Conversion of MT-Sulfone to a Trifluoromethyl group by IF₅; the Application of an MT-Sulfone Anion as a Trifluoromethyl Anion Equivalent

Yosuke Imagawa, Syuhei Yoshikawa, Tadahito Fukuhara, and Shoji Hara* Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan *E-mail: shara@eng.hokudai.ac.jp;*

SUPPORTING INFORMATION

Table of Contents

1.	Experimental Section	S1-S8
2.	¹ H and ¹³ C NMR spectra of compound	S9-S16
3.	HPLC analysis data using CHIRAPAK IC column	S17

General

The IR spectra were recorded using a JASCO FT/IR-410. The ¹H NMR (400 MHz) spectra, ¹⁹F NMR (376 MHz) spectra, and ¹³C NMR (100 MHz) were recorded in CDCl₃ on a JEOL JNM-A400II FT NMR and the chemical shift, δ , is referred to TMS (¹H, ¹³C) and CFCl₃ (¹⁹F), respectively. The EI-high-resolution mass spectra were measured on a JEOL JMS-700TZ. A TeflonFEP centrifuge tube (27 mL) with a screw cap was used as a reaction vessel. IF₅ in a stainless-steel cylinder was supplied by Asahi Glass Co., Ltd, and was transferred through a Teflon tube into a TeflonFEP bottle from the cylinder under an N₂ atmosphere. IF₅/Et₃N-5HF was prepared by the addition of an equimolar amount of Et₃N-5HF to IF₅ in TeflonFEP bottle. IF₅ decomposes in air emitting HF fume, and therefore, it should be carefully handled in a bench hood with rubber-gloved hands. (S)-2-[Diphenyl{(trimethylsilyl)oxy}methyl]pyrrolidine was prepared from (S)-methyl pyrrolidine-2-carboxylate according to the literature.¹ MT-sulfone, Et₃N-5HF, and MeSSO₂Me were purchased from Tokyo Kasei Co. Ltd. TBAF in THF (1M) and SmI_2 in THF (0.1 M) were purchased from Aldrich. Compounds 1a and 1d were prepared from MT-sulfone and corresponding alkyl halides using phase transfer method.² Compounds 1b, 1c, and 1e were prepared from MT-sulfone and corresponding alkyl halides using NaH in DMF³ or by the reduction of ketene dithioacetal S,S-dioxides⁴ prepared from MT-sulfone and corresponding aldehydes⁵.

Conversion of methyl(1-tosyltridecyl)sulfane 1a to 1,1,1-trifluorotridecane 2a

Methyl(1-tosyltridecyl)sulfane **1a** (192 mg, 0.5 mmol) and IF₅/Et₃N-5HF (1.27 g, 3 mmol) were placed in a TeflonFEP bottle under an N₂ atmosphere. The bottle was tightly screw-caped and the mixture was stirred at 60 °C for 48 h. Then the mixture was poured into water and neutralized with aq NaHCO₃. The product was extracted with ether (30 mL X 3), and the organic phase was washed with aq Na₂S₂O₃ and dried over MgSO₄. After concentration under reduced pressure, **2a** was isolated by column chromatography (silica gel / hexane) in 87% yield.

Characterization Data of Compound 2

1,1,1-Trifluorotridecane (2a)

IR (neat) 2926, 2856, 1255, 1143 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 0.88 (3H, t, *J* = 7.1 Hz), 1.21-1.40 (18H, m), 1.51-1.58 (2H, m), 1.99-1.12 (2H, m). ¹³C NMR (100MHz, CDCl₃) δ 14.1, 22.0 (q, ³*J*_{C-F} = 3.1 Hz), 22.8, 28.8, 29.3, 29.5, 29.6, 29.7, 29.8 (2C),

32.1, 33.8 (q, ${}^{2}J_{C-F} = 28.4$ Hz), 127.4 (q, ${}^{1}J_{C-F} = 276.3$ Hz). ¹⁹F NMR (373MHz, CDCl₃) δ -67.40 (3F, t, J = 11.0 Hz), (lit.⁶ -66.9 (t, J = 10.8 Hz)).

Ethyl 7,7,7-trifluoroheptanoate (2b)

IR (neat) 2947, 1737, 1256, 1037 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.26 (3H, t, J = 7.1 Hz), 1.37-1.44 (2H, m), 1.54-1.69 (4H, m), 2.02-2.11 (2H, m), 2.32 (2H, q, J = 7.6 Hz), 4.13 (2H, q, J = 7.2 Hz). ¹³C NMR (100MHz, CDCl₃) δ 14.2, 21.6 (q, ³ $J_{C-F} =$ 2.9 Hz), 24.4, 28.1, 33.5 (q, ² $J_{C-F} =$ 28.4 Hz), 33.9, 60.3, 127.1 (q, ¹ $J_{C-F} =$ 276.4 Hz), 173.4. ¹⁹F NMR (373MHz, CDCl₃) δ -67.0 (3F, t, J = 11.0 Hz). HRMS (EI) calcd for C₉H₁₅F₃O₂ 212.1024, found 212.1034.

13-Chloro-1,1,1-trifluorotridecane (2c)

IR (neat) 2927, 2856, 1255, 1136 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.27-1.58 (16H, m), 1.75-1.80 (2H, m), 2.00-2.12 (2H, m), 3.53 (2H, t, *J* = 6.8 Hz). ¹³C NMR (100MHz, CDCl₃) δ 21.8 (q, ³*J*_{*C*-*F*} = 2.9 Hz) 26.9, 28.7, 28.9, 29.2, 29.3, 29.4, 29.5 (2C), 32.7, 33.7 (q, ²*J*_{*C*-*F*} = 28.6 Hz), 45.0, 127.3 (q, ¹*J*_{*C*-*F*} = 275.6 Hz). ¹⁹F NMR (373MHz, CDCl₃) δ -67.03, (3F, t, *J* = 11.1 Hz). HRMS (EI) calcd for C₁₃H₂₄F₃Cl 272.15186, found 272.14910

1,1,1,12,12,12-Hexafluorododecane (2d)

IR (neat) 2930, 2859, 1255, 1145 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.26-1.35 (12H, m), 1.50-1.59 (4H, m), 2.00-2.12 (4H, m). ¹³C NMR (100MHz, CDCl₃) δ 21.8 (2C, q, ³*J*_{*C*-*F*} = 2.9 Hz), 28.6 (2C), 29.1 (2C), 29.2 (2C), 33.7 (2C, q, ²*J*_{*C*-*F*} = 28.4 Hz), 127.3 (2C, q, ¹*J*_{*C*-*F*} = 276.3 Hz). ¹⁹F NMR (373MHz, CDCl₃) δ -67.04 (6F, t, *J* = 11.0 Hz), (lit.⁷ -66.9 (t, *J* = 11 Hz).

7,7,7-Trifluoroheptyl benzoate (2e)

IR (neat) 2945, 1718, 1275, 712 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.44-1.52 (4H, m), 1.56-1.63 (2H, m), 1.76-1.82 (2H, m), 2.02-2.14 (2H, m), 4.33 (2H, t, *J* = 6.3 Hz), 7.45 (2H, t, *J* = 7.9 Hz), 7.56 (1H, t, *J* = 7.5 Hz), 8.04 (2H, d, *J* = 7.5 Hz). ¹³C NMR (100MHz, CDCl₃) δ 21.8 (q, ³*J*_{C-F} = 2.9 Hz), 25.7, 28.3, 28.4, 33.6 (q, ²*J*_{C-F} = 28.4 Hz), 64.7, 127.2 (q, ¹*J*_{C-F} = 276.3 Hz), 128.3 (2C), 129.5 (2C), 130.3, 132.8, 166.6. ¹⁹F NMR (373MHz, CDCl₃) δ -67.01 (3F, t, *J* = 11.2 Hz). HRMS (EI) calcd for C₁₄H₁₇F₃O₂ 274.1181, found 274.1180.

N,N-Diethyl-7,7,7-trifluoroheptanamide (2f)

IR (neat) 2939, 1643, 1255, 1133 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.11 (3H, t, J = 7.1 Hz), 1.20 (3H, t, J = 7.1 Hz), 1.38-1.46 (2H, m), 1.55-1.72 (4H, m), 2.02-2.15 (2H, m), 2.31 (2H, t, J = 7.3 Hz), 3.30 (2H, q, J = 7.1 Hz), 3.37 (2H, q, J = 7.1 Hz). ¹³C NMR (100MHz, CDCl₃) δ 12.9, 14.2, 21.6 (q, ³ $J_{C-F} =$ 2.4 Hz), 24.7, 28.3, 32.5, 33.4 (q, ² $J_{C-F} =$ 28.4 Hz), 39.9, 41.8, 127.1 (q, ¹ $J_{C-F} =$ 276.1 Hz), 171.6. ¹⁹F NMR (373 MHz, CDCl₃) δ -67.0 (3F, t, J = 11.2 Hz). HRMS (EI) calcd for C₁₁H₂₀F₃NO 239.1497, found 239.1503.

Formal asymmetric Michael-addition of trifluoromethyl anion to crotonaldehyde

(R)-3-Methyl-4,4-bis(phenylsulfonyl)butanal (6)

The reaction was carried out according to the literature.⁸ A mixture of bis(phenylsulfonyl)methane (2.07 g, 7 mmol), (*S*)-2-[diphenyl{(trimethylsilyl)oxy}methyl]pyrrolidine (0.46 g, 1.4 mmol), and crotonaldehyde (0.735 g, 10.5 mmol) in toluene (56 mL) was stirred at 0 °C for 24h. Then a volatile part was removed under reduced pressure and the residue was purified by column chromatography (silica gel / hexane:acetone = 3:2) to give **6** (2.192 g, 6 mmol) in 86% yield.

(R)-3-Methyl-4,4-bis(phenylsulfonyl)butan-1-ol

To a MeOH solution (14 mL) of **6** (2.192 g, 6 mmol) was added NaBH₄ (0.53 g, 14 mmol) at 0 °C and the mixture was stirred for 2 h. Then the mixture was poured into water (20 mL) and extracted with EtOAc (30 mL X 3). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone = 3:2) gave

3-methyl-4,4-bis(phenylsulfonyl)butan-1-ol (2.0 g, 5.4 mmol) in 91% yield. Optical purity of 3-methyl-4,4-bis(phenylsulfonyl)butan-1-ol (85 %ee) was determined by HPLC analysis using CHIRAPAK IC column (DAICEL CHEMICAL INDUSTRIES Ltd.) (4.6 mm I.D. x 250 mm) (5 μ m) (hexane:i-PrOH = 80:20), 1.0 mL/min; 20 °C (major enantiomer appeared at 42.3 min, and minor enantiomer appeared at 55.8 min, respectively).

(R)-3-Methyl-4,4-bis(phenylsulfonyl)butan-1-ol tert-butyldimethylsilyl ether (7)

To a DMF solution (20 mL) of (*R*)-3-methyl-4,4-bis(phenylsulfonyl)butan-1-ol (2.0 g, 5.4 mmol) were added imidazole (1.53 g, 22.5 mmol) and TBDMSCl (3.3 g 22.0 mmol) at 0 °C, successively, and the mixture was stirred at room temperature overnight. The mixture was poured into water (20 mL) and extracted with EtOAc (20 mL X 3). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone = 3:1) gave 7 (2.57 g, 5.3 mmol) in 97% yield.

(R)-3-Methyl-4-(phenylsulfonyl)butan-1-ol tert-butyldimethylsilyl ether

To a THF solution (7 mL) of 7 (1.7 g, 3.5 mmol) was added 0.1M THF solution of SmI₂ (100 mL, 10 mmol) at room temperature under nitrogen atmosphere and the resulting yellow solution was stirred at room temperature for 30 min. The reaction was quenched by the addition of aq NH₄Cl (10 mL) and the product was extracted with ether (30 mL X 3). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone = 6:1) gave (*R*)-3-methyl-4-(phenylsulfonyl)butan-1-ol *tert*-butyldimethylsilyl ether (1,12 g, 3.3 mmol) in 93% yield.

(3R)-3-Methyl-4-(methylsulfanyl)-4-(phenylsulfonyl)butan-1-ol

To a THF solution (7 mL) of (*R*)-3-methyl-4-(phenylsulfonyl)butan-1-ol *tert*-butyldimethylsilyl ether (1.1 g, 3.3 mmol) was added a 1.65 M hexane solution of BuLi (2 mL, 3.3 mmol) at -78 °C under nitrogen atmosphere and the mixture was stirred for 30 min. After the addition of MeSSO₂Me (1.5 ml, 16 mmol), the mixture was stirred at -78 °C for 24h. The mixture was poured into water (20 mL) and extracted with ether (20 mL X 3). The combined organic layer was washed with aq NH₄Cl, dried over MgSO₄, and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone = 6:1) gave **8** (1.0 g, 2.6 mmol) in 79 % yield.

(3R)-3-Methyl-4-(methylsulfanyl)-4-(phenylsulfonyl)butan-1-ol

To a THF solution (5 mL) of **8** (1.0 g, 2.6 mmol) was added 1.0 M THF solution of TBAF (7.8 mL, 7.8 mmol) at room temperature and the mixture was stirred overnight. The mixture was poured into water (30 mL), extracted with ether (30 mL X 3), and washed with aq NaHCO₃ (20 mL). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone 2:1) gave (3*R*)-3-methyl-4-(methylsulfanyl)-4-(phenylsulfonyl)butan-1-ol (0.52 g, 1.9 mmol) in 74 % yield.

(3R)-3-Methyl-4-(methylsulfanyl)-4-(phenylsulfonyl)butyl benzoate (9)

То CH₂Cl₂ solution (4 mL) of а (3R)-3-methyl-4-(methylsulfanyl)-4-(phenylsulfonyl)butan-1-ol (0.52 g, 1.9 mmol) and Et₃N (0.58 g, 5.7 mmol) was added benzoyl chloride (0.8 g, 5.7 mmol) at 0 °C and the mixture was stirred at room temperature overnight. The mixture was poured into water (30 mL) and extracted with ether (30 mL X 3). The combined organic layer was washed with brine (20 mL), dried over MgSO₄, and concentrated under reduced pressure. Purification by column chromatography (silica gel / hexane:acetone = 4:1) gave 9 (0.70 g, 1.85 mmol) in 97% yield as a mixture of diastereomers (ca. 5:1). IR (neat) 2925, 1716, 1306, 1275, 1146 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.09 (2.5H, d, J = 6.7 Hz), 1.21 (0.5H, d, J = 6.7 Hz), 1.89-1.97 (2H, m), 2.07 (2.5H, s), 2.08 (0.5H, s), 2.59-2.64 (1H, m), 3.64 (0.15H, s), 3.83 (0.85H, d, *J* = 1.8 Hz), 4.25-4.36 (2H, m), 7.43-7.61 (6H, m), 7.93-8.06 (4H, m). ¹³C NMR (100MHz, CDCl₃) δ 14.8, 18.1, 18.5, 30.0, 34.3, 62.1, 128.4 (2C), 129.0 (2C), 129.2 (2C), 129.5 (2C), 129.9, 133.1, 133.8, 137.8, 166.4. HRMS (EI) calcd for $C_{19}H_{22}S_2O_4Na$ (M⁺+Na) 401.08517, found 401.08471.

(R)-4,4,4-Trifluoro-3-methylbutyl benzoate (10)

9 (189 mg, 0.5 mmol) and IF₅/Et₃N-5HF (0.3 g, 1.5 mmol) were placed in a TeflonFEP bottle under an N₂ atmosphere. The bottle was tightly screw-caped and the mixture was stirred at 60 °C for 48 h. Then the mixture was poured into water and neutralized with aq NaHCO₃. The product was extracted with ether (30 mL X 3), and combined organic phase was washed with aq Na₂S₂O₃ and dried over MgSO₄. After concentration under reduced pressure, **10** was isolated by column chromatography (silica gel / hexane:CH₂Cl₂ = 3:1) in 52% yield. Optical purity of **10** (84 %ee) was determined by HPLC analysis using CHIRAPAK IC column (DAICEL CHEMICAL INDUSTRIES Ltd.) (4.6 mm I.D. x 250 mm)(5 μ m)(hexane:i-PrOH = 99.2:0.8), 1.0 mL/min; 20 °C

(major enantiomer appeared at 20.2 min, and minor enantiomer appeared at 19.4 min, respectively). Absolute stereochemistry of **10** was determeind to be *R* by the comparison of its optical rotation with the reported data.⁹ $[\alpha]^{19}_{D} = 12.5$ (c = 1.04, CHCl₃) lit.⁹ $[\alpha]^{17}_{D} = +21.2$ (c = 1.02, CHCl₃) for 98%ee). IR (neat) 2987, 1722, 1270 cm⁻¹. ¹H NMR (400MHz, CDCl₃) δ 1.21 (3H, d, *J* = 7.0 Hz), 1.72-1.81 (1H, m), 2.18-2.26 (1H, m), 2.39-2.46 (1H, m), 4.34-4.47 (2H, m), 7.44-7.60 (3H, m), 8.02-8.05 (2H, m). ¹³C NMR (100MHz, CDCl₃) δ 12.5 (q, ³*J*_{C-*F*} = 2.8 Hz), 28.7 (q, ³*J*_{C-*F*} = 2.9 Hz), 35.2 (q, ²*J*_{C-*F*} = 26.7 Hz), 61.7, 128.1 (q, ¹*J*_{C-*F*} = 279.5 Hz), 128.4 (2C), 129.5 (2C), 132.3, 133.1, 166.3. ¹⁹F NMR (373MHz, CDCl₃) δ -74.04 (3F, d, *J* = 9.0 Hz). HRMS (EI) calcd for C₁₂H₁₃F₃ O₂ 246.08676, found 246.08629.

References

- (1) I. Fleischer and A. Pfaltz, Chem. Eur. J. 2010, 16, 95.
- (2) K. Ogura, N. Yahata, K. Hashizume, K. Tsuyama, K. Takahashi, and H. Iida, *Chem. Lett.*, 1983, 767.
- (3) K. Ogura, K. Ohtsuki, M. Nakamura, N. Yahata, K. Takahashi, and H. Iida, *Tetrahedron Lett.*, 1985, **26**, 2455.
- (4) K. Ogura, K. Ohtsuki, K. Takahashi, and H. Iida, Chem. Lett., 1986, 1597.
- (5) S. Matsumoto, M. Ishii, K. Kimura, and K. Ogura, *Bull. Chem. Soc. Jpn.*, 2004, 77, 1897.
- (6) W. Tyrra, D. Naumann, S. Quadt, S. Buslei, Y. L. Yagupolskii, and M. M. Kremlev, *J. Fluorine Chem.*, 2007, **128**, 813.
- (7) R. Sasson and S. Rozen, Tetrahedron, 2005, 61, 1083.
- (8) A.-N. Alba, X. Companyó, A. Moyano, and R. Rios, Chem. Eur. J., 2009, 15, 11095.
- (9) T. Yamazaki, N. Ishikawa, H. Iwatsubo, and T. Kitazume, Chem. Commun., 1987, 1340.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

т. *с.* т. *с.* т. *с.* т. *с.* т.

· · · · · · · · · · ·

S14

