Extraction and isolation of shikimic acid from *Ginkgo biloba* leaves utilizing an ionic liquid that dissolves cellulose

Toyonobu Usuki,* Nanae Yasuda, Masahiro Yoshizawa-Fujita* and Masahiro Rikukawa

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan. E-mail: t-usuki@sophia.ac.jp (T.U.); Fax: +81 3 3238 3361; Tel: +81 3 3238 3446; E-mail: masahi-f@sophia.ac.jp (M.F.-Y.); Fax: +81 3 3238 4198; Tel: +81 3 3238 4312

1. Calibration curve by HPLC analysis of natural shikimic acid:

In order to prepare the calibration curve for shikimic acid, HPLC analysis of natural shikimic acid (0.04 µg/mL, 0.2 µg/mL, 1.0 µg/mL, and 5.0 µg/mL) was performed as shown in **Figure S1** as the example under the condition described as main text. HPLC charts were acquired on a JASCO's instrument (MD-2010 Plus, PU-2085 Plus, CO-2065 Plus). Since the obtained peak area of shikimic acid was 54040, 272025, 1453910, and 7803301, respectively, amount of shikimic acid could be plotted as shown in **Figure S2**. Consequently, the fitting for the plots gave an equation described as $y = 2 \times 10^6 x - 50967$ with $R^2 = 0.9998$ for the quantitative analysis of shikimic acid.

Figure S1. HPLC chart of shikimic acid (1.0 μ g/ml). The condition is described in main text.

Figure S2. Calibration curve of shikimic acid based on the HPLC analysis.

2. HPLC analysis of extracted shikimic acid by MeOH:

When 0.005 mg of the extract (total: 293.9 mg) by methanol from 2.3848 g of *G* biloba leaves was injected into the HPLC, the chart was obtained as **Figure S3** under the condition described as main text. Since the peak area of shikimic acid was found to be 718488, the value was substituted for *y* in the equation of $y = 2 \times 10^6 x - 50967$, resulting in estimation of amount of shikimic acid "*x*" as 3.8×10^{-7} g. Ratio of contained shikimic acid in the extact was thus found to be 7.6% (= 3.8×10^{-7} / $5 \times 10^{-6} \times 100$). Because total amount of shikimic acid in 293 mg of the extract was calculated to be 22 mg (= 293.9 × 7.6%), we found the extraction yield by methanol was to be 0.92% (= 0.022 g / 2.38848 × 100). Extraction yields by ethanol, H₂O, DMF, and ILs were calculated in the same procedures.

and the second se	1	sa66 - CH9
		a beauting to the state of the state of the state
40000		
and the second se		States and the state of the states of the
30000 -		
		and the second
2		
-		
중 20000 -		
5		
5		
and the second second second second second		the second second second second second
10000 -		
and the second se		
0		
The second s		
0.0 1.0	2.0 3.0 4.0 5.0 6.0 7.0	8.0 9.0 10.0
	Retention Time [min]	
クロマトグラム情報		
ユーザー名	usuki	
面新日時	2010/11/05 17:40:05	
74/1		
リカノト リカテレタ	HPLC-1	
HPLO 9X746	2010/11/05 16:12:02	
满足口	500 []	
注人童	5.00 (pc)	
サンブル#	78	
プロジェクト名	HPLC-1	
取込時間	35.0 [min]	
測定シーケンス	sa66-1	
コントロールメソッド	sa0.15.35min.210nm	
ピーク ID テーブル		
捻景線テーブル		
io m 核都		
チャンネル情報+ピーク情報		
クロマトグラム名	sa66-CH9	
サンプルタ		
チャンクルタ	PDA	
プレンホルロ	800 [meas]	
	000 (maxe)	
波形処理メソット	sado-1	
数值計算式		
判定式		14 h 2h 1 H h 71 H
# ビーり名 CH NTP 分離度	シンメトリー係数 警告 補正定量値 ISTD ピーク名 ISTD 添加量 定量ファクタ	- E-0.29-1 E-0.101
1Unknown 9 1160 N/	4 1.492 N/AN/A N/A 1.00	3.227 4.320
# BL開始 BL 終了 ピーク幅 S/	N 分離係数 キャパシティー比 検出方法 計算値 ピークファクター 真値	重量 判定 面積 [uV-sec]
1 3227 4320 0.245 N	/A N/A N/Aオートマチック N/A N/A N/A	0.00000N/A 718488
	京 秋 · 宁景值	
	100.000 N/A	
3.547 42651 100.000	North North	

Figure S3. HPLC chart of extracted shikimic acid by methanol. The condition is described in main text.

3. SEM micrographs of *G biloba* leaves:

SEM micrographs of *G. biloba* leaves before extraction (**Figure S4**), after extraction by methanol (**Figure S5**), and after IL (**Figure S6**) are shown, respectively. The micrographs were obtained by a Hitachi S-4500 equipment.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Supplementary Information

Figure S4. SEM micrographs of leaves before extraction at 10.0 k (up) and 70.0 k (bottom).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Supplementary Information

Figure S5. SEM micrographs of leaves after extraction by methanol at 10.0 k (up) and 70.0 k (bottom).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Supplementary Information

Figure S6. SEM micrographs of leaves after extraction by ionic liquid **2** at 10.0 k (up) and 70.0 k (bottom).

4. ¹H-NMR spectrum of the isolated shikimic acid:

Isolated shikimic acid from IL extracts by an anion-exchange resin was identified by ¹H-NMR measurement which was acquired on a JEOL Lambda 300 spectrometer (**Figure S7**). The isolated shikimic acid: ¹H-NMR (D₂O, 300 MHz) δ 2.25 (1H, m), 2.74 (1H, m), 3.80 (1H, m), 4.06 (1H, m), 4.47 (1H, m), 6.84 (1H, m).

Figure S7. ¹H-NMR spectrum in D_2O of the isolated shikimic acid.