixture was neutralized with Dowex-50 (H⁺) and filtered through Celite. The combined filtrate and washings were concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 15:1) to give compound **5** (777 mg, 90 %).

[α]_D = +28.5 ° (c 1.0, CHCl₃); ¹H NMR (500 MHz, CD₃OD): δ 7.26-7.19 (m, 12 H, Ar), 6.79 (d, 2 H, J = 8.7 Hz, Ar), 4.82-4.59 (m, 6 H, ArCH₂), 4.40 (d, 1 H, $J_{1,2} = 7.9$ Hz, H-1^a), 4.35 (dd, 1 H, $J_{5,6} = 1.9$ Hz, $J_{6,7} = 3.4$ Hz, H-6^b), 4.28 (dd, 1 H, $J_{5,6a} = 2.0$ Hz, $J_{gem} = 10.5$ Hz, H-6a^a), 4.06 (m, 1 H, H-4^b), 3.99 (m, 1 H, TMSCH₂CH₂), 3.88 (dd, 1 H, $J_{5,6b} = 6.1$ Hz, H-6b^a), 3.78 (dd, 1 H, $J_{8,9a} = 2.3$ Hz, $J_{gem} = 7.7$ Hz, H-9b^a), 3.71-3.57 (m, 9 H, H-3^a, H-5^a, H-7^b, H-8^b, H-9b^b, OMe, TMSCH₂CH₂), 3.50 (dd, 1 H, $J_{4,5} = 3.0$ Hz, H-5^b), 3.43 (t, 1 H, $J_{3,4} = J_{4,5} = 9.4$ Hz, H-4^a), 3.30 (dd, 1 H, $J_{2,3} = 9.1$ Hz, H-2^a), 2.26 (dd, 1 H, $J_{gem} = 13.7$ Hz, $J_{3eq,4} = 10.4$ Hz, H-3eq^b), 1.99 (dd, 1 H, $J_{3ax,4} = 4.9$ Hz, H-3ax^b), 0.99 pm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (125 MHz, CD₃OD): δ 172.2, 160.7, 140.0, 139.7, 132.0, 130.7, 129.3, 129.2, 129.0, 128.8, 128.6, 128.5, 114.6, 104.2, 97.2, 85.7, 83.2, 79.4, 79.4, 76.4, 75.6, 75.2, 72.2, 71.8, 68.4, 68.3, 64.6, 64.4, 55.7, 55.0, 40.3, 19.4, -1.3 ppm; HRMS: *m/z*: found [M+Na]⁺ 834.3492, C₄₂H₅₇NO₁₃Si calcd for [M+Na]⁺ 834.3491.

Pivaloyl chloride (159 μ L, 1.29 mmol) was added to a solution of compound **5** (522 mg, 643 μ mol) in pyridine (2.6 mL)/CH₂Cl₂ (10.4 mL) at -40 °C. The resulting mixture was stirred for 30 min at -40 °C. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 10:1). After quenching by water, the reaction mixture was diluted with CHCl₃ and the organic layer was washed

with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 45:1 \rightarrow 30:1) to give compound **6** (575 mg, quant.).

[α]_D = +3.7 ° (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.24 (m, 12 H, Ar), 6.83 (d, 2 H, J = 8.7 Hz, Ar), 6.49 (d, 1 H, $J_{NH,5}$ = 6.4 Hz, NH), 4.92-4.63 (m, 6 H, ArCH₂), 4.42 (m, 1 H, H-6^b), 4.40 (d, 1 H, $J_{1,2}$ = 7.8 Hz, H-1^a), 4.35 (dd, 1 H, $J_{8,9a}$ = 2.3 Hz, J_{gem} = 11.9 Hz, H-9a^b), 4.32 (m, 1 H, H-6a^a), 4.24 (dd, 1 H, $J_{8,9b}$ = 5.1 Hz, H-9b^b), 4.11 (m, 1 H, H-4^b), 4.05-3.95 (m, 2 H, H-6b^a, TMSCH₂CH₂), 3.86 (m, 1 H, H-7^b), 3.79 (s, 3 H, OMe), 3.75 (m, 1 H, H-8^b), 3.66-3.59 (m, 3 H, H-3^a, H-4^a, TMSCH₂CH₂), 3.56 (m, 2 H, H-5^a, H-5^b), 3.36 (dd, 1 H, $J_{2,3}$ = 8.7 Hz, H-2^a), 2.92 (d, 1 H, $J_{OH,8}$ = 3.7 Hz, OH-8^b), 2.44 (dd, 1 H, J_{gem} = 14.2 Hz, $J_{3eq,4}$ = 10.5 Hz, H-3eq^b), 1.98 (dd, 1 H, $J_{3ax,4}$ = 5.0 Hz, H-3ax^b), 1.22 (s, 9 H, (CH₃)₃C), 1.07 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (150MHz, CDCl₃): δ 179.3, 170.0, 159.2, 138.4, 130.3, 128.4, 128.3, 127.7, 127.6, 127.6, 113.7, 113.6, 103.6, 95.6, 84.5, 82.0, 75.6, 74.9, 74.6, 74.3, 70.5, 69.5, 69.1, 67.4, 66.3, 62.3, 55.2, 38.9, 29.6, 27.1, 18.4, -1.5 ppm; HRMS: m/z: found [M+Na]⁺ 918.4067, C₄₇H₆₅NO₁₄Si calcd for [M+Na]⁺ 918.4067.

3Å molecular sieves (122 mg) were added to a solution of compounds 7 (230 mg, 405 μ mol) and 6 (182 mg, 203 μ mol) in EtCN (3.7 mL). The suspension was stirred for 1 h at room temperature, and then cooled to -40 °C. NIS (182 mg, 810 μ mol) and TfOH (7.2 μ L, 81.0 μ mol) were added to the solution and stirring was continued for 1 h, when completion of the reaction was confirmed by TLC (PhMe/EtOAc 1:1). The reaction mixture was made alkaline to pH 8 with saturated aqueous NaHCO₃ solution at 0 °C, filtered through Celite, and the filter bed was washed with EtOAc. The combined filtrate and washings were extracted with EtOAc, and the organic layer was washed with saturated aqueous Na₂S₂O₃ solution and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on Sephadex LH-20 (MeOH) and silica gel (PhMe/EtOAc 2:1 \rightarrow 1:1) to give compound **8** (137 mg, 50 %).

 $[\alpha]_{D} = -5.1 \circ (c \ 0.9, CHCl_{3}); {}^{1}H \ NMR \ (500 \ MHz, CDCl_{3}): \delta \ 7.33-7.25 \ (m, \ 12 \ H, \ Ar), \ 6.86 \ (d, \ 1 \ H, \ J_{NH,5} = 6.0 \ Hz, \ NH), \ 6.83 \ (d, \ 2 \ H, \ J = 8.7 \ Hz, \ Ar), \ 5.48 \ (dd, \ 1 \ H, \ J_{6,7} = 1.7 \ Hz, \ J_{7,8} = 9.5 \ Hz, \ H-7^{c}), \ 5.35 \ (m, \ 1 \ H, \ H^{-8}), \ 4.92-4.64 \ (m, \ 7 \ H, \ H^{-4}^{c}, \ ArCH_{2}), \ 4.39 \ (d, \ 1 \ H, \ J_{1,2} = 7.9 \ Hz, \ H^{-1}^{a}), \ 4.35 \ (dd, \ 1 \ H, \ J_{5,6a} = 1.9 \ Hz, \ J_{gem} = 10.5 \ Hz, \ H^{-6}a^{a}), \ 4.30 \ (dd, \ 1 \ H, \ J_{8.9a} = 4.8 \ Hz, \ J_{gem} = 11.7 \ Hz, \ H^{-9}a^{b}),$

4.25-4.20 (m, 3 H, H-6^b, H-9b^b, H-9a^c), 4.11 (m, 1 H, H-7^b), 4.07-4.00 (m, 3 H, H-6^c, H-9b^c, TMSCH₂C*H*₂), 3.97 (m, 1 H, H-5^b), 3.93-3.86 (m, 2 H, H-6b^a, H-8^b), 3.85-3.79 (m, 7 H, H-4^b, COOMe, OMe), 3.62 (m, 2 H, H-3^a, TMSCH₂C*H*₂), 3.56 (m, 1 H, H-5^a), 3.49 (dd, 1 H, $J_{3,4} = 9.6$ Hz, $J_{4,5} = 9.0$ Hz, H-4^a), 3.39 (dd, 1 H, $J_{2,3} = 9.1$ Hz, H-2^a), 3.27 (t, 1 H, $J_{4,5} = J_{5,6} = 10.2$ Hz, H-5^c), 3.08 (br s, 1 H, OH-7^b), 2.69 (dd, 1 H, $J_{gem} = 12.6$ Hz, $J_{3eq,4} = 4.5$ Hz, H-3eq^c), 2.52 (d, 1 H, $J_{OH,8} = 8.7$ Hz, OH-8^b), 2.26 (dd, 1 H, $J_{gem} = 14.2$ Hz, $J_{3eq,4} = 10.7$ Hz, H-3eq^b), 2.22-2.07 (4 s, 12 H, 4 Ac), 1.99 (dd, 1 H, $J_{3ax,4} = 5.5$ Hz, H-3ax^b), 1.79 (t, 1 H, $J_{3ax,4} = 12.6$ Hz, H-3ax^c), 1.22 (s, 9 H, (CH₃)₃C), 1.05 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 179.1, 171.2, 170.3, 169.6, 169.5, 169.3, 167.9, 159.2, 138.7, 138.3, 130.8, 129.8, 128.4, 128.3, 128.0, 127.8, 127.7, 127.5, 113.7, 103.1, 99.9, 95.8, 84.7, 82.0, 79.1, 78.1, 75.6, 74.7, 74.3, 74.2, 72.7, 72.4, 71.7, 70.3, 67.8, 67.5, 66.9, 66.0, 63.8, 62.8, 60.3, 59.4, 55.2, 53.3, 52.3, 38.8, 37.8, 37.5, 29.7, 27.2, 21.0, 20.9, 20.8, 20.6, 18.6, 14.2, -1.4 ppm; HRMS: *m*/*z*: found [M+Na]⁺ 1375.5398, C₆₅H₈₈N₄O₂₅Si calcd for [M+Na]⁺ 1375.5399.

Acetic anhydride (1.0 mL) and DMAP (1.0 mg) were added to a solution of compound **8** (243 mg, 180 µmol) in pyridine (2.0 mL). The reaction mixture was stirred for 2 h at room temperature. Completion of the reaction was confirmed by TLC (hexane/EtOAc 1:1). After quenching with MeOH, the residual mixture was diluted with EtOAc and washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was exposed to high vacuum for 2 h. The crude material was redissolved in THF (4.5 mL), and hydrazine acetate (33.0 mg, 359 µmol) was added to the solution. The reaction mixture was stirred for 12 h at room temperature. Completion of the reaction was confirmed by TLC (hexane/EtOAc 1:1). The mixture was then diluted with EtOAc, washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 1:1) to give compound **S2** (256 mg, 99 %). [α]_D = -59.0 ° (c 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.30-7.23 (m, 12 H, Ar), 6.93 (d, 1 H, $J_{NH,5}$ = 5.7 Hz, NH), 6.82 (d, 2 H, J = 8.6 Hz, Ar), 5.83 (dd, 1 H, $J_{6,7}$ = 1.6 Hz, $J_{7,8}$ = 9.6 Hz, H-7^b), 5.48 (dd, 1 H, $J_{6,7}$ = 1.6 Hz, $J_{7,8}$ = 9.6 Hz, H-7^c), 5.40 (m, 2 H, H-8^b, H-8^c), 4.89-4.64 (m, 7 H, H-4^c,

ArCH₂), 4.39 (d, 1 H, $J_{1,2} = 7.9$ Hz, H-1^a), 4.37 (dd, 1 H, $J_{8.9a} = 4.4$ Hz, $J_{gem} = 11.6$ Hz, H-9a^b), 4.33 (d, 1 H, $J_{5,6} = 9.4$ Hz, H-6^b), 4.22 (dd, 1 H, $J_{8.9a} = 2.2$ Hz, $J_{gem} = 12.1$ Hz, H-9a^c), 4.19 (dd, 1 H, $J_{5,6a} = 1.5$ Hz, $J_{gem} = 10.2$ Hz, H-6a^a), 4.09 (dd, 1 H, $J_{8.9b} = 4.9$ Hz, H-9b^b), 4.06-3.99 (m, 3 H, H-6^c, H-9b^c, TMSCH₂CH₂), 3.84-3.72 (m, 9 H, H-6b^a, H-4^b, H-5^b, COOMe, OMe), 3.63-3.49 (m, 5 H, H-3^a, H-4^a, H-5^a, H-5^c, TMSCH₂CH₂), 3.40 (dd, 1 H, $J_{2,3} = 9.0$ Hz, H-2^a), 2.58 (dd, 1 H, $J_{gem} = 12.6$ Hz, $J_{3eq,4} = 4.7$ Hz, H-3eq^c), 2.26 (dd, 1 H, $J_{gem} = 14.0$ Hz, $J_{3eq,4} = 5.9$ Hz, H-3eq^b), 2.19-1.93 (m, 19 H, H-3ax^b, 6 Ac), 1.58 (t, 1 H, $J_{3ax,4} = 12.6$ Hz, H-3ax^c), 1.21 (s, 9 H, (CH₃)₃C), 1.05 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 177.6, 171.2, 170.4, 169.9, 169.9, 169.6, 169.5, 169.3, 169.2, 168.2, 159.1, 138.7, 138.6, 130.8, 129.7, 129.6, 129.0, 128.2, 128.2, 127.8, 127.6, 127.4, 125.2, 113.7, 113.5, 103.0, 100.0, 95.5, 84.6, 81.8, 78.0, 75.6, 75.5, 74.4, 74.3, 73.9, 72.9, 72.5, 71.8, 70.4, 69.0, 67.8, 67.4, 66.8, 63.5, 62.9, 60.8, 58.6, 55.2, 53.1, 51.8, 38.7, 36.7, 35.9, 29.6, 27.1, 20.9, 20.8, 20.8, 20.7, 20.5, 18.5, -1.5 ppm; HRMS: m/z: found [M+Na]⁺ 1459.5610, C₆₉H₉₂N₄O₂₇Si calcd for [M+Na]⁺ 1459.5610.

Di-*t*-butyl dicarbonate (20.7 μ L, 94.8 μ mol) and DMAP (0.4 mg, 3.16 μ mol) were added to a solution of compound **S2** (90.8 mg, 63.2 μ mol) in MeCN (1.3 mL). The reaction mixture was stirred for 20 min at room temperature. Completion of the reaction was confirmed by TLC (hexane/EtOAc 2:1). The mixture was diluted with CHCl₃, and washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 5:2 \rightarrow 2:1) to give compound **S3** (95.9 mg, 99 %).

 $[\alpha]_{D} = -45.2 \circ (c \ 0.6, CHCl_{3}); {}^{1}H \ NMR \ (500 \ MHz, CDCl_{3}): \delta \ 7.29-7.25 \ (m, 12 \ H, Ar), 6.82 \ (d, 2 \ H, J = 8.7 \ Hz, Ar), 5.97 \ (dd, 1 \ H, J_{6,7} = 2.0 \ Hz, J_{7,8} = 9.6 \ Hz, H-7^{b}), 5.62 \ (m, 1 \ H, H-8^{c}), 5.53 \ (dd, 1 \ H, J_{6,7} = 0.7 \ Hz, J_{7,8} = 10.3 \ Hz, H-7^{c}), 5.36 \ (m, 1 \ H, H-8^{b}), 4.90-4.64 \ (m, 8 \ H, H-5^{b}, H-4^{c}, ArCH_{2}), 4.41 \ (dd, 1 \ H, J_{8,9a} = 2.6 \ Hz, J_{gem} = 12.9 \ Hz, H-9a^{c}), 4.38 \ (d, 1 \ H, J_{1,2} = 7.9 \ Hz, H-1^{a}), 4.29 \ (m, 2 \ H, H-6^{b}, H-9a^{b}), 4.16-4.09 \ (m, 4 \ H, H-6a^{a}, H-4^{b}, H-9b^{b}, H-9b^{c}), 4.03 \ (m, 1 \ H, TMSCH_{2}CH_{2}), 3.98 \ (d, 1 \ H, J_{5,6} = 10.7 \ Hz, H-6^{c}), 3.78-3.72 \ (m, 7 \ H, H-6b^{a}, COOMe, OMe), 3.63-3.56 \ (m, 3 \ H, H-3^{a}, H-4^{a}, TMSCH_{2}CH_{2}), 3.53-3.47 \ (m, 2 \ H, H-5^{a}, H-5^{c}), 3.40 \ (dd, 1 \ H, J_{2,3} = 8.3 \ Hz, H-2^{a}), 2.57 \ (dd, 1 \ H, J_{gem}$

= 12.9 Hz, $J_{3eq,4} = 5.0$ Hz, H-3eq^c), 2.30 (dd, 1 H, $J_{gem} = 14.3$ Hz, $J_{3eq,4} = 5.8$ Hz, H-3eq^b), 2.20 (dd, 1 H, $J_{3ax,4} = 10.7$ Hz, H-3ax^b), 2.16-1.95 (6 s, 18 H, 6 Ac), 1.54 (s, 9 H, (CH₃)₃C), 1.47 (dd, 1 H, $J_{3ax,4} = 12.6$ Hz, H-3ax^c), 1.19 (s, 9 H, (CH₃)₃C), 1.06 ppm (m, 2 H, TMSC H_2 CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 177.8, 170.8, 170.0, 169.8, 169.7, 169.4, 169.1, 168.3, 164.2, 159.1, 149.9, 138.7, 138.5, 130.7, 129.8, 128.3, 128.2, 128.2, 127.7, 127.7, 127.6, 127.4, 113.7, 103.0, 98.7, 95.6, 84.5, 84.4, 81.8, 77.9, 75.5, 75.1, 74.4, 74.2, 73.7, 72.1, 71.8, 70.7, 70.0, 69.0, 67.3, 67.0, 66.9, 63.3, 62.0, 60.6, 58.9, 55.2, 52.9, 52.4, 38.6, 36.9, 35.8, 28.1, 27.1, 20.9, 20.8, 20.8, 20.7, 20.6, 18.5, -1.5 ppm; HRMS: m/z: found [M+Na]⁺ 1559.6137, C₇₄H₁₀₀N₄O₂₉Si calcd for [M+Na]⁺ 1559.6135.

A 28 % solution of sodium methoxide in MeOH (397 µL) was added to a solution of compound **S3** (95.9 mg, 62.4 µmol) and the resulting mixture was stirred for 2.5 h with the monitoring the reaction by TLC (CHCl₃/MeOH 6:1). The reaction mixture was then neutralized with Dowex-50 (H⁺), filtered, and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 30:1 \rightarrow 25:1 \rightarrow 20:1) to give compound **9** (64.2 mg, 83 %). [α]_D = -23.3 ° (c 1.2, CHCl₃); ¹H NMR (500 MHz, CD₃OD): δ 7.18-7.10 (m, 12 H, Ar), 6.70 (d, 2 H, J = 8.6 Hz, Ar), 6.58 (d, 1 H, $J_{NH,5} = 8.6$ Hz, NH), 4.75-4.48 (m, 6 H, ArCH₂), 4.26 (d, 1 H, $J_{1,2} = 8.1$ Hz, H-1^a), 3.96 (m, 1 H, H-4^b), 3.73, 3.70, 3.63 (3 s, 9 H, 2 COOMe, OMe), 3.25 (m, 1 H, H-5^b), 3.18 (dd, 1 H, $J_{2,3} = 8.6$ Hz, H-2^a), 2.57 (dd, 1 H, $J_{gem} = 13.2$ Hz, $J_{3eq,4} = 4.6$ Hz, H-3eq^c), 2.35 (dd, 1 H, $J_{gem} = J_{3ax,4} = 12.6$ Hz, H-3ax^c), 1.38 (s, 9 H, (CH₃)₃C), 0.90 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (125 MHz, CD₃OD): δ 170.3, 160.6, 159.1, 140.0, 139.6, 132.0, 130.7, 129.3, 129.3, 129.1, 128.8, 128.7, 128.5, 114.6, 111.7, 104.2, 100.0, 98.8, 85.8, 83.1, 81.4, 78.6, 76.5, 75.7, 75.7, 75.2, 75.0, 73.3, 72.4, 70.9, 70.3, 70.1, 68.3, 64.6, 64.5, 64.1, 56.8, 55.7, 53.5, 52.7, 52.6, 41.7, 39.9, 28.8, 19.3, -1.3 ppm; HRMS: m/z: found [M+Na]⁺ 1255.5188, C₅₈H₈₄N₄O₂₃Si calcd for [M+Na]⁺ 1255.5188.

MsOH (4.00 mL, 61.7 mmol) was added to a solution of compound 10 (9.00 g, 15.4 mmol) and the mixture was stirred for 36 h under reflux. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH/AcOH 5:1:0.1). The mixture was then neutralized with triethylamine and the volatiles were co-evaporated with toluene. The residue was exposed to high vacuum for 3 h. The crude material was redissolved in 1 M aqueous NaHCO₃ solution (15.4 mL) and then 1 M TrocOSu solution in 1,4-dioxane (16.9 mL) was added to the solution. The mixture was stirred for 1 h at room temperature with the monitoring of the reaction by TLC (CHCl₃/MeOH 5:1). The reaction mixture was then diluted with EtOAc, washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was exposed to high vacuum for 30 h. The curde material was redissolved in MeCN (102 mL)/THF (52 mL) and DMP (2.83 mL, 23.1 mmol) and CSA (358 mg, 1.54 mmol) were added to the solution. The reaction mixture was strirred for 15 min at room temperature, and the progress of the reaction was monitored by TLC (hexane/EtOAc 1:1). After quenching the reaction by triethylamine, the reaction mixture was concentrated and the residual volatile was co-evaporated with toluene. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 100:1 \rightarrow 80:1 \rightarrow 70:1) to give compound S4 (5.92 g, 65 %). $[\alpha]_{D} = -6.1 \circ (c \ 1.0, CHCl_{3}); {}^{1}H \ NMR \ (500 \ MHz, CDCl_{3}): \delta \ 7.55 - 7.33 \ (m, 5 \ H, Ph), 5.25 \ (d, 1 \ H, Ph), 5$ $J_{\rm NH,5} = 7.7$ Hz, NH), 4.85 (d, 1 H, $J_{\rm gem} = 12.1$ Hz, Cl₃CCH₂), 4.61 (d, 1 H, Cl₃CCH₂), 4.15 (dd, 1 H, $J_{7,8} = 7.2$ Hz, $J_{8,9a} = 6.3$ Hz, $J_{8,9b} = 6.5$ Hz, H-8), 4.06 (dd, 1 H, $J_{gem} = 8.5$ Hz, H-9a), 3.94 (dd, 1 H, H-9b), 3.70 (m, 2 H, H-4, H-5), 3.61 (t, 1 H, J_{7,OH} = 7.3 Hz, H-7), 3.51 (s, 3 H, COOMe), 3.43 (d, 1 H, $J_{5.6} = 9.4$ Hz, H-6), 3.28 (d, 1 H, OH-7), 2.94 (dd, 1 H, $J_{gem} = 12.9$ Hz, $J_{3eq,4} = 4.1$ Hz, H-3eq), 2.80 (d, 1 H, *J*_{4,OH} = 3.6 Hz, OH-4), 1.90 (dd, 1 H, *J*_{3ax,4} = 11.0 Hz, H-3ax), 1.33, 1.25 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (125 MHz, CDCl₃): δ 169.1,155.9, 136.7, 130.0, 128.9, 128.6, 108.8, 95.2, 87.3, 76.1, 74.9, 74.7, 70.1, 68.2, 67.2, 54.0, 52.3, 40.7, 26.7, 25.4 ppm; HRMS: *m/z*: found [M+Na]⁺ 610.0443, $C_{22}H_{28}Cl_3NO_9S$ calcd for $[M+Na]^+$ 610.0443.

DMAP (2.1 mg, 17.0 μ mol) and K₂CO₃ (235 mg, 1.70 mmol) were added to a solution of compound **S4** (200 mg, 340 μ mol) in CH₂Cl₂ (6.8 mL). The mixture was then cooled to -50 °C, and chloroacetic anhydride (67.0 mg, 374 μ mol) was added to the solution. The reaction mixture was

stirred for 3 h at -50 °C with monitoring of the reaction by TLC (PhMe/EtOAc 5:2). After quenching the reaction with water, the resulting mixture was extracted with CHCl₃, and combined extracts were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (PhMe/EtOAc 5:2) to give compound **S5** (217 mg, 96 %).

[α]_D = -67.0 ° (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.55-7.33 (m, 5 H, Ph), 5.48 (d, 1 H, $J_{NH,5} = 9.0$ Hz, NH), 5.11 (td, 1 H, $J_{3ax,4} = J_{4,5} = 11.7$ Hz, $J_{3eq,4} = 5.1$ Hz, H-4), 4.78 (d, 1 H, $J_{gem} = 12.1$ Hz, Cl₃CCH₂), 4.67 (d, 1 H, Cl₃CCH₂), 4.17 (dd, 1 H, $J_{7,8} = 7.2$ Hz, $J_{8,9a} = 6.3$ Hz, $J_{8,9b} = 6.1$ Hz, H-8), 4.06 (m, 3 H, H-9a, ClCH₂), 3.95 (dd, 1 H, H-9b), 3.88 (dd, 1 H, $J_{5,6} = 10.6$ Hz, H-5), 3.60 (dd, 1 H, $J_{7,OH} = 6.9$ Hz, H-7), 3.53 (s, 3 H, COOMe), 3.49 (d, 1 H, H-6), 3.18 (d, 1 H, OH-7), 2.91 (dd, 1 H, $J_{gem} = 12.7$ Hz, H-3eq), 1.99 (dd, 1 H, H-3ax), 1.34, 1.26 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (125 MHz, CDCl₃): δ 168.5, 167.5, 155.4, 36.7, 130.0, 128.7, 128.6, 108.8, 95.2, 86.9, 77.2, 76.0, 74.7, 74.5, 70.8, 69.9, 67.0, 52.4, 51.9, 40.6, 37.3, 26.8, 25.3 ppm; HRMS: *m*/*z*: found [M+Na]⁺ 686.0155, C₂₄H₂₉Cl₄NO₁₀S calcd for [M+Na]⁺ 686.0158.

Acetic anhydride (655 μ L, 6.94 mmol) and DMAP (42.0 mg, 347 μ mol) were added to a solution of compound **S5** (2.31 g, 3.47 mmol) in THF (34.7 mL)¹. The reaction mixture was stirred for 3.5 h at room temperature. Completion of the reaction was confirmed by TLC (hexane/EtOAc 2:1). After quenching with EtOH, the residual mixture was diluted with EtOAc and washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 2:1 \rightarrow 3:2) to give compound **11** (2.43 g, 99 %).

[α]_D = +19.4 ° (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.35 (m, 5 H, Ph), 5.31 (dd, 1 H, $J_{6,7}$ = 1.4 Hz, $J_{7,8}$ = 5.5 Hz, H-7), 5.12 (ddd, 1 H, $J_{3ax,4}$ = 11.9 Hz, $J_{3eq,4}$ = 5.0 Hz, $J_{4,5}$ = 10.5 Hz, H-4), 4.87 (d, 1 H, $J_{NH,5}$ = 9.6 Hz, NH), 4.79 (d, 1 H, J_{gem} = 11.9 Hz, Cl₃CCH₂), 4.51 (d, 1 H, Cl₃CCH₂), 4.27 (dd, 1 H, $J_{8,9a}$ = 6.0 Hz, $J_{8,9b}$ = 6.4 Hz, H-8), 4.03-3.91 (m, 4 H, H-9a, H-9b, ClCH₂), 3.79 (dd, 1 H, $J_{5,6}$ = 10.5 Hz, H-6), 3.64 (s, 3 H, COOMe), 3.59 (dd, 1 H, H-5), 2.91 (dd, 1 H, J_{gem} = 12.8 Hz, H-3eq), 2.17 (s, 3 H, Ac), 1.94 (dd, 1 H, H-3ax), 1.34, 1.29 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 169.0, 166.7, 154.2, 135.1, 129.1, 128.8, 128.8, 109.3, 97.8, 95.2, 74.6, 73.1, 71.1, 70.8, 69.5, 67.2, 66.9, 61.1, 52.9, 50.9, 40.5, 36.8, 26.6, 25.3, 20.9 ppm; HRMS:

¹ A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, *J. Am. Chem. Soc.* 2007, **129**, 14775-14779.

m/z: found $[M+Na]^+$ 728.0264, C₂₆H₃₁Cl₄NO₁₁S calcd for $[M+Na]^+$ 728.0264.

3Å molecular sieves (1.0 g) were added to a solution of compounds **11** (400 mg, 565 µmol) and **12** (96.4 µL, 679 µL) in EtCN (11.3 mL). The suspension was stirred for 1 h at room temperature, then cooled to -60 °C. NIS (161 mg, 679 µmol) and TfOH (18.1 µL, 204 µmol) were added to the solution and stirring was continued for 2 h, after which TLC analysis (CHCl₃/acetone 25:1) indicated completion of the reaction. The reaction mixture was made alkaline to pH 8 with saturated aqueous NaHCO₃ solution at 0 °C, filtered through Celite, and the filter bed was washed with EtOAc. The combined filtrate and washings were extracted with EtOAc, and the organic layer was washed with saturated aqueous Na₂S₂O₃ solution and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/acetone 33:1 \rightarrow 30:1) to give compounds **S6** (249 mg, 58 %) and **S7** (151 mg, 35 %).

Compound **S6**: $[\alpha]_D = +3.1 \circ (c \ 1.0, CHCl_3)$; ¹H NMR (600 MHz, CDCl_3): $\delta 7.39-7.33 (m, 5 \ H, Ph)$, 5.33 (dd, 1 H, $J_{6,7} = 1.4 \ Hz, J_{7,8} = 4.8 \ Hz, H-7$), 5.26 (ddd, 1 H, $J_{3ax,4} = 11.0 \ Hz, J_{3eq,4} = 4.9 \ Hz, J_{4,5} = 10.4 \ Hz, H-4$), 5.19 (d, 1 H, $J_{gem} = 15.9 \ Hz, PhCH_2$), 5.17 (d, 1 H, PhCH₂), 5.00 (d, 1 H, $J_{NH,5} = 9.8 \ Hz, NH$), 4.78 (d, 1 H, $J_{gem} = 12.1 \ Hz, Cl_3CCH_2$), 4.54 (d, 1 H, Cl_3CCH_2), 4.36 (s, 2 H, OCH₂CO), 4.30 (dd, 1 H, $J_{gem} = 6.9 \ Hz, J_{8,9b} = 6.2 \ Hz, H-8$), 4.02 (m, 3 H, H-9a, ClCH₂), 3.93 (dd, 1 H, $J_{gem} = 8.3 \ Hz, H-9b$), 3.90 (dd, 1 H, $J_{5,6} = 11.0 \ Hz, H-6$), 3.76 (s, 3 H, COOMe), 3.67 (dd, 1 H, H-5), 2.85 (dd, 1 H, $J_{gem} = 12.4 \ Hz, H-3eq$), 2.13 (s, 3 H, Ac), 1.99 (t, 1 H, H-3ax), 1.35, 1.34 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (100 MHz, CDCl₃): $\delta 170.3, 168.9, 167.2, 166.9, 154.0, 135.1, 128.6, 128.6, 108.8, 98.3, 95.1, 75.0, 74.6, 72.8, 70.4, 69.0, 66.9, 65.8, 61.7, 53.0, 51.6, 40.5, 37.1, 26.5, 25.3, 20.8 ppm; HRMS:$ *m/z*: found [M+Na]⁺ 784.0705, C₂₉H₃₅Cl₄NO₁₄ calcd for [M+Na]⁺ 784.0704.

Compound **S7**: $[\alpha]_D = -12.2 \circ (c 1.2, CHCl_3)$; ¹H NMR (500 MHz, CDCl_3): δ 7.44-7.35 (m, 5 H, Ph), 5.31 (m, 1 H, H-4), 5.28 (d, 1 H, $J_{gem} = 11.9$ Hz, PhC H_2), 5.03 (dd, 1 H, $J_{6,7} = 1.9$ Hz, $J_{7,8} = 8.4$ Hz, H-7), 4.84 (d, 1 H, $J_{gem} = 12.1$ Hz, Cl₃CCH₂), 4.67 (d, 1 H, $J_{NH,5} = 10.4$ Hz, NH), 4.50 (d, 1 H, Cl₃CCH₂), 4.47 (d, 1 H, $J_{gem} = 16.3$ Hz, OCH₂CO), 4.28 (d, 1 H, OCH₂CO), 4.27 (m, 1 H, H-8), 4.04 (dd, 1 H, $J_{5,6} = 10.8$ Hz, H-6), 4.02-3.95 (m, 3 H, H-9a, ClCH₂), 3.89-3.81 (m, 2 H, H-5, H-9b), 3.76 (s, 3 H, COOMe), 2.57 (dd, 1 H, $J_{gem} = 13.1$ Hz, H-3eq), 2.10 (s, 3 H, Ac), 2.03 (t, 1 H, H-3ax), 1.34, 1.28 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (125 MHz, CDCl₃): δ 170.2, 169.0, 166.7, 166.6, 154.2, 135.0, 129.0, 128.8, 128.7, 109.2, 97.7, 95.2, 74.6, 73.1, 71.1, 70.8, 69.5, 67.1, 66.9, 61.0, 52.8, 50.9, 40.5, 36.7, 26.5, 25.2, 20.8 ppm; HRMS: m/z: found [M+Na]⁺ 784.0804, C₂₉H₃₅Cl₄NO₁₄ calcd for

 $[M+Na]^+$ 784.0704.

Hydrazine acetate (90.0 mg, 972 μ mol) was added to the solution of compound **S6** (296 mg, 389 μ mol) in THF (3.9 mL)/DMF (3.9 mL). The mixture was stirred for 3.5 h at room temperature with monitoring of the reaction by TLC (hexane/EtOAc 1:1). The mixture was diluted with EtOAc, and this solution was washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 3:4) to give compound **13** (244 mg, 92 %).

[α]_D = +8.7 ° (c 1.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 7.39-7.33 (m, 5 H, Ph), 5.48 (d, 1 H, $J_{NH,5} = 8.9$ Hz, NH), 5.33 (d, 1 H, $J_{6,7} = 4.1$ Hz, H-7), 5.20 (d, 1 H, $J_{gem} = 11.7$ Hz, PhC H_2), 5.17 (d, 1 H, PhC H_2), 4.71 (d, 1 H, $J_{gem} = 12.3$ Hz, Cl₃CCH₂), 4.64 (d, 1 H, Cl₃CCH₂), 4.39 (d, 1 H, $J_{gem} = 16.5$ Hz, OCH₂CO), 4.31 (m, 2 H, H-8, OCH₂CO), 4.05 (m, 2 H, H-4, H-9a), 3.94 (m, 2 H, H-6, H-9b), 3.74 (s, 3 H, COOMe), 3.32 (dd, 1 H, $J_{4,5} = 8.3$ Hz, $J_{5,6} = 10.3$ Hz, H-5), 3.14 (d, 1 H, $J_{OH,7} = 4.8$ Hz, OH-7), 2.78 (dd, 1 H, $J_{gem} = 13.7$ Hz, $J_{3eq,4} = 5.2$ Hz, H-3eq), 2.09 (s, 3 H, Ac), 1.96 (dd, 1 H, $J_{3ax,4} = 9.6$ Hz, H-3ax), 1.34, 1.26 ppm (2 s, 6 H, (CH₃)₂C); ¹³C NMR (150 MHz, CDCl₃): δ 170.6, 169.5, 167.8, 154.4, 135.1, 128.6, 128.6, 128.5, 108.8, 98.7, 95.2, 75.2, 74.6, 72.3, 69.5, 67.5, 66.9, 65.7, 61.4, 55.0, 52.8, 39.0, 29.7, 26.4, 25.4, 20.7 ppm; HRMS: m/z: found [M+Na]⁺ 708.0986, C₂₇H₃₄Cl₃NO₁₃ calcd for [M+Na]⁺ 708.0988.

80 % aqueous AcOH (180 mL) was added to a flask containing compound **S8** (3.75 g, 9.00 mmol). The mixture was stirred for 3 h at 45 °C, as the progress of the reaction was monitored by TLC (hexane/EtOAc 1:1). The reaction mixture was then concentrated, the remaining volatiles were co-evaporated with toluene, and the residue was exposed to high vacuum for 20 h. The crude material was redissolved in pyridine (90.0 mL) and then acetic anhydride (3.40 mL, 36.0 mmol) and DMAP (110 mg, 0.900 mmol) were added to the solution at 0 °C. The mixture was stirred for 45 min at room temperature, when completion of the reaction was confirmed by TLC (hexane/EtOAc 2:1). After quenching with EtOH, the mixture was concentrated and the residual volatiles were co-evaporated with toluene. The residue was redissolved in EtOAc, and this solution was washed

with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 2:1) to give compound **14** (3.51 g, 85 %).

 $[\alpha]_{D}$ = +15.0 ° (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.61-6.84 (m, 9 H, Ar), 5.24 (d, 1 H, $J_{3,4}$ = 3.2 Hz, H-4), 5.00 (dd, 1 H, $J_{2,3}$ = 9.6 Hz, H-3), 4.75 (d, 1 H, J_{gem} = 10.5 Hz, ArCH₂), 4.69 (d, 1 H, $J_{1,2}$ = 9.7 Hz, H-1), 4.51 (d, 1 H, ArCH₂), 3.78 (s, 3 H, OMe), 3.75 (m, 1 H, H-5), 3.71 (dd, 1 H, H-2), 2.15 (2 s, 6 H, 2 Ac), 1.21 ppm (d, 3 H, $J_{5,6}$ = 6.8 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 169.8, 159.3, 133.5, 131.8, 130.0, 129.5, 128.8, 127.5, 113.7, 87.5, 74.9, 74.6, 72.7, 70.8, 55.2, 20.7, 20.6, 16.5 ppm; HRMS: *m/z*: found [M+Na]⁺ 483.1448, C₂₄H₂₈O₇S calcd for [M+Na]⁺ 483.1448.

4Å molecular sieves (605 mg) were added to a solution of compounds **14** (331 mg, 718 μ mol) and **13** (274 mg, 399 μ mol) in *t*BuOMe (14.4 mL)/CH₂Cl₂ (14.4 mL). The suspension was stirred for 1 h at room temperature, then cooled to -40 °C. NIS (204 mg, 862 μ mol) and TfOH (7.6 μ L, 86.2 μ mol) were added to the solution and stirring was continued for 2 h, after which TLC analysis (PhMe/EtOAc 2:1) indicated completion of the reaction. The reaction mixture was made alkaline to pH 8 with saturated aqueous NaHCO₃ solution at 0 °C, filtered through Celite, and the filter bed was washed with EtOAc. The combined filtrate and washings were extracted with EtOAc, and the organic layer was washed with saturated aqueous Na₂S₂O₃ solution and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (PhMe/EtOAc 2:1) to give compound **S9** (313 mg, 76 %).

[α]_D = +50.0 ° (c 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.37-7.32 (m, 5 H, Ph), 7.24, 6.89 (2 d, 4 H, J = 8.6 Hz, Ar), 5.30 (dd, 1 H, $J_{6,7} = 1.2$ Hz, $J_{7,8} = 5.1$ Hz, H-7^a), 5.21-5.14 (m, 5 H, H-3^b, H-4^b, NH, PhCH₂), 4.88 (d, 1 H, $J_{1,2} = 4.0$ Hz, H-1^b), 4.84, 4.45 (2 d, 2 H, $J_{gem} = 12.1$ Hz, Cl₃CCH₂), 4.59, 4.52 (2 d, 2 H, $J_{gem} = 11.4$ Hz, ArCH₂), 4.39, 4.32 (2 d, 2 H, $J_{gem} = 16.1$ Hz, OCH₂CO), 4.29 (m, 1 H, H-8^a), 4.21-4.13 (m, 2 H, H-4^a, H-5^b), 4.06 (dd, 1 H, $J_{gem} = 8.6$ Hz, $J_{8,9a} = 6.9$ Hz, H-9a^a), 4.00 (d, 1 H, $J_{5,6} = 10.9$ Hz, H-6^a), 3.94 (dd, 1 H, H-9b^a), 3.82-3.72 (m, 7 H, H-2^b, COOMe, ArOMe), 3.30 (dd, 1 H, $J_{4,5} = 10.3$ Hz, $J_{NH,5} = 8.6$ Hz, H-5^a), 2.84 (dd, 1 H, $J_{gem} = 12.6$ Hz, $J_{3eq,4} = 4.6$ Hz, H-3eq^a), 2.15, 2.12, 1.98 (3 s, 9 H, 3 Ac), 1.77 (dd, 1 H, $J_{3ax,4} = 11.5$ Hz, H-3ax^a), 1.34 (s, 6 H, (CH₃)₂C), 1.06 ppm (d, 3 H, $J_{5,6} = 6.3$ Hz, H-6^b); ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 170.3, 169.8, 169.1, 167.4,

159.4, 153.4, 135.2, 129.8, 129.5, 128.6, 128.5, 128.4, 113.9, 108.7, 98.5, 95.2, 95.0, 75.2, 74.6, 72.9, 72.4, 72.0, 71.4, 71.0, 69.8, 69.5, 66.7, 65.8, 64.9, 61.5, 55.2, 52.7, 52.4, 37.0, 29.6, 26.4, 25.4, 20.9, 20.7, 20.6, 16.0 ppm; HRMS: *m*/*z*: found [M+Na]⁺ 1058.2354, C₄₅H₅₆Cl₃NO₂₀ calcd for [M+Na]⁺ 1058.2353.

2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (80.2 mg, 335 μ mol) was added to a solution of compound **S9** (232 mg, 224 μ mol) in CH₂Cl₂ (4.5 mL)/H₂O (450 μ L). The suspension was stirred for 4 h at room temperature. Completion of the reaction was confirmed by TLC (hexane/EtOAc 1:1). The mixture was diluted with CHCl₃, and the organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 1:1) to give compound **S10** (195 mg, 95 %).

[α]_D = +81.0 ° (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.33 (m, 5 H, Ph), 5.35 (dd, 1 H, $J_{6,7} = 1.2$ Hz, $J_{7,8} = 5.2$ Hz, H-7^a), 5.27 (d, 1 H, $J_{NH,5} = 9.2$ Hz, NH), 5.22 (d, 1 H, $J_{3,4} = 2.9$ Hz, H-4^b), 5.20, 5.17 (2 d, 2 H, $J_{gem} = 12.6$ Hz, PhC H_2), 5.05 (dd, 1 H, $J_{2,3} = 10.0$ Hz, H-3^b), 5.00 (d, 1 H, $J_{1,2} = 4.0$ Hz, H-1^b), 4.70, 4.62 (2 d, 2 H, $J_{gem} = 12.1$ Hz, Cl₃CCH₂), 4.38, 4.34 (2 d, 2 H, $J_{gem} = 16.6$ Hz, OCH₂CO), 4.31 (m, 1 H, H-8^a), 4.13 (m, 1 H, H-5^b), 4.07-3.99 (m, 2 H, H-4^a, H-9a^a), 3.93 (dd, 1 H, $J_{gem} = 8.1$ Hz, $J_{8,9b} = 6.9$ Hz, H-9b^a), 3.88-3.77 (m, 2 H, H-6^a, H-2^b), 3.74 (s, 3 H, COOMe), 3.47 (dd 1 H, $J_{4,5} = 10.3$ Hz, $J_{5,6} = 9.7$ Hz, H-5^a), 2.85 (dd, 1 H, $J_{gem} = 13.2$ Hz, $J_{3eq,4} = 5.1$ Hz, H-3eq^a), 2.14, 2.14, 2.07 (3 s, 9 H, 3 Ac), 1.94 (dd, 1 H, $J_{3ax,4} = 11.5$ Hz, H-3ax^a), 1.34 (s, 6 H, (CH₃)₂C), 1.13 ppm (d, 3 H, $J_{5,6} = 6.9$ Hz, H-6^b); ¹³C NMR (125 MHz, CDCl₃): δ 170.8, 170.5, 170.4, 169.1, 167.5, 154.5, 135.1, 128.6, 128.5,108.8, 100.9, 98.3, 95.0, 75.6, 75.0, 74.8, 72.3, 71.1, 70.9, 69.1, 66.8, 66.7, 65.7, 65.4, 61.6, 60.4, 52.8, 52.6, 39.0, 26.4, 25.3, 21.0, 20.8, 20.8, 20.6, 15.9, 14.1 ppm; HRMS: m/z: found [M+Na]⁺ 938.1778, C₃₇H₄₈Cl₃NO₁₉ calcd for [M+Na]⁺ 938.1778.

80 % aqueous AcOH (25.0 mL) was added to a flask containing compound S10 (912 mg, 994 µmol). The mixture was stirred for 16 h at 50 °C. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 15:1). The mixture was then concentrated and remaining volatiles were co-evaporated with toluene, and the residue was exposed to high vacuum for 1 h. The crude material was redissolved in pyridine (20.0 mL) and then acetic anhydride (1.0 mL) and DMAP (12.1 mg, 99.4 μ mol) was added to the solution at 0 °C. The reaction mixture was stirred for 1.5 h at room temperature, when completion of the reaction was confirmed by TLC (hexane/EtOAc 1:2). After quenching with EtOH, the mixture was concentrated and the residual volatiles were co-evaporated with toluene. The residue was redissolved in EtOAc, and this solution was washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (hexane/EtOAc 2:3) to give compound S11 (971 mg, 97 %). $[\alpha]_{D} = +38.3 \circ (c \ 2.0, CHCl_{3}); {}^{1}H NMR (600 MHz, CDCl_{3}): \delta 7.38-7.31 (m, 5 H, Ph), 5.34-5.31 (m, 5 H, Ph), 5.$ 3 H, NH, H-8^a, H-4^b), 5.25 (m, 2 H, H-7^a, H-3^b), 5.19, 5.14 (2 d, 2 H, J_{gem} = 12.3 Hz, PhCH₂), 5.13 $(d, 1 H, J_{1,2} = 4.1 Hz, H^{-1}), 5.10 (m, 1 H, H^{-2}), 5.07, 4.36 (2 d, 2 H, J_{gem} = 12.4 Hz, Cl_3CCH_2),$ 4.33, 4.29 (2 d, 2 H, $J_{gem} = 16.5$ Hz, OCH₂CO), 4.24-4.15 (m, 5 H, H-4^a, H-6^a, H-9a^a, H-9b^a, H-5^b), 3.72 (s, 3 H, COOMe), 3.18 (dd 1 H, $J_{4,5} = J_{5,6} = 10.3$ Hz, H-5^a), 2.74 (dd, 1 H, $J_{gem} = 13.0$ Hz, $J_{3eq,4}$ = 4.8 Hz, H-3eq^a), 2.18-1.98 (6 s, 18 H, 6 Ac), 1.69 (dd, 1 H, $J_{3ax,4}$ = 11.7 Hz, H-3ax^a), 1.08 ppm (d, 3 H, $J_{5.6} = 6.2$ Hz, H-6^b); ¹³C NMR (150 MHz, CDCl₃): δ 170.8, 170.6, 170.4, 170.3, 169.9, 169.8, 169.2, 167.1, 153.6, 135.3, 128.5, 128.3, 128.3, 97.9, 95.4, 94.2, 74.2, 71.2, 70.9, 70.3, 67.9, 67.7, 67.7, 67.4, 66.6, 65.0, 61.8, 61.7, 52.9, 52.3, 37.5, 20.9, 20.9, 20.7, 20.6, 20.6, 15.8 ppm; HRMS:

m/z: found $[M+Na]^+$ 1024.1783, C₄₀H₅₀Cl₃NO₂₂ calcd for $[M+Na]^+$ 1024.1782.

Activated zinc powder (4.84 g) was added to a solution of compound **S11** (971 mg, 968 μ mol) in AcOH (32.3 mL). The suspension was stirred for 4.5 h at room temperature with monitoring the

reaction by TLC (CHCl₃/MeOH 10:1). The mixture was filtered through Celite, and the filter bed was washed with CHCl₃. The combined filtrate and washings were washed with saturated aqueous NaHCO₃, dried (Na₂SO₄) and concentrated. The residue was exposed to high vacuum for 1 h, and was then redissolved in pyridine (20.0 mL) and then acetic anhydride (1.0 mL) and DMAP (12.1 mg, 99.4 μ mol) were added to the solution at 0 °C. The reaction mixture was stirred for 2.5 h at room temperature until the completion of the reaction was indicated by TLC (CHCl₃/acetone 4:1). The reaction mixture was then concentrated and the residual volatiles were co-evaporated with toluene. The residue was redissolved in EtOAc, and this solution was washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/acetone 2:1) to give compound **15** (681 mg, 81 %).

[α]_D = +68.5 ° (c 0.9, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.31 (m, 5 H, Ph), 5.36 (m, 1 H, H-8^a), 5.30 (m, 3 H, NH, H-3^b, H-4^b), 5.25 (dd, 1 H, $J_{6,7}$ = 1.7 Hz, $J_{7,8}$ = 8.6 Hz, H-7^a), 5.20, 5.14 (2 d, 2 H, J_{gem} = 12.6 Hz, PhCH₂), 5.17 (d, 1 H, $J_{1,2}$ = 4.1 Hz, H-1^b), 5.02 (dd, 1 H, $J_{2,3}$ = 10.9 Hz, H-2^b), 4.32 (s, 2 H, OCH₂CO), 4.26 (dd, 1 H, $J_{8,9a}$ = 2.9 Hz, J_{gem} = 12.6 Hz, H-9a^a), 4.18-4.09 (m, 3 H, H-4^a, H-9b^a, H-5^b), 4.04 (dd, 1 H, $J_{5,6}$ = 10.3 Hz, H-6^a), 3.73 (s, 3 H, COOMe), 3.48 (m 1 H, H-5^a), 2.77 (dd, 1 H, J_{gem} = 12.6 Hz, $J_{3eq,4}$ = 4.6 Hz, H-3eq^a), 2.15-1.91 (7 s, 21 H, 7 Ac), 1.90 (m, 1 H, H-3ax^a), 1.12 ppm (d, 3 H, $J_{5,6}$ = 6.9 Hz, H-6^b); ¹³C NMR (--- MHz, CDCl₃): δ --- ppm; HRMS: *m/z*: found [M+Na]⁺ 892.2845, C₃₉H₅₁NO₂₁ calcd for [M+Na]⁺ 892.2846.

20 % Pd(OH)₂ on activated carbon (82 mg) was added to a solution of compound **15** (164 mg, 189 μ mol) in EtOAc (9.4 mL). The suspension was stirred under a hydrogen stream for 5 h at room temperature. After the completion of the reaction was confirmed by TLC (CHCl₃/MeOH 10:1), the mixture was filtered through Celite, and the filtrate was concentrated to give compound **16** (146 mg, 99 %).

[α]_D = +91.5 ° (c 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 5.77 (d, 1 H, $J_{NH,5}$ = 7.9 Hz, NH), 5.36 (m, 1 H, H-8^a), 5.26 (m, 3 H, H-7^a, H-1^b, H-4^b), 5.10 (m, 2 H, H-2^b, H-3^b), 4.36, 4.26 (2 d, 2 H, J_{gem} = 16.8 Hz, OCH₂CO), 4.31 (m, 3 H, H-4^a, H-6^a, H-9a^a), 4.15 (m, 2 H, H-9b^a, H-5^b), 3.80 (s, 3 H, COOMe), 3.26 (dd 1 H, $J_{4,5}$ = $J_{5,6}$ = 8.7 Hz, H-5^a), 2.69 (dd, 1 H, J_{gem} = 13.5 Hz, $J_{3eq,4}$ = 4.8 Hz, H-3eq^a), 2.20-1.99 (7 s, 21 H, 7 Ac), 1.78 (dd, 1 H, $J_{3ax,4}$ = 9.6 Hz, H-3ax^a), 1.10 ppm (d, 3 H, $J_{5,6}$ = 6.6 Hz, H-6^b); ¹³C NMR (125 MHz, CDCl₃): δ 171.3, 171.1, 170.7, 170.5, 170.4, 170.2, 170.1, 167.4, 98.2, 94.7, 77.6, 72.1, 70.9, 70.2, 68.4, 67.9, 67.8, 67.8, 65.1, 62.2, 61.6, 53.1, 52.3, 36.3, 23.5, 21.0, 20.9, 20.8, 20.7, 20.7, 20.6, 15.9 ppm; HRMS: *m/z*: found [M+Na]⁺ 802.2375, C₃₂H₄₅NO₂₁ calcd for [M+Na]⁺ 802.2376.

PPh₃ (26.6 mg, 101 μmol) was added to a solution of compound 9 (41.7 mg, 33.8 μmol) in THF (1.1 mL)/H₂O (30 μ L). The mixture was stirred for 6 h at 40 °C with the monitoring the reaction by TLC (CHCl₃/MeOH 5:1). The reaction mixture was then concentrated and remaining volatiles were co-evaporated with toluene. The residue wase exposed to high vacuum for 12 h. Then the crude material and compound 16 (26.3 mg, 33.8 µmol) were dissolved in DMF (1.0 mL) and then HBTU (15.4 mg, 40.6 µmol) and HOBt (5.5 mg, 4.06 µmol) were added to the solution. The mixture was stirred for 9 h at room temperature. DIEA (14.1 μ L, 81.8 μ mol) was added to the solution, and then stirring was continued for 45 min at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 6:1). The mixture was diluted with EtOAc, and this solution was washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was subjected to column chromatography on silica gel (CHCl₃/MeOH 25:1 \rightarrow 15:1) and Sephadex LH-20 (MeOH) to give crude pentasaccharide (57.0 mg). The crude material was dissolved in pyridine (1.0 mL), and acetic anhydride (500 μ L) and DMAP (1.0 mg) were added to the solution. The reaction mixture was stirred for 4 h at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 15:1). After quenching with MeOH, the mixture was diluted with EtOAc, and this solution washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na_2SO_4) , and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 55:1 \rightarrow 45:1) to give compound 17 (65.0 mg, 85 %). $[\alpha]_{D} = -37.2^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.25 (m, 12 H, Ar), 6.83 (d, 2 H, J = 8.7 Hz, Ar), 5.98 (d, 1 H, $J_{NH,5} = 10.3$ Hz, NH^e), 5.48 (d, 1 H, $J_{NH,5} = 8.2$ Hz, NH^d), 5.45-5.40 (m, 3 H, H-7^b, H-8^b, H-8^d), 5.37-5.26 (m, 6 H, NH^b, H-7^c, H-8^c, H-7^d, H-1^e, H-3^e), 5.15 (d, 1 H, $J_{3,4} = 3.8$ Hz, H-4^e), 5.07 (dd, 1 H, $J_{1,2} = 3.8$ Hz, $J_{2,3} = 10.6$ Hz, H-2^e), 4.87-4.64 (m, 7 H, H-4^c, ArCH₂), 4.35 (d, 1 H, $J_{5,6} = 10.9$ Hz, H-6^b), 4.32 (d, 1 H, $J_{1,2} = 7.9$ Hz, H-1^a), 4.28 (m, 2 H, H-9a^d, OCH₂CO), 4.23-3.94 (m, 11 H, H-6a^a, H-9a^b, H-5^c, H-9a^c, H-9b^c, H-4^d, H-6^d, H-9b^d, H-5^e, OCH₂CO, TMSCH₂CH₂), 3.91-3.79 (m, 14 H, H-9b^b, H-6^c, 3 COOMe, OMe), 3.72-3.48 (m, 6 H, H-3^a, H-4^a, H-6b^a, H-4^b, H-5^b, TMSCH₂CH₂), 3.36 (m, 3 H, H-2^a, H-5^a, H-5^d), 2.67 (m, 2 H, H-3eq^c, H-3eq^d), 2.27 (dd, 1 H, $J_{gem} = 12.6$ Hz, $J_{3eq,4} = 3.9$ Hz, H-3eq^b), 2.19-1.97 (14 s, 42 H, 14 Ac), 1.86-1.68 (m, 3 H, H-3ax^b, H-3ax^c, H-3ax^d), 1.45 (s, 9 H, (CH₃)₃C), 1.11 (d, 3 H, $J_{5,6} = 6.5$ Hz, H-6^e) 1.02 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (125 MHz, CDCl₃): δ 170.6, 170.5, 170.4, 170.2, 170.1, 170.0, 169.9, 169.9, 169.8, 169.7, 167.8, 167.5, 167.2, 159.1, 155.7, 138.7, 138.4, 130.7, 129.7, 128.3, 128.2, 128.2, 127.8, 127.7, 127.4, 113.7, 103.1, 98.6, 98.5, 98.4, 94.9, 84.5, 81.8, 79.2, 77.6, 77.4, 75.6, 74.9, 74.3, 73.7, 72.7, 72.5, 72.3, 71.2, 70.9, 70.8, 68.7, 68.3, 68.2, 68.1, 67.9, 67.7, 67.5, 67.3, 67.0, 65.1, 63.5, 63.4, 62.5, 62.3, 62.1, 55.2, 53.1, 53.0, 51.9, 51.7, 50.5, 48.5, 39.6, 38.4, 37.4, 29.6, 28.4, 28.3, 23.6, 21.3, 21.3, 21.1, 21.0, 20.8, 20.8, 20.7, 20.7, 20.6, 20.5, 20.5, 18.4, 15.9, -1.5 ppm; HRMS: m/z: found [M+Na]⁺ 2284.8403, C₁₀₄H₁₄₃N₃O₅₀Si calcd for [M+Na]⁺ 2284.8401.

DDQ (4.5 mg, 19.8 μ mol) was added to a solution of compound **17** (37.3 mg, 16.5 μ mol) in CH₂Cl₂ (830 μ L)/H₂O (40 μ L). The reaction mixture was stirred for 3.5 h at room temperature with monitoring of the reaction by TLC (PhMe/acetone 3:2). The mixture was diluted with CHCl₃, and the organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), and concentrated. The crude material was exposed to high vacuum for 24 h, and redissolved in pyridine (1.0 mL). Benzoic anhydride (8.4 mg, 37.1 μ mol) and DMAP (200 μ g, 1.24 μ mol) were added to the solution, and the reaction mixture was stirred for h at room temperature. Completion of the reaction was confirmed by TLC (PhMe/acetone 3:2). After quenching with water, the mixture was diluted with EtOAc, and the organic layer was washed with 2 M aqueous HCl, water,

saturated aqueous NaHCO₃, and brine, dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 50:1 \rightarrow 40:1) to give compound **S12** (24.8 mg, 67 %).

 $[\alpha]_{D} = -45.3 \circ (c \ 0.5, CHCl_{3}); {}^{1}H \ NMR \ (500 \ MHz, CDCl_{3}): \delta 8.00-7.09 \ (m, 15 \ H, Ph), 6.00 \ (d, 1 \ H, Ph), 6.0$ $J_{\rm NH\,5} = 10.3$ Hz, NH^c), 5.49 (d, 1 H, $J_{\rm NH\,5} = 8.0$ Hz, NH^d), 5.47-5.41 (m, 3 H, H-7^b, H-8^b, H-8^c), 5.38-5.27 (m, 6 H, NH^b, H-7^c, H-7^d, H-8^d H-1^e, H-3^e), 5.19 (dd, 1 H, $J_{1,2} = 8.2$ Hz, $J_{2,3} = 10.6$ Hz, H-2^a), 5.16 (d, 1 H, $J_{34} = 3.8$ Hz, H-4^e), 5.07 (dd, 1 H, $J_{12} = 3.8$ Hz, $J_{23} = 10.6$ Hz, H-2^e), 4.87-4.59 $(m, 5 H, H-4^{\circ}, PhCH_2), 4.42 (d, 1 H, H-1^{\circ}), 4.36 (d, 1 H, J5,6 = 10.8 Hz, H-6^{\circ}), 4.31-4.25 (m, 2 H, H-1^{\circ})$ H-9a^b, H-9a^c), 4.23-4.08 (m, 6 H, H-6a^a, H-9b^b, H-5^c, H-4^d, H-5^e, OCH₂CO), 4.06-3.98 (m, 3 H, H-6^b, H-9b^c, H-9a^d), 3.92-3.80 (m, 10 H, H-6^c, H-9b^d, OCH₂CO, 2 COOMe, TMSCH₂CH₂), 3.74-3.57 (m, 7 H, H-3^a, H-4^a, H-6b^a, H-5^b, COOMe), 3.46 (m, 2 H, H-5^a, TMSCH₂CH₂), 3.34 (m, 1 H, H-5^d), 2.68 (m, 2 H, H-3eq^c, H-3eq^d), 2.30 (dd, 1 H, $J_{gem} = 12.9$ Hz, $J_{3eq,4} = 4.0$ Hz, H-3eq^b), 2.19-1.88 (14 s, 42 H, 14 Ac), 1.84-1.75 (m, 2 H, H-3ax^b, H-3ax^d), 1.70 (t, 1 H, J_{gem} = J_{3ax 4} = 12.3 Hz, H-3ax^c), 1.46 (s, 9 H, (CH₃)₃C), 1.11 (d, 3 H, J_{5.6} = 6.6 Hz, H-6^e) 0.82 ppm (m, 2 H, TMSCH₂CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 170.6, 170.5, 170.3, 170.2, 170.0, 169.9, 169.8, 168.8, 167.6, 167.5, 167.2, 165.2, 155.7, 138.3, 137.8, 132.9, 130.1, 129.7, 129.0, 128.5, 128.4, 128.2, 128.2, 128.0, 127.8, 127.5, 125.3, 100.5, 98.7, 98.5, 98.4, 94.8, 82.5, 79.3, 77.7, 77.2, 75.0, 74.9, 74.0, 73.7, 72.7, 72.6, 72.5, 72.2, 71.3, 70.9, 70.8, 68.7, 68.3, 68.2, 68.1, 68.0, 67.7, 67.6, 67.0, 65.2, 63.6, 63.0, 62.6, 62.3, 62.1, 53.1, 53.1, 52.0, 51.8, 50.5, 48.5, 39.7, 38.5, 37.4, 29.7, 28.5, 28.3, 23.6, 21.4, 21.3, 21.2, 21.0, 20.9, 20.8, 20.7, 20.7, 20.6, 17.8, 15.9, -1.5 ppm; HRMS: *m/z*: found $[M+Na]^+$ 2268.8087, $C_{103}H_{139}N_3O_{50}Si$ calcd for $[M+Na]^+$ 2268.8088.

TFA (250 μ L) was added to a solution of compound **S12** (17.3 mg, 7.70 μ mol) in CH₂Cl₂ (750 μ L). The reaction mixture was stirred for 3 h at 0 °C until TLC analysis (CHCl₃/MeOH 15:1) indicated

completion of the reaction. After quenching by saturated aqueous NaHCO₃ solution, the mixture was extracted with CHCl₃, dried (Na₂SO₄), and concentrated. The residue was exposed to high vacuum for 18 h and redissolved in pyridine (1.0 mL). Acetic anhydride (500 μ L) and DMAP (1.0 mg) were added to the solution, and the mixture was stirred for 1 h at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 10:1). The mixture was then diluted with EtOAc, and this solution washed with 2 M aqueous HCl, water, saturated aqueous NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated. The residue was exposed to high vacuum for 18 h, and redissolved in DMF (770 µL). Hydrazine acetate (1.0 mg, 11.2 µmol) was added to the solution, and the mixture was stirred for 1 h at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH 15:1). The mixture was then diluted with EtOAc and washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was exposed to high vacuum for 18 h, and redissolved in CH₂Cl₂ (500 µL). CCl₃CN (7.5 µL, 74.6 µmol) and DBU $(0.6 \,\mu\text{L}, 3.73 \,\mu\text{mol})$ were added to the solution, and the reaction mixture was stirred for 45 min at 0 °C. After the completion of the reaction was indicated by TLC (CHCl₃/MeOH 15:1), the reaction mixture was concentrated. The residue was purified by column chromatography on silica gel $(CHCl_3/MeOH 40:1 \rightarrow 35:1)$ to give compound 18 (7.9 mg, 46 %).

 $[\alpha]_{D} = -33.2^{\circ}$ (c 1.6, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 8.41 (s, 1 H, Cl₃CC=NH), 7.94-7.01 (m, 15 H, Ph), 6.57 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1^a), 6.07 (d, 2 H, $J_{NH,5} = 10.4$ Hz, NH^b, NH^c), 5.63 (m, 1 H, H-8^c), 5.52 (d, 1 H, $J_{NH5} = 7.6$ Hz, NH^d), 5.43-5.38 (m, 2 H, H-7^b, H-8^d), 5.34-5.26 (m, 5 H, H-2^a), $H-8^{b}$, $H-7^{d}$, $H-3^{e}$, $H-4^{e}$), 5.16 (d, 1 H, $J_{1,2} = 4.1$ Hz, $H-1^{e}$), 5.13 (dd, 1 H, $J_{6,7} = 2.4$ Hz, $J_{7,8} = 9.3$ Hz, H-7^c), 5.06 (dd, 1 H, $J_{2,3} = 10.7$ Hz, H-2^e), 4.97-4.72 (4 d, 4 H, PhC H_2), 4.83 (m, 1 H, H-4^c), 4.38 $(dd, 1 H, J_{8.9a} = 2.4 Hz, J_{gem} = 12.1 Hz, H-9a^{c}), 4.35 (d, 1 H, J_{5.6} = 10.3 Hz, H-6^{d}), 4.29 (m, 2 Hz, H-6^{d}), 4.29 (m, 2 Hz, H-6^{d}),$ H-6a^a, H-9a^b), 4.22-4.08 (m, 7 H, H-3^a, H-9b^b, H-5^c, H-4^d, H-9a^d, H-5^e, OCH₂CO), 4.04-3.93 (m, 3 H, H-4^a, H-5^b, H-6^b), 3.91-3.79 (m, 13 H, H-5^a, H-6^c, H-9b^c, H-9b^d, 3 COOMe), 3.71 (m, 1 H, H-4^b), $3.44 (d, 1 H, J_{gem} = 9.7 Hz, H-6b^{a}), 3.32 (br m, 1 H, H-5^{d}), 2.69-2.64 (m, 2 H, H-3eq^{c}, H-3eq^{d}), 2.32$ (dd, 1 H, $J_{gem} = 12.8$ Hz, $J_{3eq,4} = 4.5$ Hz, H-3eq^b), 2.12-1.75 (15 s, 45 H, 15 Ac), 1.90-1.85 (m, 2 H, H-3ax^b, H-3ax^c), 1.69 (m, 1 H, H-3ax^d), 1.11 ppm (d, 3 H, J_{5,6} = 6.2 Hz, H-6^e); ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 170.6, 170.5, 170.4, 170.2, 170.0, 169.9, 169.9, 168.8, 167.6, 167.2, 167.1, 165.6, 160.8, 138.1, 137.9, 133.3, 129.8, 129.3, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.6, 98.6, 98.3, 97.9, 94.8, 94.1, 91.0, 78.7, 77.9, 77.6, 77.2, 75.4, 75.3, 72.7, 72.5, 72.3, 72.0, 71.1, 70.9, 70.7, 68.3, 68.2, 68.0, 67.7, 67.6, 67.2, 66.9, 65.2, 64.3, 63.4, 62.2, 62.1, 53.2, 53.0, 52.6, 51.8, 49.0, 48.6, 39.5, 38.1, 37.3, 37.1, 32.7, 31.9, 30.0, 29.7, 29.5, 29.3, 27.1, 23.6, 23.3, 22.7, 21.2, 21.0, 21.0, 20.9, 20.8, 20.7, 20.6, 20.4, 19.7, 15.9, 14.1 ppm; HRMS: m/z: found [M+Na]⁺ 2253.6057, C₉₇H₁₂₁Cl₃N₄O₄₉ calcd for $[M+Na]^+$ 2253.6057.

4Å molecular sieves AW-300 (150 mg) were added to a solution of compound **18** (16.4 mg, 7.34 μ mol) and n-hexanol (4.1 μ L, 36.7 μ mol) in CH₂Cl₂ (730 μ L). The suspension was stirred for 1 h at room temperature, then cooled to 0 °C. TMSOTf (0.27 μ L, 1.47 μ mol) was added to the solution and stirring was continued for 1 h, after which TLC analysis (CHCl₃/MeOH 15:1) indicated completion of the reaction. The reaction mixture was made alkaline to pH 8 with triethylamine at 0 °C, filtered through Celite, and concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH 40:1 \rightarrow 35:1) and preparative TLC (CHCl₃/MeOH 15:1) to give compound **S13** (313 mg, 76 %).

 $[\alpha]_{D} = +12.3 \circ (c \ 1.0, CHCl_{3}); {}^{1}H NMR (600 MHz, CDCl_{3}): \delta 8.00-7.11 (m, 15 H, Ph), 6.09 (d, 1 H, Ph), 6.09 (d$ $J_{\rm NH,5} = 9.9$ Hz, NH^b), 6.06 (d, 1 H, $J_{\rm NH,5} = 10.4$ Hz, NH^c), 5.63 (td, 1 H, $J_{7,8} = 9.3$ Hz, $J_{8,9a} = 2.2$ Hz, $J_{8.9b} = 8.8$ Hz, H-8°), 5.50 (d, 1 H, $J_{NH,5} = 7.7$ Hz, NH^d), 5.45 (m, 2 H, H-7^b, H-8^b), 5.34-5.27 (m, 4 H, H-7^d, H-8^d, H-3^e, H-4^e), 5.18 (dd, 1H, $J_{1,2} = 8.2$ Hz, $J_{2,3} = 9.4$ Hz, H-2^a), 5.16 (d, 1 H, $J_{1,2} = 3.9$ Hz, H-1^e), 5.13 (dd, 1 H, $J_{6,7} = 2.8$ Hz, H-7^e), 5.06 (dd, 1 H, $J_{2,3} = 10.5$ Hz, H-2^e), 4.87-4.62 (4 d, 4 H, PhCH₂), 4.82 (m, 1 H, H-4^c), 4.38 (m, 2 H, H-1^a, H-9a^c), 4.36 (d, 1 H, J_{5.6} = 11.0 Hz, H-6^d), 4.28 (d, 2 H, $J_{gem} = 12.1$ Hz, H-9a^b, H-9a^d), 4.20-4.08 (m, 6 H, H-6a^a, H-5^c, H-4^d, H-9b^d, H-5^e, OCH₂CO), 4.04-3.96 (m, 3 H, H-5^b, H-6^b, H-9b^b), 3.89-3.78 (m, 14 H, H-4^a, H-5^a, H-6^c, H-9b^c, 3 COOMe, OCH_2CH_2), 3.74 (dd, 1 H, $J_{3,4} = 8.7$ Hz, H-3^a), 3.69 (m, 1 H, H-4^b), 3.59 (d, 1 H, $J_{gem} = 10.4$ Hz, OCH₂CO), 3.43 (m, 1 H, H-6b^a), 3.37 (m, 1 H, OCH₂CH₂), 3.31 (br m, 1 H, H-5^d), 2.66 (m, 2 H, H-3eq^c, H-3eq^d), 2.30 (dd, 1 H, $J_{gem} = 12.7$ Hz, $J_{3eq,4} = 4.4$ Hz, H-3eq^b), 2.23-1.89 (15 s, 45 H, 15 Ac), 1.86-1.78 (m, 2 H, H-3ax^b, H-3ax^c), 1.69 (t, 1 H, $J_{gem} = J_{3ax,4} = 12.1$ Hz, H-3ax^d), 1.48-1.01 (m, 8 H, -(CH₂)₄-), 1.11 (d, 3 H, $J_{5,6} = 6.6$ Hz, H-6^e), 0.71 ppm (t, 3 H, J = 7.1 Hz, CH₂CH₃); ¹³C NMR (150 MHz, CDCl₃): δ 172.0, 170.7, 170.6, 170.5, 170.4, 170.3, 170.2, 170.0, 169.9, 168.8, 167.6, 167.2, 167.1, 165.3, 138.3, 137.9, 132.9, 130.1, 129.7, 128.4, 128.3, 128.2, 128.2, 128.0, 127.8, 127.6, 101.1, 98.7, 98.3, 97.9, 94.8, 82.4, 75.0, 74.0, 73.7, 72.3, 72.0, 71.2, 70.9, 70.7, 69.8, 68.3,

68.2, 67.7, 67.6, 67.4, 66.9, 65.2, 64.3, 63.4, 62.9, 62.5, 62.1, 53.2, 52.2, 51.9, 49.0, 48.7, 39.4, 38.2, 37.3, 31.4, 29.7, 29.3, 25.5, 23.6, 23.3, 22.7, 22.4, 21.3, 21.2, 21.0, 21.0, 20.9, 20.8, 20.7, 20.6, 15.9, 13.9 ppm; HRMS: *m/z*: found [M+Na]⁺ 2194.7901, C₁₀₁H₁₃₃N₃O₄₉ calcd for [M+Na]⁺ 2194.7900.

20 % Pd(OH)₂ on activated carbon (10.1 mg) was added to a solution of compound **15** (10.1 mg, 4.65 µmol) in EtOH (1.0 mL). The suspension was stirred under a hydrogen stream for 3.5 h at room temperature. After the completion of the reaction was confirmed by TLC (CHCl₃/MeOH 10:1), the mixture was filtered through Celite, and the filtrate was concentrated. The residue was subjected to column chromatography on silica gel (CHCl₃/MeOH $30/1 \rightarrow 25/1$) to give debenzylated compound. This was redissolved in pyridine (1.5 mL) and lithium chloride (5.9 mg, 140 µmol) was added. The mixture was stirred for 14 h under reflux. The progress of the reaction was monitored by TLC (CHCl₃/MeOH/AcOH 5/1/0.1). The resulting mixture was then concentrated and the residual volatiles were co-evaporated with toluene. The residue was subjected to column chromatography on Sephadex LH-20 (MeOH) to give crude tricarboxylic acid. The crude material was dissolved in 0.1 M aqueous NaOH solution (1.0 mL) and the mixture was stirred for 4 h at room temperature. Completion of the reaction was confirmed by TLC (CHCl₃/MeOH/0.1 % aq. CaCl₂ 5/6/2). After neutralization with Dowex-50 (H⁺), the mixture was concentrated. The residue was purified by column chromatography on silica gel (CHCl₃/MeOH $5/4 \rightarrow 2/3$) to give 19 (6.0 mg, 95 %).

 $[\alpha]_{D} = -14.2 \circ (c \ 0.6, CHCl_{3}/MeOH \ 1/1); {}^{1}H \ NMR \ (500 \ MHz, DMSO-d_{6}): \delta \ 4.40 \ (d, \ 1 \ H, \ J_{1,2} = 4.0 \ Hz, \ H^{-1}), \ 4.05 \ (d, \ 1 \ H, \ J_{1,2} = 8.0 \ Hz, \ H^{-1}), \ 3.95 \ (d, \ 1 \ H, \ J_{gem} = 16.6 \ Hz, \ OCH_{2}CO), \ 3.84 \ (br \ dd, \ 1 \ H, \ J_{5,6} = 6.3 \ Hz, \ H^{-5}), \ 2.90^{-2.64} \ (br \ dd, \ 3 \ H, \ 3 \ H^{-3}eq), \ 2.00 \ (s, \ 3 \ H, \ Ac), \ 1.81 \ (s, \ 3 \ H, \ Ac), \ 1.63^{-}0.84 \ (m, \ 14 \ H, \ 3 \ H^{-3}ax, \ -(CH_{2})_{4^{-}}, \ CH_{2}CH_{3}), \ 1.08 \ ppm \ (d, \ 3 \ H, \ H^{-6}); \ {}^{13}C \ NMR \ (125 \ MHz, \ DMSO-d_{6}): \ HRMS: \ m/z: \ found \ [M^{-3}H^{+}2Na]^{-} \ 1342.4531, \ C_{51}H_{85}N_{3}O_{35} \ calcd \ for \ [M^{-3}H^{+}2Na]^{-} \ 1342.4350.$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Socjety of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

2010.12.03 Trisaccharide (Neu5N3+Lactam)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Society of Chemistry 2011

S32

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Society of Chemistry 2011

2010.12.27 Neu5Troc_89ispd_4CAc_Donor

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

-- 170.16 -- 168.96 -- 166.68 -- 166.64 - 135.03 128.96 - 128.75 - 128.66 - 154.22 109.19 NAME Neu-b-glycolate 77.26 77.00 76.75 74.57 73.13 73.13 71.06 69.45 69.45 66.86 61.03 97.74 95.16 52.81 50.86 45 36.71 26.53 25.23 20.80 EXPNO PROCNO 2 1 40. Date_ Time 20101229 8.52 spect INSTRUM 11 i. PROBHD 5 mm PABBO BB- \mathbb{N}^{+} zgpg30 65536 CDC13 PULPROG Ϊ. 1 TD SOLVENT NS 87 NS DS SWH FIDRES AQ RG DW DE TE D1 D11 D11 TD0 Ö 29761.904 Hz 0.454131 Hz 1.1010548 sec 203 16.800 usec ,OBn \cap 0 6.50 usec 296.9 K 2.00000000 sec 0.03000000 sec Ô TrocHN COOMe AcÒ ÓCAc 1 **S**7 ----- CHANNEL fl -----NUC1 P1 PL1 13C 10.00 usec -1.00 dB 131.23452759 W PL1W SF01 125.7703643 MHz CPDPRG2 Waltz16 waltz16 1H 80.00 usec NUC2 PCPD2 PL2 1.50 dB 18.00 dB 18.50 dB 18.13845062 W 0.40606931 W PL12 PL13 PL2W PL12W PL13W J.36190-J00.1320005 N 32768 125.7578031 MHz EM 0 0 0 5 SFO2 SI SF WDW SSB LB GB PC 1.00 Hz 0 . ashin bi ************* 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

.

- S43-

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Socjety of Chemistry 2011

2010.6.16 COOH	98.23	77.61 77.28 77.03 76.78 72.09	70.90 70.21 68.39 67.89 67.82	53.12 53.12 53.12 52.29	36.31	23.54 21.04 20.90 20.75	20.69	00.0-
AcO AcHN AcO AcO AcO AcO AcO AcO AcO AcO AcO AcO								
Aco ^{OAc} 16				1				
								1
	4, 144 p. 17 p. 10 p. 4 m p. 4 14 p. 4 p. 17 p. 16 p. 17 p				11.644.63.716.0. 19.459.63.716.0.		alallah dalamatala akalah dalamatala akanaji wajipinan	u.a. ashinghing jula Isar pagligi pipagan
190 180 170 160 150 140 130 120 110	100 9(_{S56}) 80	70 6	0 50	40	30 20	10	0 ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is B The Royal Socjety of Chemistry 2011

Electronic Supp This journal is @

ł.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{G}}$ The Royal Society of Chemistry 2011

abundance

8.4071

X : parts per Million : 1H

7.5539

7.9399 7.9273 7.9250 7.3375 7.2653 7.1519 7.0076 6.5759

6.0800 6.0628 5.6299 5.6265 5.5120 5.3138 5.3138 5.3116 5.1547

4.2774 4.1851 4.1851 4.1851 3.8915 3.8911 3.8931 3.8030 3.8030 3.8030

4.9531 4.7756 4.7699 4.7355 2.6775 2.6649 2.6523

3.4322 3.3269 3.3143 2.1817 2.1427 2.1244 2.1224 2.0523 2.0557 1.9961 1.6869

1.4270 1.4235 1.2540 1.1051 0.8795 0.8406 0.8406 0.0699

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

•Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\sc opt}{\sc opt}$ The Royal Society of Chemistry 2011

