Thioether-phosphite: new ligands for the highly enantioselective Ircatalyzed hydrogenation of minimally functionalized olefins

M. Coll, O. Pàmies* and M. Diéguez*

Departament de Química Física i Inorgànica. Universitat Rovira i Virgili. Campus Sescelades, C/

Marcel·lí Domingo, s/n. 43007 Tarragona, Spain

oscar.pamies@urv.cat; montserrat.dieguez@urv.cat

Supporting Information

Table of Contents

1. General considerations	S2
2. Typical procedure for the preparation of new ligands L1-L8a-d	S2
3. Typical procedure for the preparation of $[Ir(cod)(L)]BAr_F (L=L1-L8a-d)$	S6
4. Typical procedure for the hydrogenation of olefins	S12
5. Synthesis of ligand precursors	S13

1. General Considerations. All reactions were carried out using standard Schlenk techniques under an atmosphere of argon. Solvents were purified and dried by standard procedures. Phosphorochloridites are easily prepared in one step from the corresponding biaryls.¹ Phosphitethioether ligand **L1-L3a** and thioether-hydroxyl **8** were prepared as previously described.² ¹H, ${}^{13}C{}^{1}H$, and ${}^{31}P{}^{1}H$ NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of SiMe₄ (¹H and ${}^{13}C$) as internal standard or H₃PO₄ (${}^{31}P$) as external standard. ¹H and ${}^{13}C$ assignments were done based on ${}^{1}H{}^{-1}H$ gCOSY and ${}^{1}H{}^{-13}C$ gHSQC experiments.

2. Typical procedure for the preparation of ligands L1-L8a-d. The corresponding phosphorochloridite (1.1 mmol) produced *in situ* was dissolved in toluene (5 mL) and pyridine (0.3 mL, 3.9 mmol) was added. The corresponding thioether-hydroxyl compound (1 mmol) was azeotropically dried with toluene (3 x 2 mL) and then dissolved in toluene (5 mL) to which pyridine (0.3 mL, 3.9 mmol) was added. The alcohol solution was transferred slowly to the solution of phosphorochloridite. The reaction mixture was stirred at 80 °C for 90 min, and the pyridine salts were removed by filtration. Evaporation of the solvent gave a white foam, which was purified by flash chromatography in alumina (toluene/NEt₃= 100/1) to produce the corresponding ligand as a white solid.

L1c: Yield: 435 mg, 73 %. ³¹P NMR (400 MHz, C₆D₆) δ : 148.6 (s). ¹H NMR (400 MHz, C₆D₆) δ : 0.97 (s, 3H, CH₃), 1.18 (s, 3H, CH₃), 3.27 (m, 2H, H-5' and H-5), 4.49 (m, 1H, H-4), 4.68 (d, 1H, H-2, ²J₂₋₁= 4.0 Hz), 4.97 (dd, 1H, H-3, J_{3-P}= 5.6 Hz, ³J₃₋₄= 2.0 Hz), 5.82 (d, 1H, H-1, ³J₁₋₂= 4.0 Hz), 6.8-7.6 (m, 17H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 26.0 (CH₃), 26.5 (CH₃), 30.9 (C-5), 78.0 (d, C-3, J_{C-P}= 16 Hz), 78.7 (C-4), 84.5 (C-2), 105.0 (C-1), 111.7 (CMe₂), 121.4 (CH=), 121.7 (CH=), 123.0 (C), 124.4 (C), 124.9 (d, CH=, J_{C-P}= 7.1 Hz), 126.0 (CH=), 126.3 (CH=), 127.1 (CH=), 128.3 (CH=), 128.4 (CH=), 19.3 (CH=), 130.0 (CH=), 130.5 (CH=), 131.2 (C), 131.7 (C),

¹ Buisman, G. J. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Tetrahedron: Asymmetry* **1993**, *4*, 1625.

² a) Pàmies, O.; Diéguez, M. Net, G.; Ruiz, A.; Claver, C. *Organometallics* **2000**, *19*, 1488. b) Diéguez, M.; Pàmies, O.; Claver, C. *Tetrahedron: Asymmetry* **2005**, *16*, 3877.

132.8 (C), 132.9 (C), 135.6 (C), 147.3 (C), 148.2 (d, C, $J_{C-P}= 5.3$ Hz). Anal. calcd (%) for $C_{34}H_{29}O_6PS$: C 68.45, H 4.90, S 5.37; found: C 68.54, H 4.86, S 5.24.

L1d: Yield: 393 mg, 66%. ³¹P NMR (400 MHz, C₆D₆) δ : 145.7 (s). ¹H NMR (400 MHz, C₆D₆) δ : 0.89 (s, 3H, CH₃), 1.16 (s, 3H, CH₃), 3.03 (dd, 1H, H-5', ²J_{5'.5} = 13.2 Hz, ³J_{5'.4} = 5.6 Hz), 3.90 (dd, 1H, H-5, ²J_{5.5'} = 13.2 Hz, ³J_{5.4} = 4.6 Hz), 4.39 (d, 1H, H-2, ²J_{2.1} = 3.6 Hz), 4.41 (m, 1H, H-4), 4.89 (dd, 1H, H-3, J_{3.P} = 9.2 Hz, ³J_{3.4} = 2.8 Hz), 5.68 (d, 1H, H-1, ³J_{1.2} = 3.6 Hz), 6.8-7.6 (m, 17H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 24.4 (CH₃), 27.0 (CH₃), 32.4 (C-5), 76.6 (d, C-3, J_{C.P} = 10.5 Hz), 79.4 (d, C-4, J_{C.P} = 5.3 Hz), 85.1 (C-2), 105.6 (C-1), 112.1 (CMe₂), 122.2 (CH=), 122.3 (CH=), 123.5 (C), 125.1 (C), 125.6 (CH=), 125.7 (CH=), 126.7 (CH=), 127.0 (d, CH=, J_{C.P} = 3.5 Hz), 127.7 (d, CH=, J_{C.P} = 14.7 Hz), 129.0 (d, CH=, J_{C.P} = 4.0 Hz), 129.6 (CH=), 130.3 (CH=), 130.9 (C), 131.3 (C), 131.8 (C), 132.4 (C), 133.4 (C), 133.7 (C), 135.1 (C), 147.9 (d, C, J_{C.P} = 4.0 Hz), 148.9 (d, C, J_{C.P} = 6.0 Hz). Anal. calcd (%) for C₃₄H₂₉O₆PS: C 68.45, H 4.90, S 5.37; found: C 68.51, H 4.92, S 5.44.

L4a: Yield: 520 mg, 69 %. ³¹P NMR (400 MHz, C₆D₆) δ : 142.7 (bs). ¹H NMR (400 MHz, C₆D₆) δ : 1.15 (s, 3H, CH₃), 1.25 (s, 9H, CH₃, ^tBu), 1.31 (s, 9H, CH₃, ^tBu), 1.43 (s, 3H, CH₃), 1.52 (s, 9H, CH₃, ^tBu), 1.60 (s, 9H, CH₃, ^tBu), 2.59 (s, 6H, CH₃-Ar), 2.72 (dd, 1H, H-5', ²*J*_{5'-5}= 14 Hz, ³*J*_{5'-4}= 7.2 Hz), 3.13 (dd, 1H, H-5, ²*J*₅₋₅= 14 Hz, ³*J*₅₋₄= 3.2 Hz), 3.98 (m, 1H, H-2), 4.03 (m, 1H, H-4), 4.19 (m, 1H, H-3), 5.43 (d, 1H, H-1, ³*J*₁₋₂= 3.6 Hz), 6.8-7.6 (m, 7H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 22.1 (CH₃-Ar), 26.4 (CH₃), 27.0 (CH₃), 31.0 (CH₃, ^tBu) 31.2 (CH₃, ^tBu), 34.3 (C, ^tBu), 35.2 (C, ^tBu), 35.4 (C-5), 75.4 (C-3), 76.5 (C-4), 78.3 (C-2), 104.0 (C-1), 112.8 (CMe₂), 124.0 (d, CH=, *J*_C- $_{P}$ = 12 Hz), 126.7 (CH=), 126.8 (CH=), 128.1 (CH=), 128.2 (CH=), 129.2 (CH=), 133.6 (C), 137.8 (C), 140.4 (C), 141.3 (C), 143.2 (C), 146.8 (C). Anal. calcd (%) for C₄₄H₆₁O₆PS: C 70.56, H 8.21, S 4.28; found: C 70.62, H 8.25, S 4.21.

L5a: Yield: 532 mg, 73 %. ³¹P NMR (400 MHz, C₆D₆) δ : 143.1 (s). ¹H NMR (400 MHz, C₆D₆) δ : 1.12 (s, 3H, CH₃), 1.25 (s, 9H, CH₃, ^tBu), 1.27 (s, 9H, CH₃, ^tBu), 1.44 (s, 3H, CH₃), 1.57 (s, 9H, CH₃, ^tBu), 1.59 (s, 9H, CH₃, ^tBu), 2.90 (dd, 1H, H-5', ²J_{5'-5}= 13.6 Hz, ³J_{5'-4}= 5.2 Hz), 3.23 (dd, 1H, H-5, ²J_{5-5'}= 13.6 Hz, ³J₅₋₄= 3.2 Hz), 3.96 (m, 1H, H-2), 4.41 (m, 1H, H-3), 4.48 (m, 1H, H-4), 5.41 (d, 1H, H-1, ³J₁₋₂= 3.2 Hz), 6.8-7.6 (m, 9H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 26.4 (CH₃), 26.6 (CH₃), 31.0 (CH₃, ^tBu), 31.1 (CH₃, ^tBu), 31.2 (CH₃, ^tBu), 34.3 (C, ^tBu), 35.2 (C, ^tBu), 35.3 (C-5), 76.2 (C-3), 77.5 (d, C-4, J_{C-P}= 3.1 Hz), 78.3 (C-2), 103.8 (C-1), 112.6 (CMe₂), 123.9 (d, CH=, J_{C-P}=

25.9 Hz), 125.6 (CH=), 126.7 (CH=), 126.9 (CH=), 128.6 (CH=), 128.9 (CH=), 129.4 (CH=), 133.1 (C), 133.4 (C), 137.0 (C), 140.4 (C), 140.6 (C), 146.1 (C), 146.2 (C), 146.7 (C). Anal. calcd (%) for C₄₂H₅₇O₆PS: C 69.97, H 7.97, S 4.45; found: C 69.95, H 8.01, S 4.41.

L5b: Yield: 397 mg, 62 %. ³¹P NMR (400 MHz, C₆D₆) δ : 141.7 (s). ¹H NMR (400 MHz, C₆D₆) δ : 0.37 (s, 9H, CH₃-Si), 0.42 (s, 9H, CH₃-Si) 1.09 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 2.84 (dd, 1H, H-5', ²J_{5'-5}= 14.0 Hz, ³J_{5'-4}= 6.4 Hz), 3.20 (dd, 1H, H-5, ²J_{5-5'}= 14.0 Hz, ³J₅₋₄= 3.2 Hz), 3.91 (m, 1H, H-2), 4.29 (m, 1H, H-3), 4.46 (m, 1H, H-4), 5.32 (d, 1H, H-1, ³J₁₋₂= 4.0 Hz), 6.8-7.6 (m, 11H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 0 (CH₃-Si), 0.1 (CH₃-Si), 26.6 (CH₃), 26.7 (CH₃), 35.9 (C-5), 76.3 (C-3), 77.8 (C-4), 78.5 (C-2), 104.0 (C-1), 112.7 (CMe₂), 125.1 (CH=), 125.3 (CH=), 125.8 (C), 126.0 (CH=), 126.9 (C), 128.2 (CH=), 128.8 (CH=), 129.8 (CH=), 130.9 (C), 132.5 (CH=), 132.7 (CH=), 133.1 (C), 135.2 (CH=), 135.7 (CH=), 145.9 (C), 146.6 (C). Anal. calcd (%) for C₃₂H₄₁O₆PS: C 59.97, H 6.45, S 5.00; found: C 60.02, H 6.49, S 4.98.

L5c: Yield: 322 mg, 54 %. ³¹P NMR (400 MHz, C₆D₆) δ : 141.8 (s). ¹H NMR (400 MHz, C₆D₆) δ : 1.10 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 2.89 (dd, 1H, H-5', ²*J*_{5'-5}= 14.0 Hz, ³*J*_{5'-4}= 4.4 Hz), 3.20 (dd, 1H, H-5, ²*J*₅₋₅= 14.0 Hz, ³*J*₅₋₄= 4.4 Hz), 3.20 (dd, 1H, H-5, ²*J*₅₋₅= 14.0 Hz, ³*J*₅₋₄= 3.2 Hz), 4.04 (m, 1H, H-2), 4.38 (m, 2H, H-3 and H-4), 5.24 (d, 1H, H-1, ³*J*₁₋₂= 3.2 Hz), 6.8-7.6 (m, 17H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 26.4 (CH₃), 26.5 (CH₃), 34.5 (C-5), 76.3 (C-3), 77.8 (C-4), 78.5 (C-2), 104.0 (C-1), 112.8 (CMe₂), 121.6 (CH=), 121.9 (CH=), 123.1 (C), 124.9 (d, CH=, *J*_{C-P}= 7.8 Hz), 125.6 (CH=), 126.3 (d, CH=, *J*_{C-P}= 3.1 Hz), 127.0 (d, CH=, *J*_{C-P}= 8.9 Hz), 127.8 (CH=), 128.2 (CH=), 128.6 (CH=), 129.0 (CH=), 129.7 (CH=), 130.5 (CH=), 131.2 (C), 131.7 (C), 132.9 (C), 133.0 (C), 137.0 (C), 147.4 (d, C, *J*_{C-P}= 2.3 Hz), 148.0 (d, C, *J*_{C-P}= 4.6 Hz). Anal. calcd (%) for C₃₄H₂₉O₆PS: C 68.45, H 4.90, S 5.37; found: C 68.52, H 4.89, S 5.34.

L5d: Yield: 364 mg, 61 %. ³¹P NMR (400 MHz, C₆D₆) δ : 140.9 (s). ¹H NMR (400 MHz, C₆D₆) δ : 1.11 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 3.00 (dd, 1H, H-5', ²J_{5'-5}= 14.0 Hz, ³J_{5'-4}= 6.6 Hz), 3.31 (dd, 1H, H-5, ²J_{5-5'}= 14.0 Hz, ³J₅₋₄= 3.6 Hz), 4.12 (m, 1H, H-2), 4.19 (m, 1H, H-3), 4.47 (m, 1H, H-4), 5.17 (d, 1H, H-1, ³J₁₋₂= 3.2 Hz), 6.8-7.6 (m, 17H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 27.1 (CH₃), 35.7 (C-5), 77.4 (d, C-3, J_{C-P}= 4.6 Hz), 77.8 (d, C-4, J_{C-P}= 3.9 Hz), 79.2 (C-2), 104.6 (C-1), 113.2 (CMe₂), 122.4 (CH=), 122.8 (CH=), 123.4 (C), 125.2 (C), 125.6 (d, CH=, J_{C-P}= 12.2 Hz), 126.5 (CH=), 127.0 (d, CH=, J_{C-P}= 17.0 Hz), 129.0 (CH=), 129.5 (CH=), 129.9 (CH=), 130.6 (CH=), 131.3 (CH=), 131.9 (C), 132.4 (C), 133.4 (C), 133.7 (d, C, J_{C-P}= 1.5 Hz),

137.6 (C), 148.2, 149.4 (d, C, *J*_{C-P}= 4.5 Hz). Anal. calcd (%) for C₃₄H₂₉O₆PS: C 68.45, H 4.90, S 5.37; found: C 68.48, H 4.82, S 5.35.

L6a: Yield: 452 mg, 60 %. ³¹P NMR (400 MHz, C₆D₆) δ : 142.7 (bs). ¹H NMR (400 MHz, C₆D₆) δ : 1.11(s, 3H, CH₃), 1.24 (s, 9H, CH₃, ^tBu), 1.26 (s, 9H, CH₃, ^tBu), 1.41 (s, 3H, CH₃), 1.52 (s, 9H, CH₃, ^tBu), 1.56 (s, 9H, CH₃, ^tBu), 2.58 (s, 6H, CH₃-Ar), 2.62 (dd, 1H, H-5', ²*J*_{5'-5}= 14 Hz, ³*J*_{5'-4}= 8.8 Hz), 3.06 (dd, 1H, H-5, ²*J*₅₋₅= 14 Hz, ³*J*₅₋₄= 2.4 Hz), 3.93 (m, 1H, H-2), 4.16 (m, 1H, H-4), 4.28 (m, 1H, H-3), 5.40 (d, 1H, H-1, ³*J*₁₋₂= 3.2 Hz), 6.8-7.6 (m, 7H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 21.9 (CH₃-Ar), 26.4 (CH₃), 31.0 (CH₃, ^tBu), 31.2 (CH₃, ^tBu), 34.3 (C, ^tBu), 35.2 (C, ^tBu), 35.3 (C-5), 76.6 (C-4), 77.5 (C-3), 78.2 (C-2), 103.6 (C-1), 112.5 (CMe₂), 123.9 (d, CH=, *J*_{C-P}= 15.3 Hz), 126.6 (CH=), 126.9 (CH=), 128.1 (CH=), 128.2 (CH=), 128.9 (CH=), 133.5 (C), 137.5 (C), 140.4 (C), 140.7 (C), 143.3 (C), 146.6 (C), 146.7 (C). Anal. calcd (%) for C₄₄H₆₁O₆PS: C 70.56, H 8.21, S 4.28; found: C 70.53, H 8.23, S 4.30.

L7a: Yield: 536 mg, 72 %. ³¹P NMR (400 MHz, C₆D₆) δ : 136.4 (s). ¹H NMR (400 MHz, C₆D₆) δ : 0.95 (s, 3H, CH₃), 1.26 (s, 9H, CH₃, ^tBu), 1.28 (s, 9H, CH₃, ^tBu), 1.38 (s, 3H, CH₃), 1.59 (s, 9H, CH₃, ^tBu), 1.60 (s, 9H, CH₃, ^tBu), 3.68 (d, 1H, H-3, ³*J*₃₋₄= 3.6 Hz), 4.38 (m, 2H, H-5' and H-5), 4.47 (d, 1H, H-2, ³*J*₁₋₂= 3.6 Hz), 4.82 (m, 1H, H-4), 5.78 (d, 1H, H-1, ³*J*₁₋₂= 3.6 Hz), 6.8-7.6 (m, 9H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 26.7 (CH₃), 27.2 (CH₃), 31.5 (CH₃, ^tBu), 31.6 (CH₃, ^tBu), 31.9 (CH₃, ^tBu), 32.0 (CH₃, ^tBu), 35.0 (C, ^tBu), 36.0 (C, ^tBu), 53.8 (C-3), 64.4 (C-5), 78.9 (C-4), 86.2 (C-2), 105.8 (C-1), 112.3 (CMe₂), 124.1 (d, CH=, *J*_{C-P}= 13.0 Hz), 125.3 (CH=), 126.3 (CH=), 126.7 (d, CH=, *J*_{C-P}= 20 Hz), 128.1 (CH=), 128.9 (CH=), 129.0 (CH=), 129.6 (CH=), 133.1 (C), 133.3 (C), 134.3 (C), 137.5 (C), 140.1 (C), 140.3 (C), 146.5 (C), 146.6 (C). Anal. calcd (%) for C₄₂H₅₇O₆PS: C 69.97, H 7.97, S 4.45; found: C 69.99, H 8.01, S 4.47.

L8a: Yield: 415 mg, 57 %. ³¹P NMR (400 MHz, C₆D₆) δ : 142.5 (bs). ¹H NMR (400 MHz, C₆D₆) δ : 1.09 (s, 3H, CH₃), 1.23 (s, 9H, CH₃, ^tBu), 1.27 (s, 9H, CH₃, ^tBu), 1.39 (s, 3H, CH₃), 1.50 (s, 9H, CH₃, ^tBu), 1.52 (s, 9H, CH₃, ^tBu), 3.39 (dd, 1H, H-3, ³J₃₋₂= 4 Hz, ³J₃₋₄= 10 Hz), 3.87 (m, 1H, H-5'), 4.03 (m, 1H, H-4), 4.19 (m, 1H, H-2), 4.31 (m, 1H, H-5), 5.71 (d, 1H, H-1, ³J₁₋₂= 3.6 Hz), 6.8-7.6 (m, 9H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 26.2 (CH₃), 26.6 (CH₃), 30.7 (CH₃, ^tBu), 30.9 (CH₃, ^tBu), 31.2 (CH₃, ^tBu), 31.1 (CH₃, ^tBu), 34.3 (C, ^tBu), 35.3 (C, ^tBu), 49.6 (C-3), 61.9 (d, C-5, J_{C-P}= 8 Hz), 80.7 (C-4), 81.1 (C-2), 104.4 (C-1), 111.7 (CMe₂), 123.9 (d, CH=, J_{C-P}= 7.6 Hz), 125.3 (CH=), 126.4 (CH=), 126.6 (d, CH=, J_{C-P}= 13 Hz), 128.1 (CH=), 128.8 (CH=), 128.9 (CH=), 130.8 (CH=),

133.2 (C), 133.5 (C), 135.1 (C), 140.3 (C), 146.2 (C), 146.5 (C). Anal. calcd (%) for C₄₂H₅₇O₆PS: C 69.97, H 7.97, S 4.45; found: C 70.01, H 8.02, S 4.43.

3. Typical procedure for the preparation of [Ir(cod)(L)]BAr_F (L= L1-L8a-d)

The corresponding ligand (0.037 mmol) was dissolved in CH₂Cl₂ (2 mL) and $[Ir(\mu-Cl)(cod)]_2$ (12.5 mg, 0.0185 mmol) was added. The reaction was refluxed at 50 °C for 1 hour. After 5 min at room temperature, NaBAr_F (38.6 mg, 0.041 mmol) and water (2 mL) were added and the reaction mixture was stirred vigorously for 30 min at room temperature. The phases were separated and the aqueous phase was extracted twice with CH₂Cl₂. The combined organic phases were dried with MgSO₄, filtered through a plug of celite and the solvent was evaporated to give the product as red-orange solids.

[Ir(cod)(L1a)]BArF. Yield 64 mg (91 %). ³¹P NMR (CDCl₃, 298 K), δ: 112.9 (b). Anal. calc (%) for C₈₂H₈₁BF₂₄IrO₆PS: C 52.26, H 4.33, S 1.70; found: C 52.32, H 4.41, N 1.65. Major isomer (60%): ³¹P NMR (CDCl₃, 213 K), δ: 117.3 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.19 (s, 3H, CH₃), 1.33 (s, 18H, CH₃, ^tBu), 1.37 (s, 3H, CH₃), 1.64 (s, 18H, CH₃, ^tBu), 1.8-2.4 (b, 8H, CH₂, cod), 3.48 (m, 2H, H-5' and H-2), 3.87 (m, 2H, CH=, cod and H-5), 4.10 (m, 1H, CH=, cod), 4.34 (m, 1H, CH=, cod), 4.54 (m, 1H, H-4), 4.71 (m, 1H, H-3), 5.01 (m, 1H, CH=, cod), 5.58 (b, 1H, H-1), 7.0-8.0 (m, 21H, CH= aromatics). ¹³C NMR (CDCl₃, 213 K), δ : 25.5 (CH₃), 26.2 (CH₃), 30.2 (b, CH₂, cod), 30.7 (b, CH₂, cod), 31.2-31.8 (CH₃, ^tBu), 33.9 (b, CH₂, cod), 34.7-35.5 (C, tBu), 46.5 (C-5), 71.1 (b, CH=, cod), 75.5 (C-3), 78.0 (b, CH=, cod), 78.7 (b, C-4), 83.3 (C-2), 104.3 (b, CH=, cod), 104.6 (C-1), 105.9 (d, CH=, cod, J_{C-P} = 15 Hz), 112.6 (CMe₂), 117.5-162.3 (aromatic carbons). Minor isomer (40%): ³¹P NMR (CDCl₃, 213 K), δ: 109.9 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.14 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.41 (s, 9H, CH₃, ^tBu), 1.47 (s, 9H, CH₃, ^tBu), 1.69 (s, 18H, CH₃, ^tBu), 1.8-2.4 (b, 8H, CH₂, cod), 3.97 (m, 1H, H-5'), 4.10 (m, 1H, H-5), 4.18 (m, 1H, CH=, cod), 4.45 (m, 2H, H-4 and H-2), 4.54 (m, 1H, CH=, cod), 4.71 (m, 1H, H-3), 4.92 (m, 1H, CH=, cod), 5.01 (m, 1H, CH=, cod), 5.92 (b, 1H, H-1), 7.0-8.0 (m, 21H, CH= aromatics). ¹³C NMR (CDCl₃, 213 K), δ: 26.2 (CH₃), 26.6 (b, CH₂, cod), 27.2 (b, CH₂, cod), 28.7 (b, CH₂, cod), 29.8 (b, CH₂, cod), 31.2-31.8 (CH₃, ^tBu), 34.7-35.5 (C, tBu), 41.4 (C-5), 69.1 (b, CH=, cod), 74.3 (C-3), 76.8 (b, C-4), 82.0 (b, CH=, cod), 84.7 (C-2), 104.3 (b, CH=, cod), 104.6 (C-1), 106.4 (b, CH=, cod), 113.2 (CMe₂), 117.5-162.3 (aromatic carbons).

[Ir(cod)(L1c)]BArF. Yield 65 mg (96 %). Anal. calc (%) for C₇₄H₅₃BF₂₄IrO₆PS: C 50.49, H 3.03, S 1.82; found: C 50.53, H 3.11, N 1.77. Major isomer (65%): ³¹P NMR (CDCl₃), δ: 119.6 (s). ¹H NMR (CDCl₃), δ: 1.27 (s, 3H, CH₃), 1.40 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 2.98 (m, 1H, CH=, cod), 3.66 (dd, 1H, H-5', ${}^{2}J_{5'-5}$ = 13.6 Hz, ${}^{3}J_{5'-4}$ = 10.2 Hz), 3.93 (m, 1H, H-5), 4.38 (m, 1H, CH=, cod), 4.48 (m, 1H, H-4), 4.62 (d, 1H, H-2, ${}^{3}J_{2-1} = 4.0$ Hz), 4.88 (m, 1H, CH= cod), 5.24 (m, 1H, CH=, cod), 5.48 (m, 1H, H-3), 5.77 (d, 1H, H-1, ${}^{3}J_{1-2} = 4.0$ Hz), 7.0-8.1 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 26.1 (CH₃), 26.5 (CH₃), 27.4 (b, CH₂, cod), 29.3 (b, CH₂, cod), 31.3 (b, CH₂, cod), 33.5 (b, CH₂, cod), 40.8 (C-5), 74.3 (b, CH=, cod), 75.9 (C-4), 77.8 (b, CH=, cod), 79.0 (C-3), 83.7 (C-2), 100.9 (b, CH=, cod), 105.1 (C-1), 107.2 (b, CH=, cod), 113.2 (CMe₂), 117.4-162.4 (aromatic carbons). Minor isomer (35%): ³¹P NMR (CDCl₃), δ: 114.6 (s). ¹H NMR (CDCl₃), δ: 1.31 (s, 3H, CH₃), 1.39 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 2.81 (m, 1H, CH=, cod), 3.33 (m, 1H, H-5'), 3.49 (m, 1H, H-5), 4.04 (m, 1H, H-4), 4.18 (d, 1H, H-2, ${}^{3}J_{2-1} = 3.6$ Hz), 4.88 (m, 3H, CH= cod), 5.44 (m, 1H, H-3), 5.57 (d, 1H, H-1, ${}^{3}J_{1-2} = 3.6$ Hz), 7.0-8.1 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 26.3 (CH₃), 26.7 (CH₃), 28.1 (b, CH₂, cod), 29.6 (b, CH₂, cod), 31.0 (b, CH₂, cod), 31.8 (b, CH₂, cod), 40.8 (C-5), 75.3 (b, CH=, cod), 75.9 (C-4), 78.3 (b, CH=, cod), 79.2 (C-3), 83.8 (C-2), 100.9 (b, CH=, cod), 105.1 (C-1), 108.1 (b, CH=, cod), 112.9 (CMe₂), 117.4-162.4 (aromatic carbons).

[Ir(cod)(L1d)]BArF. Yield 62 mg (93 %). Anal. calc (%) for C₇₄H₅₃BF₂₄IrO₆PS: C 50.49, H 3.03, S 1.82; found: C 50.55, H 3.12, N 1.75. Major isomer (90%): ³¹P NMR (CDCl₃), δ: 115.0 (s). ¹H NMR (CDCl₃), δ: 1.15 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 3.64 (m, 1H, CH=, cod), 4.18 (dd, 1H, H-5', ${}^{2}J_{5'.5}$ = 12.4 Hz, ${}^{3}J_{5'.4}$ = 9.2 Hz), 4.30 (m, 2H, CH=, cod and H-5), 4.39 (d, 1H, H-2, ${}^{3}J_{2.1}$ = 3.6 Hz), 4.52 (m, 2H, CH= cod and H-4), 4.89 (m, 2H, CH=, cod), 5.14 (m, 1H, H-3), 5.82 (d, 1H, H-1, ${}^{3}J_{1.2}$ = 3.6 Hz), 7.0-8.1 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 26.0 (CH₃), 26.5 (CH₃), 29.7 (b, CH₂, cod), 30.3 (b, CH₂, cod), 30.9 (b, CH₂, cod), 44.0 (C-5), 74.9 (b, CH=, cod), 77.3 (C-4), 82.2 (C-3), 83.3 (b, CH=, cod), 83.5 (C-2), 100.9 (b, CH=, cod), 104.8 (C-1), 113.2 (CMe₂), 117.4 (b, CH=, BArF), 119-132 (aromatic carbons), 134.7 (b, CH=, BArF), 138-150 (aromatic carbons), 161.8 (q, C-B, BArF, ${}^{1}J_{C-B}$ = 49 Hz). Minor isomer (10%): ³¹P NMR (CDCl₃), δ: 107.6 (s). ¹H NMR (CDCl₃), δ: 1.22 (s, 3H, CH₃), 1.33 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 4.01 (m, 1H, CH=, cod), 4.33 (m, 2H, CH=, cod and H-5'), 4.52 (m, 2H, H-5 and H-4), 4.77 (m, 2H, CH= cod and H-2), 4.89 (m, 1H, CH=, cod), 5.21 (m, 1H, H-3), 5.75 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.2 Hz), 7.0-8.1 (m, 29H, CH= aromatics).

[Ir(cod)(**L2a**)]BArF. Yield 62 mg (92 %). ³¹P NMR (CDCl₃, 298 K), δ: 115.1 (b). Anal. calc (%) for C₇₇H₇₉BF₂₄IrO₆PS: C 50.75, H 4.37, S 1.76; found: C 50.81, H 4.40, N 1.74. Major isomer (95%): ³¹P NMR (CDCl₃, 213 K), δ: 120.4 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.22 (s, 3H, CH₃), 1.28 (s, 9H, CH₃, ¹Bu), 1.32 (s, 9H, CH₃, ¹Bu), 1.41 (s, 9H, CH₃, ¹Bu), 1.46 (s, 3H, CH₃), 1.65 (s, 9H, CH₃, ¹Bu), 2.15 (b, 4H, CH₂, cod), 2.28 (b, 2H, CH₂, cod), 2.37 (b, 2H, CH₂, cod), 3.30 (m, 1H, H-5³), 3.89 (m, 1H, H-5), 4.02 (d, 1H, H-2, ³ $J_{2,1}$ ⁼ 3.6 Hz), 4.41 (m, 1H, CH=, cod), 4.55 (m, 2H, CH=, cod and H-4), 5.14 (m, 1H, CH=, cod), 5.36 (m, 2H, CH=, cod and H-3), 5.71 (d, 1H, H-1, ³ $J_{1,2}$ ⁼ 3.6 Hz), 7.0-7.8 (m, 16H, CH= aromatics). ¹³C NMR (CDCl₃, 213 K), δ: 25.7 (CH₃), 26.4 (CH₃), 28.0 (b, CH₂, cod), 29.9 (b, CH₂, cod), 30.7 (CH₃, ¹Bu), 30.9 (CH₃, ¹Bu), 31.3 (CH₃, ¹Bu), 31.5 (b, CH₂, cod), 32.9 (b, CH₂, cod), 34.7 (C, tBu), 34.8 (C, tBu), 35.4 (C, tBu), 53.4 (C-5), 74.0 (C-4), 75.0 (b, CH=, cod), 75.8 (C-3), 79.9 (b, CH=, cod), 83.7 (C-2), 100.5 (d, CH=, cod, $J_{C,P}$ = 15.5 Hz), 104.4 (d, CH=, cod, $J_{C,P}$ = 13.2 Hz), 104.9 (C-1), 113.0 (CMe₂), 117.4 (b, CH=, BArF), 120-131 (aromatic carbons), 134.7 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ¹ J_{C-B} = 49 Hz). Minor isomer (5%): ³¹P NMR (CDCl₃, 213 K), δ: 109.0 (s).

[Ir(cod)(**L3a**)]BArF. Yield 62 mg (91 %). ³¹P NMR (CDCl₃, 298 K), δ: 112.5 (b). Anal. calc (%) for C₇₉H₈₃BF₂₄IrO₆PS: C 51.27, H 4.52, S 1.73; found: C 51.33, H 4.55, N 1.70. Major isomer (70%): ³¹P NMR (CDCl₃, 213 K), δ: 114.9 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.31-1.36 (b, 30H, CH₃ and CH₃ ¹Bu), 1.39 (s, 3H, CH₃), 1.46 (b, 6H, CH₃, ¹Pr), 1.55 (s, 9H, CH₃, ¹Bu), 1.9-2.4 (b, 2H, CH₂, cod), 3.26 (m, 2H, H-5' and CH ⁱPr), 3.46 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, H-5), 4.35 (m, 1H, CH=, cod), 4.41 (m, 1H, H-4), 4.55 (m, 2H, CH=, cod), 4.84 (m, 1H, H-3), 5.35 (m, 1H, CH=, cod), 5.46 (d, 1H, H-1, ³J₁₋₂= 3.2 Hz), 7.1-7.8 (m, 16H, CH= aromatics). ¹³C NMR (CDCl₃, 213 K), δ: 22.0 (CH₃, ⁱPr), 23.6 (CH₃, ⁱPr), 25.3 (CH₃), 26.0 (CH₃), 27-35 (CH₃ ^tBu, C ^tBu, CH₂ cod and C-5), 43.6 (b, CH⁻ⁱPr), 70.2 (b, CH=, cod), 75.3 (b, CH=, cod), 77.2 (C-4), 77.9 (C-3), 82.3 (b, C-2), 104.1 (b, CH=, cod), 104.9 (C-1), 112.7 (CMe₂), 117.5 (b, CH=, BArF), 120-130 (aromatic carbons), 134.6 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ¹J_{C-B} = 49 Hz). Minor isomer (30%): ³¹P NMR (CDCl₃, 213 K), δ: 109.2 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.15 (s, 3H, CH₃), 1.31-1.36 (b, 27H, CH₃ ^tBu), 1.37 (s, 3H, CH₃), 1.46 (b, 6H, CH₃, ⁱPr), 1.55 (s, 9H, CH₃, ^tBu), 1.9-2.4 (b, 2H, CH₂, cod), 3.26 (m, 1H, CH⁻ⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b, 2H, CH₂, cod), 3.26 (m, 1H, CHⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b, 2H, CH₂, cod), 3.26 (m, 1H, CHⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b, 2H, CH₂, cod), 3.26 (m, 1H, CHⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b) 2H, CH₂, cod), 3.26 (m, 1H, CHⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b) 2H, CH₂, cod), 3.26 (m, 1H, CHⁱPr), 3.44 (d, 1H, H-2, ³J₂₋₁= 3.2 Hz), 3.75 (m, 1H, tⁱBu), 1.9-2.4 (b

H-5'), 3.84 (m, 1H, H-3), 3.96 (m, 1H, H-5), 4.25 (m, 1H, CH=, cod), 4.41 (m, 1H, H-4), 4.55 (m, 1H, CH=, cod), 4.92 (m, 1H, CH=, cod), 5.62 (m, 1H, CH=, cod), 5.85 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.2 Hz), 7.1-7.8 (m, 16H, CH= aromatics). 13 C NMR (CDCl₃, 213 K); δ : 21.7 (CH₃, i Pr), 22.9 (CH₃, i Pr), 25.8 (CH₃), 26.5 (CH₃), 27-35 (CH₃ t Bu, C t Bu, CH₂ cod and C-5), 43.6 (b, CH i Pr), 69.8 (b, CH=, cod), 73.5 (C-4), 77.5 (b, CH=, cod), 78.2 (C-3), 82.3 (b, C-2), 103.2 (b, CH=, cod), 104.3 (b, CH=, cod), 104.9 (C-1), 113.2 (CMe₂), 117.5 (b, CH=, BArF), 120-130 (aromatic carbons), 134.6 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ${}^{1}J_{C-B}$ = 49 Hz).

[Ir(cod)(L4a)]BArF. Yield 59 mg (90 %). ³¹P NMR (CDCl₃, 298 K), δ: 111.9 (s). Anal. calc (%) for C₈₄H₈₅BF₂₄IrO₆PS: C 52.75, H 4.48, S 1.68; found: C 52.77, H 4.52, N 1.65. Major isomer (65%): ³¹P NMR (CDCl₃, 213 K), δ: 105.8 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.19 (s, 3H, CH₃), 1.39 (s, 18H, CH₃, ^tBu), 1.43 (s, 3H, CH₃), 1.57 (s, 9H, CH₃, ^tBu), 1.67 (s, 9H, CH₃, ^tBu), 1.8-2.4 (b, 8H, CH₂, cod), 2.83 (b, 6H, CH₃-Ar), 2.91 (b, 3H, CH₃-Ar), 3.65 (m, 1H, H-5'), 3.91 (m, 1H, H-5), 4.02 (d, 1H, H-2, ${}^{3}J_{2-1}$ = 3.6 Hz), 4.03 (m, 2H, CH=, cod and H-3), 4.39 (m, 2H, H-4 and CH=, cod), 4.54 (m, 1H, CH=, cod), 4.71 (b, 1H, CH= cod), 5.42 (d, 1H, H-1, ${}^{3}J_{1-2} = 3.6$ Hz), 7.2-7.8 (m, 19H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 22.9 (CH₃-Ar), 23.5 (CH₃-Ar), 25.3 (CH₃), 26.9 (CH₃), 27.9 (b, CH₂, cod), 31-32.5 (CH₃, ^tBu), 33.1 (CH₂, cod), 33.4 (CH₂, cod), 34.5-35.5 (C, tBu), 46.3 (C-5), 70.4 (CH=, cod), 72.1 (CH=, cod), 72.5 (C-4), 75.3 (C-3), 79.4 (C-2), 102.3 (d, CH= cod, J_{C-P} = 16.0 Hz), 103.8 (b, CH= cod), 104.3 (C-1), 112.8 (CMe₂), 117.4 (b, CH=, BArF), 120-132 (aromatic carbons), 134.7 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ${}^{1}J_{C-B} = 49$ Hz). Minor isomer (35%): ³¹P NMR (CDCl₃, 213 K), δ: 117.2 (s). ¹H NMR (CDCl₃, 213 K), δ: 1.24 (s, 3H, CH₃), 1.39 (s, 18H, CH₃, ^tBu), 1.43 (s, 3H, CH₃), 1.54 (s, 9H, CH₃, ^tBu), 1.67 (s, 9H, CH₃, ^tBu), 1.8-2.4 (b, 8H, CH₂, cod), 2.83 (b, 6H, CH₃-Ar), 2.91 (b, 3H, CH₃-Ar), 3.85 (m, 1H, H-5'), 3.91 (m, 1H, H-5), 4.05 (m, 1H, CH=, cod), 4.13 (d, 1H, H-2, ${}^{3}J_{2-1}$ = 3.6 Hz), 4.49 (m, 2H, H-4 and CH=, cod), 4.76 (m, 1H, CH=, cod), 4.84 (b, 2H, CH= cod and H-3), 5.67 (d, 1H, H-1, ${}^{3}J_{1-2} = 3.6$ Hz), 7.2-7.8 (m, 19H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 23.2 (CH₃-Ar), 23.7 (CH₃-Ar), 25.7 (CH₃), 26.7 (CH₃), 28.3 (b, CH₂, cod), 28.9 (b, CH₂, cod), 31-32.5 (CH₃, ^tBu), 33.3 (CH₂, cod), 33.7 (CH₂, cod), 34.5-35.5 (C, tBu), 46.3 (C-5), 69.8 (CH=, cod), 70.3 (CH=, cod), 71.2 (C-4), 75.5 (C-3), 79.6 (C-2), 102.5 (b, CH= cod), 103.9 (b, CH= cod), 104.3 (C-1), 113.3 (CMe₂), 117.4 (b, CH=, BArF), 120-132 (aromatic carbons), 134.7 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ${}^{1}J_{C-B} = 49$ Hz).

[Ir(cod)(L5a)]BArF. Yield 64 mg (91 %). ³¹P NMR (CDCl₃), δ : 109.5 (s). ¹H NMR (CDCl₃), δ : 1.19 (s, 3H, CH₃), 1.36 (s, 9H, CH₃, ¹Bu), 1.38 (s, 9H, CH₃, ¹Bu), 1.41 (s, 3H, CH₃), 1.57 (s, 9H, CH₃, ¹Bu), 1.65 (s, 9H, CH₃, ¹Bu), 1.90-2.18 (b, 8H, CH₂, cod), 3.64 (dd, 1H, H-5', ²*J*_{5'-5}= 13.2 Hz, ³*J*_{5'-4}= 8.8 Hz), 3.96 (m, 1H, CH=, cod), 4.19 (m, 1H, H-2), 4.22 (m, 1H, H-5), 4.31 (m, 1H, H-4), 4.54 (b, 2H, CH= cod and H-3), 4.61 (m, 1H, CH=, cod), 4.92 (b, 1H, CH=, cod), 5.66 (d, 1H, H-1, ³*J*₁₋₂ = 4.4 Hz), 7.1-7.8 (m, 21H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 26.2 (CH₃), 26.4 (CH₃), 28.4 (b, CH₂, cod), 28.6 (b, CH₂, cod), 31.5 (CH₃, ¹Bu), 31.7 (CH₃, ¹Bu), 32.1 (CH₃, ¹Bu), 32.5 (b, CH₂, cod), 33.3 (b, CH₂, cod), 78.3 (d, C-4, *J*_{C-P}= 5.2 Hz), 78.8 (C-2), 103.7 (b, CH=, cod), 104.5 (C-1), 105.2 (b, CH=, cod), 114.3 (CMe₂), 117.6 (b, CH=, BArF), 120.6-133 (aromatic carbons), 135.0 (b, CH=, BArF), 139-150 (aromatic carbons), 161.9 (q, C-B, BArF, ¹*J*_{C-B} = 49 Hz). Anal. calc (%) for C₈₂H₈₁BF₂₄IrO₆PS: C 52.26, H 4.33, S 1.70; found: C 52.21, H 4.28, N 1.68.

[Ir(cod)(**L5b**)]BArF. Yield 60 mg (89 %). ³¹P NMR (CDCl₃), δ : 109.0 (s). ¹H NMR (CDCl₃), δ : 0.51 (m, 9H, CH₃-Si), 0.61 (m, 9H, CH₃-Si), 1.19 (s, 3H, CH₃), 1.36 (s, 3H, CH₃), 2.0-2.3 (b, 8H, CH₂, cod), 3.56 (dd, 1H, H-5', ² $J_{5'-5}$ = 14.4 Hz, ³ $J_{5'-4}$ = 10.8 Hz), 3.82 (m, 1H, CH=, cod), 4.28 (m, 3H, H-2, H-4, H-5), 4.50 (m, 1H, H-3), 4.66 (m, 2H, CH=, cod), 5.08 (b, 1H, CH=, cod), 5.66 (d, 1H, H-1, ³ J_{1-2} = 3.6 Hz), 7.3-7.9 (m, 23H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 0.50 (CH₃-Si), 1.60 (CH₃-Si), 26.5 (CH₃), 26.6 (CH₃), 28.2 (CH₂, cod), 29.9 (CH₂, cod), 30.2 (CH₂, cod), 34.6 (CH₂, cod), 45.2 (C-5), 71.8 (CH=, cod), 72.8 (C-4), 78.2 (CH=, cod), 79.0 (C-2), 79.2 (C-3), 104.4 (CH=, cod), 104.8 (C-1), 106.5 (d, CH=, cod, J_{C-P} = 12 Hz), 114.7 (CMe₂), 117.9 (b, CH=, BArF), 123-134 (aromatic carbons), 135.3 (b, CH=, BArF), 137-155 (aromatic carbons), 162.3 (q, C-B, BArF, ¹ J_{C-B} = 49 Hz). Anal. calc (%) for C₇₂H₆₅BF₂₄IrO₆PSSi₂: C 47.52, H 3.63, S 1.78; found: C 47.54, H 3.65, N 1.77.

[Ir(cod)(**L5c**)]BArF. Yield 62 mg (95 %). ³¹P NMR (CDCl₃), δ: 111.1 (s). ¹H NMR (CDCl₃), δ: 1.30 (s, 3H, CH₃), 1.52 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 3.09 (m, 1H, CH=, cod), 3.80 (dd, 1H, H-5', ${}^{2}J_{5'-5}$ = 13.6 Hz, ${}^{3}J_{5'-4}$ = 10.0 Hz), 4.15 (m, 1H, H-5), 4.36 (m, 2H, CH=, cod and H-4), 4.46 (m, 1H, H-2), 4.68 (m, 1H, CH= cod), 4.86 (m, 1H, H-3), 4.97 (m, 1H, CH=, cod), 5.59 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.2 Hz), 7.2-8.1 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 26.1 (CH₃), 26.3 (CH₃), 26.9 (b, CH₂, cod), 31.9 (CH₂, cod), 33.0 (CH₂, cod), 44.4 (C-5), 78.4 (C-4), 75.7 (b, CH=, cod), 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod and C-1), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 80.6 (C-3), 103.4 (b, CH=, cod), 107.1 (b, CH=, cod), 114.3 (CMe₂), 123.2 (b, 78.4 (C-2), 123.2 (b, 78.4 (C-2), 123.2 (b, 78.4 (C-2), 123.2 (b, 78.4 (C-2), 123.4 (b, 78.4 (C-2), 123.4 (b, 78

CH=, BArF), 125-133 (aromatic carbons), 134.8 (b, CH=, BArF), 137-148 (aromatic carbons), 161.7 (q, C-B, BArF, ${}^{1}J_{C-B} = 49$ Hz). Anal. calc (%) for C₇₄H₅₃BF₂₄IrO₆PS: C 50.49, H 3.03, S 1.82; found: C 50.58, H 3.13, N 1.78.

[Ir(cod)(L5d)]BArF. Yield 62 mg (95 %). ³¹P NMR (CDCl₃), δ: 117.4 (s). ¹H NMR (CDCl₃), δ: 1.24 (s, 3H, CH₃), 1.34 (s, 3H, CH₃), 1.8-2.4 (b, 8H, CH₂, cod), 3.03 (m, 1H, CH=, cod), 4.03 (dd, 1H, H-5', ${}^{2}J_{5'-5}$ = 12.0 Hz, ${}^{3}J_{5'-4}$ = 9.2 Hz), 4.18 (dd, 1H, H-5, ${}^{2}J_{5-5'}$ = 12.0 Hz, ${}^{3}J_{5-4}$ = 3.6 Hz), 4.45 (m, 1H, CH=, cod), 4.56 (m, 1H, H-4), 4.62 (m, 1H, CH= cod), 4.88 (m, 1H, H-2), 5.03 (m, 1H, H-3), 5.16 (m, 1H, CH=, cod), 5.92 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.6 Hz), 7.2-8.2 (m, 29H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 26.1 (CH₃), 28.5 (CH₂, cod), 29.2 (CH₂, cod), 30.4 (CH₂, cod), 30.9 (CH₂, cod), 43.8 (C-5), 75.2 (C-4), 76.4 (CH=, cod), 77.2 (CH=, cod), 78.5 (C-3), 78.9 (C-2), 103.9 (C-1), 105.8 (CH=, cod), 107.3 (CH=, cod), 114.7 (CMe₂), 117.4 (b, CH=, BArF), 120-132 (aromatic carbons), 134.7 (b, CH=, BArF), 138-148 (aromatic carbons), 161.9 (q, C-B, BArF, ¹J_{C-B} = 49 Hz). Anal. calc (%) for C₇₄H₅₃BF₂₄IrO₆PS: C 50.49, H 3.03, S 1.82; found: C 50.57, H 3.18, N 1.75.

[Ir(cod)(L6a)]BArF. Yield 66 mg (93 %). ³¹P NMR (CDCl₃), δ: 107.6 (s). ¹H NMR (CDCl₃), δ: 1.18 (s, 3H, CH₃), 1.37 (s, 9H, CH₃, ¹Bu), 1.38 (s, 9H, CH₃, ¹Bu), 1.46 (s, 3H, CH₃), 1.54 (s, 9H, CH₃, ¹Bu), 1.71 (s, 9H, CH₃, ¹Bu), 1.8-2.4 (b, 8H, CH₂, cod), 2.76 (s, 3H, CH₃-Ar), 2.90 (s, 3H, CH₃-Ar), 3.74 (dd, 1H, H-5', ${}^{2}J_{5'-5}$ = 13.2 Hz, ${}^{3}J_{5'-4}$ = 9.2 Hz), 3.92 (m, 2H, H-5, H-2), 4.05 (m, 1H, CH=, cod), 4.40 (m, 3H, H-4, H-3 and CH=, cod), 4.71 (b, 2H, CH= cod), 5.62 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.2 Hz), 7.2-7.8 (m, 19H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 22.7 (CH₃-Ar), 24.3 (CH₃-Ar), 25.9 (CH₃), 27.9 (CH₂, cod), 28.9 (CH₂, cod), 30.8 (CH₃, ¹Bu), 31.0 (CH₃, ¹Bu), 31.1 (CH₃, ¹Bu), 31.9 (CH₂, cod), 33.5 (CH₂, cod), 34.6 (C, tBu), 35.3 (C, tBu), 35.5 (C, tBu), 45.9 (C-5), 68.5 (CH=, cod), 73.2 (CH=, cod), 73.6 (C-4), 78.1 (d, C-2, J_{C-P} = 4.5 Hz), 79.0 (d, C-3, J_{C-P} = 7.2 Hz), 102.5 (d, CH= cod, J_{C-P} = 16.0 Hz), 104.7 (C-1), 105.8 (d, CH= cod, J_{C-P} = 15.9 Hz), 114.0 (CMe₂), 117.4 (b, CH=, BArF), 120-132 (aromatic carbons), 134.7 (b, CH=, BArF), 138-149 (aromatic carbons), 161.7 (q, C-B, BArF, ¹ J_{C-B} = 49 Hz). Anal. calc (%) for C₈₄H₈₅BF₂₄IrO₆PS: C 52.75, H 4.48, S 1.68; found: C 52.81, H 4.54, N 1.63.

[Ir(cod)(**L7a**)]BArF. Yield 60 mg (90 %). ³¹P NMR (CDCl₃), δ: 120.7 (s). ¹H NMR (CDCl₃), δ: 1.11 (s, 3H, CH₃), 1.35 (s, 18H, CH₃, ^tBu), 1.40 (s, 3H, CH₃), 1.45 (s, 9H, CH₃, ^tBu), 1.74 (s, 9H, CH₃, ^tBu), 1.9-2.3 (b, 8H, CH₂, cod), 3.93 (m, 1H, CH=, cod), 4.20 (d, 1H, H-2, ³ J_{2-1} = 3.2 Hz), 4.34 (m, 1H, H-3), 4.38 (m, 2H, H-5' and H-5), 4.67 (m, 1H, CH=, cod), 4.47 (m, 1H, CH=, cod), 4.82

(m, 1H, H-4), 4.92 (b, 1H, CH=, cod), 5.51 (d, 1H, H-1, ${}^{3}J_{1-2} = 3.2$ Hz), 7.1-7.8 (m, 21H, CH= aromatics). 13 C NMR (CDCl₃), δ : 26.1 (CH₃), 26.5 (CH₃), 27.5 (b, CH₂, cod), 29.2 (b, CH₂, cod), 31.2 (CH₃, t Bu), 31.4 (CH₃, t Bu), 31.5 (CH₃, t Bu), 32.2 (b, CH₂, cod), 33.7 (b, CH₂, cod), 34.9 (C, tBu), 35.0 (C, tBu), 35.5 (C, tBu), 35.8 (C, tBu), 59.1 (C-3), 63.8 (C-5), 69.5 (b, CH=, cod), 75.8 (b, CH=, cod), 75.9 (C-4), 83.9 (C-2), 104.5 (d, CH=, cod, J_{C-P} = 22.2 Hz), 104.9 (C-1), 105.4 (d, CH=, cod, J_{C-P} = 13 Hz), 113.4 (CMe₂), 117.6 (b, CH=, BArF), 130.6-133.8 (aromatic carbons), 134.9 (b, CH=, BArF), 138-149 (aromatic carbons), 161.9 (q, C-B, BArF, ${}^{1}J_{C-B}$ = 49 Hz). Anal. calc (%) for C₈₂H₈₁BF₂₄IrO₆PS: C 52.26, H 4.33, S 1.70; found: C 52.31, H 4.39, N 1.67.

[Ir(cod)(L8a)]BArF. Yield 68 mg (94 %). ³¹P NMR (CDCl₃), δ : 120.7 (s). ¹H NMR (CDCl₃), δ : 1.05 (s, 3H, CH₃), 1.13 (s, 3H, CH₃), 1.37 (s, 18H, CH₃, ¹Bu), 1.51 (s, 9H, CH₃, ¹Bu), 1.73 (s, 9H, CH₃, ¹Bu), 1.9-2.4 (b, 8H, CH₂, cod), 3.77 (m, 1H, H-3), 4.02 (m, 1H, CH=, cod), 4.41 (m, 1H, H-4), 4.50 (m, 1H, H-5'), 4.58 (m, 1H, H-2), 4.69 (m, 2H, CH=, cod), 4.91 (m, 1H, H-5), 4.97 (b, 1H, CH=, cod), 5.74 (d, 1H, H-1, ³ J_{1-2} = 3.6 Hz), 7.1-7.8 (m, 21H, CH= aromatics). ¹³C NMR (CDCl₃), δ : 25.2 (CH₃), 25.6 (CH₃), 28.0 (b, CH₂, cod), 28.3 (b, CH₂, cod), 31.0 (CH₃, ¹Bu), 32.0 (CH₃, ¹Bu), 32.5 (b, CH₂, cod), 32.8 (b, CH₂, cod), 34.6 (C, tBu), 34.7 (C, tBu), 35.3 (C, tBu), 35.5 (C, tBu), 57.2 (C-3), 55.8 (C-5), 70.0 (b, CH=, cod), 74.9 (b, CH=, cod), 75.3 (C-4), 81.2 (C-2), 103.8 (C-1), 104.7 (d, CH=, cod, J_{C-P} = 14.5 Hz), 105.0 (d, CH=, cod, J_{C-P} = 16 Hz), 113.8 (CMe₂), 117.4 (b, CH=, BArF), 120.5-132.7 (aromatic carbons), 134.7 (b, CH=, BArF), 135-149 (aromatic carbons), 161.9 (q, C-B, BArF, ¹ J_{C-B} = 49 Hz). Anal. calc (%) for C₈₂H₈₁BF₂₄IrO₆PS: C 52.26, H 4.33, S 1.70; found: C 52.33, H 4.38, N 1.72.

4. Typical procedure for the hydrogenation of olefins

The alkene (1 mmol) and Ir complex (2 mol%) were dissolved in CH_2Cl_2 (2 mL) in a highpressure autoclave. The autoclave was purged 4 times with hydrogen. Then, it was pressurized at the desired pressure. After the desired reaction time, the autoclave was depressurised and the solvent evaporated off. The residue was dissolved in Et₂O (1.5 ml) and filtered through a short plug of celite. The conversions were determined by ¹H NMR or GC and enantiomeric excess was determined by chiral GC or chiral HPLC as previously described.³

5. Synthesis of ligand precursors

1,2-O-Isopropylidene-5-O-trifluoromethanesulfonyl- α -D-ribofuranose

Diol **2** (1 g, 5.2 mmol) was azeotropically dried with toluene (3 x 2 mL) and then dissolved in CH₂Cl₂ (24.5 mL) to which pyridine (0.57 mL, 7.6 mmol) was added. The alcohol solution was cooled to -15°C and Tf₂O (0.9 mL, 5.3 mmol) was added slowly over 2 min aprox. The reaction mixture was stirred at -15 °C for 2 h. Evaporation of the solvent gave a yellow foam, which was purified by flash chromatography (AcOEt/hexane= 1/2) to produce the corresponding triflate as a white solid. Yield: 1.1 g, 65 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.38 (s, 3H, CH₃), 1.57 (s, 3H, CH₃), 3.97 (m, 2H, H-3 and H-4), 4.60 (m, 2H, H-5' and H2), 4.82 (dd, 1H, H-5, ²*J*_{5-5'}= 11.2 Hz, ³*J*₅₋₄= 1.8 Hz), 5.84 (d, 1H, H-1, ³*J*₁₋₂= 3.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ : 26.7 (CH₃), 71.2 (C-3), 73.8 (C-5), 78.0 (C-4), 78.1 (C-2), 104.2 (C-1), 113.4 (CMe₂).

1,2-O-Isopropylidene-5-phenylsulfanyl-α-D-ribofuranose 9

To a suspension of NaH (0.5 g, 20.8 mmol) in THF (7 mL) a solution of PhSH (0.5 mL, 4.8 mmol) in THF (5 mL) was added. After 2 min, the suspension was cooled to -78 °C and a solution of 1,2-*O*-isopropylidene-5-*O*-trifluoromethanesulfonyl- α -D-ribofuranose (0.85 g, 2.6 mmol) in THF (8.5 mmol) was added. After 90 min, water (25 mL) was added and the THF was evaporated. The crude product was extracted in CH₂Cl₂ (3 x 25 mL), dried with MgSO₄ and dried in the rotavapor. The crude was purified by flash chromatography (AcOEt/hexane= 1/3) to produce **9** as a white solid. Yield: 0.5 g, 67 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.36 (s, 3H, CH₃), 1.53 (s, 3H, CH₃), 3.15 (dd, 1H, H-5', ²*J*_{5'-5}= 14.0 Hz, ³*J*_{5'-4}= 6 Hz), 3.37 (dd, 1H, H-5, ²*J*_{5-5'}= 14.0 Hz, ³*J*₅₋₄= 4.0 Hz), 3.88 (m, 1H, H-3), 3.97 (m, 1H, H-4), 4.88 (dd, 1H, H-2, ³*J*₂₋₁= 4.0 Hz, ³*J*₂₋₃= 5.2 Hz), 5.82 (d, 1H, H-1, ³*J*₁₋₂= 4.0 Hz), 7.14 (m, 1H, CH=), 7.23 (m, 2H, CH=), 7.43 (m, 2H, CH=). ¹³C

³ a) Källström, K.; Hedberg, C. Brandt, P.; Bayer, P.; Andersson, P. G. J. Am. Chem. Soc. 2004, 126, 14308. b) Mazuela, J.; Verendel, J.J.; Coll, M.; Schäffner, B.; Börner, A.; Andersson, P.G.; Pàmies, O.; Diéguez, M. J. Am. Chem. Soc. 2009, 131, 12344.

NMR (100 MHz, CDCl₃) δ: 26.6 (CH₃), 26.7 (CH₃), 35.7 (C-5), 74.7 (C-3), 78.7 (C-2), 78.9 (C-4), 104.0 (C-1), 112.9 (CMe₂) 128.7 (CH=), 128.9 (CH=), 135.8 (C).

1,2-O-Isopropylidene-5-(2,6-dimethyl-phenyl)sulfanyl - α -D-ribofuranose 10

Treatment of 2,6-dimethylbenzenethiol (0.64 mL, 4.8 mmol) with 1,2-*O*-isopropylidene-5-*O*-trifluoromethanesulfonyl- α -D-ribofuranose (0.85 g, 2.6 mmol) as described for **9** produces **10** as a white solid. Yield: 565 mg, 70 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.35 (s, 3H, CH₃), 1.49 (s, 3H, CH₃), 2.30 (b, 1H, OH), 2.57 (s, 6H, CH₃-Ar), 2.76 (dd, 1H, H-5', ²*J*_{5'-5}= 13.4 Hz, ³*J*_{5'-4}= 7.0 Hz), 3.11 (dd, 1H, H-5, ²*J*_{5-5'}= 13.4 Hz, ³*J*₅₋₄= 2.8 Hz), 3.80 (m, 2H, H-3 and H-4), 4.56 (m, 1H, H-2), 5.82 (d, 1H, H-1, ³*J*₁₋₂= 3.6 Hz), 7.12 (m, 3H, CH=). ¹³C NMR (100 MHz, CDCl₃) δ : 22.2 (CH₃-Ar), 26.5 (CH₃), 26.8 (CH₃), 36.6 (C-5), 74.8 (C-3), 78.7 (C-2), 78.9 (C-4), 103.9 (C-1), 112.8 (CMe₂), 128.3 (CH=), 128.6 (CH=), 130.0 (C), 143.5 (C).

1,2-O-Isopropylidene-5-O-benzoyl-3-O-trifluoromethanesulfonyl- α -D-ribofuranose

Treatment of alcohol **3** (1.53 g, 5.2 mmol) with Tf₂O (0.9 mL, 5.3 mmol) as previously described for **2** afforded the desired crude product. After 2 hours, water (10 mL) was added and the reaction mixture was extracted with dichloromethane (3 x 50 mL), dried with MgSO₄ and all the volatiles were removed in the rotavapor. To the crude product petroleum ether (25 mL) was added and the insoluble impurities were removed by filtration. Evaporation of the solvent provided 1,2-*O*isopropylidene-5-*O*-benzoyl-3-*O*-trifluoromethanesulfonyl- α -D-ribofuranose as a white solid. Yield: 1.75 g, 79 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.39 (s, 3H, CH₃), 1.62 (s, 3H, CH₃), 4.44 (dd, 1H, H-5', ²*J*_{5'-5}= 12.4 Hz, ³*J*_{5'-4}= 4.0 Hz), 4.53 (m, 1H), 4.77 (dd, 1H, H-5, ²*J*_{5-5'}= 12.4 Hz, ³*J*₅₋₄= 2.8 Hz), 4.82 (m, 1H), 4.94 (m, 1H), 5.88 (d, 1H, H-1, ³*J*₁₋₂= 3.2 Hz), 7.48 (m, 2H, CH=), 7.60 (m, 1H, CH=), 8.02 (m, 2H, CH=).

1,2-O-Isopropylidene-5-O-benzoyl-3-phenylsulfanyl- α -D-xylofuranose 11

Treatment of benzenethiol (0.50 mL, 4.8 mmol) with 1,2-*O*-isopropylidene-5-*O*-benzoyl-3-*O*-trifluoromethanesulfonyl- α -D-ribofuranose (1.1 g, 2.6 mmol) as described for **9** produces **11** as a white solid together with small amount of **12** (8% yield). Yield: 472 mg, 47 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (s, 3H, CH₃), 1.53 (s, 3H, CH₃), 3.85 (d, 1H, H-3, ³J₃₋₄= 4.0 Hz), 4.59 (dd, 1H, H-5',

 ${}^{2}J_{5'-5}$ = 11.6 Hz, ${}^{3}J_{5'-4}$ = 3.2 Hz), 4.73 (m, 2H, H-5, H-2), 4.81 (m, 1H, H-4), 5.79 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 3.2 Hz), 7.2-8.1 (m, 10 H, CH=).

1,2-O-Isopropylidene-3-phenylsulfanyl-α-D-xylofuranose 12

To a solution of **11** (386.5 mg, 1 mmol) in methanol (4 mL) ammonia 30% (4 mL) was added. The reaction was stirred overnight at room temperature. Then, the volatiles were removed and the crude was purified by flash chromatography (AcOEt/hexane= 1/3) to produce **12** as a white solid. Yield: 133 mg, 47%. ¹H NMR (400 MHz, CDCl₃) δ : 1.29 (s, 3H, CH₃), 1.53 (s, 3H, CH₃), 2.01 (b, 1H, OH), 3.82 (d, 1H, H-3, ${}^{3}J_{3.4}$ = 4.0 Hz), 3.88 (dd, 1H, H-5', ${}^{2}J_{5'.5}$ = 12.0 Hz, ${}^{3}J_{5'.4}$ = 4.8 Hz), 3.98 (dd, 1H, H-5, ${}^{2}J_{5.5'}$ = 12.0 Hz, ${}^{3}J_{5.4}$ = 6.8 Hz), 4.64 (m, 2H, H-4 and H-2), 5.96 (d, 1H, H-1, ${}^{3}J_{1.2}$ = 3.6 Hz), 7.28 (m, 1H, CH=), 7.35 (m, 2H, CH=), 7.43 (m, 2 H, CH=). ¹³C NMR (100 MHz, CDCl₃) δ : 26.6 (CH₃), 26.8 (CH₃), 53.2 (C-3), 62.4 (C-5), 79.5 (C-2), 85.8 (C-4), 105.1 (C-1), 112.2 (CMe₂), 127.3 (CH=), 129.6 (CH=), 130.5 (CH=), 133.8 (C).

1,2-O-Isopropylidene-5-O-benzoyl-3-O-trifluoromethanesulfonyl- α -D-xylofuranose

Treatment of alcohol 4 (1.53 g, 5.2 mmol) with Tf₂O (0.9 mL, 5.3 mmol) as previously described for 1,2-*O*-isopropylidene-5-*O*-benzoyl-3-*O*-trifluoromethanesulfonyl- α -D-ribofuranose afforded the desired product as a white solid. Yield: 1.53 g, 69 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.36 (s, 3H, CH₃), 1.54 (s, 3H, CH₃), 4.48 (m, 1H), 4.68 (m, 2H), 4.80 (d, 1H, H-2, ³*J*₂₋₁= 3.6 Hz), 5.34 (d, 1H, ³*J*= 2 Hz), 6.07 (d, 1H, H-1, ³*J*₁₋₂= 3.6 Hz), 7.4 – 8.2 (m, 5H, CH=).

1,2-O-Isopropylidene-5-O-benzoyl-3-phenylsulfanyl- α -D-ribofuranose 13

Treatment of benzenethiol (0.50 mL, 4.8 mmol) with 1,2-*O*-isopropylidene-5-*O*-benzoyl-3-*O*-trifluoromethanesulfonyl- α -D-xylofuranose (1.1 g, 2.6 mmol) as described for **11** were stirred overnight at room temperature. After the same workup as **11**, compound **13** was obtained as a white solid together with small amount of **14** (6% yield). Yield: 100 mg, 10 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.38 (s, 3H, CH₃), 1.59(s, 3H, CH₃), 3.41 (dd, 1H, H-3, ³*J*₃₋₄= 6.4 Hz, ³*J*₃₋₂= 3.2 Hz), 4.26 (dd, 1H, H-5', ²*J*_{5'-5}= 12.0 Hz, ³*J*_{5'-4}= 3.6 Hz), 4.35 (m, 1H, H-4), 4.81 (dd, 1H, H-5, ²*J*_{5-5'}= 12.0 Hz, ³*J*_{5'-4}= 3.6 Hz), 4.35 (m, 1H, H-4), 7.2-8.1 (m, 10 H, CH=).

1,2-O-Isopropylidene-3-phenylsulfanyl-\alpha-D-ribofuranose 14

Treatment of **13** (193 mg, 0.5 mmol), as previously described for **11**, afforded the desired product as a white solid. Yield: 89 mg, 63 %. ¹H NMR (400 MHz, CDCl₃) δ : 1.36 (s, 3H, CH₃), 1.55 (s, 3H, CH₃), 1.88 (b, 1H, OH), 3.52 (dd, 1H, H-3, ³*J*_{3.4}= 10.2 Hz, ³*J*_{3.4}= 4.6 Hz), 3.62 (dd, 1H, H-5', ²*J*_{5'.5}= 12.6 Hz, ³*J*_{5'.4}= 2.6 Hz), 3.93 (dd, 1H, H-5, ²*J*_{5.5'}= 12.6 Hz, ³*J*_{5.4}= 2.4 Hz), 4.09 (m, 1H, H-4), 4.79 (m, 1H, H-2), 5.80 (d, 1H, H-1, ³*J*_{1.2}= 3.6 Hz), 7.28 (m, 3H, CH=), 7.48 (m, 2H, CH=). ¹³C NMR (100 MHz, CDCl₃) δ : 26.5 (CH₃), 26.8 (CH₃), 49.6 (C-3), 60.0 (C-5), 81.8 (C-2), 82.1 (C-4), 104.4 (C-1), 112.6 (CMe₂), 127.3 (CH=), 129.3 (CH=), 131.1 (CH=), 134.8 (C).