Supporting Information for

Rational design of a nanometer-sized covalent octahedron

Junling Sun and Ralf Warmuth*

Department of Chemistry and Chemical Biology, Rutgers. The State University of New Jersey, Piscataway, NJ, 08854, USA

Email: warmuth@rutgers.edu

Table of Content

1. Experimental procedures for the synthesis of cavitands	
and nanocapsules	Page S2-S11
2. ¹ H NMR, ¹³ C NMR, MALDI TOF MS and GPC traces	Page S12-S25

1. Experimental Procedures

1.1 General: Reagents and chromatography solvents were purchased from Aldrich and used without further purification except that chloroform was passed through K₂CO₃ prior to use. THF was dried over Na/benzophenone and distilled under argon. ¹H NMR spectra recorded in CDCl₃ were referenced to residual CHCl₃ at δ_{H} = 7.26. ¹³C NMR spectra recorded in CDCl₃ were referenced to 13 CDCl₃ at δ_{c} = 77.5 ppm. Mass spectra were recorded on an Applied Biosystems Voyager DE-Pro mass spectrometer (MALDI-TOF). External standards were used for calibration and 2,4,6-trihydroxylacetophenone (THAP) as matrix. Gel permeation chromatography (GPC) was performed on a Thermo SpectraSYSTEM HPLC system equipped with dual wavelength UV/Vis detector (280 nm), Eppendorf CH-30 column heater and two Jordi GPC columns (cross linked DVB; 103 Å pore size; MW cutoff ~ 25,000; 7.8mm × 30cm) with CH₂Cl₂/1% NEt₃ as mobile phase at a flow of 1 mL/min. Approximate molecular weights of analytes were determined from a semilogarithmic calibration plot.

Components	Cª	Cb	C ∘ [1]
H ₂ N~ _{NH2} L ^a	Complex Mixture	C ^b ₂ L ^a ₄	Complex Mixture
$H_2N - H_2$	C ^a 4L ^b 8	C ^b ₆ L ^b ₁₂	Complex Mixture
	C ^a 4L ^c 8	C ^b ₆ L° ₁₂	Complex Mixture
	C ^a 4L ^d 8	C ^b ₂L ^c ₄	Complex Mixture
H ₂ N H ₂ N T NH ₂ N NH ₂	C ^a ₆ T ₁₂	С ^ь ₆ Т ₁₂	NA

Table 1: TFA-catalyzed condensation products

1.2 Cavitand C^e

Tetrabromocavitand $\mathbf{1b}^{[2]}$ (520 mg, 0.53 mmol) was dried under vacuum overnight at 100 °C and then dissolved in 20 mL THF under argon. THF (10 mL) was added to a second dried flask, which was charged with PrMgBr/THF solution (2.6 mL, 2 mol/L) and anhydrous LiCl (216 mg, 5.10 mmol). The suspension was stirred under argon untill all LiCl was dissolved. Then, the resulting solution was cannulated to the solution of **1c** at -78°C. After the Br/MgBr exchange, which was monitored by ¹H NMR spectroscopy, was complete, anhydrous DMF (0.43 mL, 6.33 mmol) was injected to the solution. After 1 hr, the reaction was quenched with aqueous HCl solution (10 mL, 1M). The product was extracted with ethyl acetate (3×30 mL). The combined organic solution was washed with sat. NaCl solution, dried over anhydrous Na₂SO₄ and concentrated under vacuum. The product was further purified by silica gel column chromatography with THF/CH₂Cl₂=2/98 as the mobile phase. The white solid was obtained in 25% yield.

¹H NMR (400 MHz, CDCl₃, 25 $^{\circ}$ C): δ_{H} 10.35 (s, 4H, -CHO), 7.56 (s, 4H, H_a), 5.35 (t, *J*=8.1 Hz, 4H, Hm), 4.51 (m, 8H, Ho), 3.67 (m, 8H, Hi), 2.10 (m, 8H, H1), 1.42-1.18 (m, 24H, H2, H3 and H4), 0.88 (t, *J*=7.1Hz, 12H, H5). ¹³C NMR (100 MHz, CDCl₃, 25 $^{\circ}$ C): δ_{C} 190.24, 155.85, 137.37, 130.17, 125.13, 74.42, 34.50, 33.32, 32.28, 27.87, 23.07, 14.53. Ms (Maldi-tof) m/z: 1007.4911 (M+Na⁺, 100%); Calcd for C₆₀H₇₂O₁₂+Na⁺: 1007.4916.

1.3 Cavitand 2b

Tetrabromocavitand **1b** (530 mg, 0.54 mmol) was dried overnight under vacuum at 100 $^{\circ}$ C and then dissolved in 30 mL THF under argon. At -78 $^{\circ}$ C, BuLi/Hexane (1.6 mL, 2.5M) was injected into the above solution. After 3 hours, I₂ (1.3 g, 5.12 mmol) was added to the solution. The reaction was quenched with water. The product was extracted with ethyl acetate (3×30 mL) and then the combined organic solution was washed with Na₂S₂O₃ solution (20 mL, 10%), water and sat. NaCl solution, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The product was further purified by silica gel column chromatography with CH₂Cl₂/Hexane=1/1 as mobile phase. The slightly yellow solid was obtained in 81% yield.

¹H NMR (500 MHz, CDCl₃, 25 °C): δ_{H} 7.29 (s, 4H, H_a), 5.27 (t, *J*=8.2 Hz, 4H, Hm), 4.46 (m, 8H, Ho), 3.76 (m, 8H, Hi), 2.04 (m, 8H, H1), 1.38-1.15 (m, 24H, H2, H3 and H4), 0.86 (t, *J*=7.2 Hz, 12H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{C} 154.88, 136.98, 125.25, 90.36, 70.89, 36.05, 35.24, 32.31, 27.87, 23.05, 14.54. Ms (Maldi-tof) m/z: 1399.1543 (M+Na⁺, 100%); Calcd for C₅₆H₆₈O₈I₄+Na⁺: 1399.0984.

1.4 Cavitand 2c

Cavitand $\mathbf{1c}^{[2]}$ (1.03 g, 0.99 mmol) was dried overnight under vacuum at 100 °C and then dissolved in 40 mL THF under argon. THF (10 mL) was added to a second dried flask, which was charged with PrMgBr/THF solution (5 mL, 2 mol/L) and anhydrous LiCl (420 mg, 9.91 mmol). The suspension was stirring under argon until all LiCl was dissolved. Then, the resulting solution was cannulated to the solution of $\mathbf{1c}$ at -78°C. After the Br/MgBr exchange, which was monitored by ¹H NMR spectroscopy, was complete, I₂ (2.52 g, 9.92 mmol) was added at the same temperature. The reaction was quenched with water. The product was extracted with ethyl acetate (3×50 mL). The combined organic solution was washed with Na₂S₂O₃ solution (50 mL, 10%), water and sat. NaCl solution, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The product was further purified by silica column with Hexane/EtOAc=1/4 as the mobile phase. The slightly yellow product was obtained in 70%.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ_{H} 7.04 (s, 4H, H_a), 4.91 (t, *J*=7.5 Hz, 4H, Hm), 4.67 (m, 8H, Ho₂), 3.94 (m, 8H, Hi₂), 2.32 (m, 4H, Ho₁), 2.08 (m, 4H, Hi₂), 1.93 (m, 8H, H1), 1.36-1.14 (m, 24H, H2, H3 and H4), 0.86 (t, J=6.9 Hz, 12H, H5). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 157.18, 134.89, 125.78, 90.23, 70.29, 36.46, 36.22, 34.45, 29.85, 27.74, 23.03, 14.59. Ms (Maldi-tof) m/z: 1455.1230 (M+Na⁺, 100%); Calcd for C₆₀H₇₆O₈I₄ +Na⁺: 1455.1611.

1.5 Cavitand C^b

A Schlenk flask was charged with cavitand **2b** (176.5 mg, 177.4 μ mol), potassium (4-formylphenyl)trifluoroborate (225.6 mg, 1.06 mmol), Pd(OAc)₂ (17.3 mg, 71 μ mol), PPh₃ (37.2 mg, 142 μ mol), and K₂CO₃ (294 mg, 2.13 mmol) and was evacuated and refilled with argon 3 times. After adding THF (10 mL) and deionized water (1mL), the flask was sealed and kept stirring at 100 °C overnight. Then, the solution was acidified with aqueous HCl (3mL, 1M) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with sat. NaCl solution, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The pure product was obtained as a white solid in 65.4% yield

by using silica gel column with $EtOAc/CH_2Cl_2=5/95$ as the mobile phase.

¹H NMR (300 MHz, CDCl₃, 25 °C): δ_{H} 10.03 (s, 4H, -CHO), 7.89 (d, *J*=8.0, 8H, Ha₁), 7.63 (s, 4H, Ha₃), 7.34 (d, *J*=8.0 Hz, 8H, Ha₂), 5.26 (t, *J*=8.4, 4H, Hm), 3.84 (m, 8H, Ho), 3.41 (m, 8H, Hi), 2.23 (m, 8H, H1), 1.47-1.18 (m, 24H, H2, H3 and H4), 0.91 (t, *J*=6.8 Hz, 12H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{C} 192.18, 151.88, 142.38, 136.83, 136.02, 131.04, 130.58, 129.76, 125.16, 72.76, 35.22, 34.41, 32.37, 28.09, 23.16, 14.60. Ms (Maldi-tof) m/z: 1311.6413 (M+Na⁺, 100%); Calcd for C₈₄H₈₈O₁₂+Na⁺: 1311.6167.

1.6 Cavitand C^c

A Schlenk flask was charged with cavitand **2c** (103.15 mg, 72 µmol), potassium (4-formylphenyl)trifluoroborate (92 mg, 432.2 µmol), Pd(OAc)₂ (3.5 mg, 14.4 µmol), PPh₃ (7.5 mg, 28.8 µmol), and K₂CO₃ (119.3 mg, 864.4 µmol) and was evacuated and refilled with argon 3 times. After adding THF (10 mL) and deionized water (1mL), the flask was sealed and kept stirring at 100 $^{\circ}$ C overnight. Then, the solution was acidified with aqueous HCl (3 mL, 1M) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with sat. NaCl solution, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The pure product was then obtained as a white solid in 71% yield by using silica column with EtOAc/CH₂Cl₂=1/35 as the mobile phase.

¹H NMR (300 MHz, CDCl₃, 25 °C): δ_{H} 10.04 (s, 4H, -CHO), 7.88 (d, *J*=8.0, 8H, Ha₁), 7.54 (d, *J*=8.0 Hz, 8H, Ha₂), 7.46 (s, 4H, Ha₃), 5.01 (t, *J*=8.0, 4H, Hm), 3.79 (m, 8H, Ho₂), 3.52 (m, 8H, Hi₂), 2.12 (m, 8H, H1), 1.87 (m, 4H, Ho₁), 1.54 (m, \$H, Hi₁), 1.44-1.20 (m, 24H, H2, H3 and H4), 0.90 (t, J=6.8 Hz, 12H, H5). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 192.54, 154.37, 143.57, 135.54, 134.38, 132.15, 129.50, 128.39, 125.72, 71.79, 36.53, 34.68, 32.49, 30.32, 27.99, 23.18, 14.62. Ms (Maldi-tof) m/z: 1367.6341 (M+Na⁺, 100%); Calcd for C₈₈H₉₆O₁₂+Na⁺: 1367.6799.

1.7 General procedure for synthesis of nanocapsules (Procedure A)

Stock solutions of the tetraformylcavitand (10 mg/mL), of the di- or triamine linker (10 mg/mL) and of TFA (1% v/v) in CDCl₃ were prepared. Then, the solutions of cavitand and linker were mixed in stoichiometric ratio followed by the addition of catalytic amount TFA solution. Several molecular sieves were added to above solution. After 1-2 hours, the solution was diluted to 0.5 ml with CDCl₃, if necessary, and transferred into a NMR tube. The reaction was monitored by ¹H NMR spectroscopy. After completion, the solvent was removed.

1.7.1 Tetracavitand capsule C^a₄L^b₈

From $C^{a[1]}$ (3.58 mg, 2.91 µmol), 1,4-phenylenediamine (0.63 mg, 5.81 µmol) and TFA (4 µL, 1%v/v in CDCl₃) according to **procedure A.** Based on GPC, the purity is 90% and the rest are hexacavitand-aggregates.

¹H NMR (500 MHz, CDCl₃, 25 °C) of C^a₄L^b₈: δ_{H} 8.53 (s, 8H, -CHN-), 8.51 (s, 8H, -CHN-), 7.94 (d, *J*=7.5 Hz, 16H, Ha₁), 7.83 (d, *J*=7.5 Hz, 16H, Ha₁), 7.38 (s, 8H, Ha₃), 7.35 (s, 8H, Ha₃), 7.29 (s, 16H, Ha₄), 7.27 (d, *J*=8.6 Hz, 16H, Ha₂), 7.24 (s, 16H, Ha₄), 7.08 (d, *J*=8.6 Hz, 16H, Ha₂), 5.48-5.30 (m, 12H, Ho), 4.97-4.78 (m, 16H, Hm), 4.64 (m, 4H, Hi), 4.51-4.30 (m, 12H, Hi), 3.56 (m, 4H, Ho), 2.47-2.2 (m, 32H, H1), 1.57-1.34 (m, 96H, H2, H3 and H4), 1.04-0.86 (m, 48H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C) of C^a₄L^b₈: δ_{C} 159.92, 159.08, 153.33, 153.08, 152.86, 152.77, 150.68, 149.78, 139.06, 138.99, 138.92, 138.77, 137.74, 137.69, 135.78, 135.70, 131.03, 130.76, 129.64, 129.17, 128.81, 122.57, 122.33, 122.26, 120.81, 120.67, 101.57, 101.41, 99.43, 37.70, 37.61, 32.59, 32.58, 32.55, 31.09, 30.89, 30.43, 28.23, 28.20, 28.16, 23.24, 23.21, 23.18, 14.64, 14.63. Dosy NMR (500 MHz, CDCl₃, 25 °C) of C^a₄L^b₈: D=2.50*10⁻¹⁰ m²/s. Ms (Maldi-tof) of C^a₄L^b₈ m/z: 5511.6259 (M+H⁺, 100%); Calcd for C₃₆₈H₃₅₂O₃₂N₁₆ +H⁺: 5511.6503.

1.7.2 Tetra-cavitand capsule C^a₄L^c₈

From $C^{a[1]}$ (2.33 mg, 1.88 µmol), benzidine (0.69 mg, 3.77 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** Based on GPC, the purity is 80% and the rest are hexacavitand-aggregates.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR (300 MHz, CDCl₃, 25 °C) of C^a₄L^c₈: δ_{H} 8.48 (s, 8H, -CHN-), 8.45 (s, 8H, -CHN-), 7.88 (d, *J*=8.6 Hz, 16H, Ha₁), 7.79 (d, *J*=8.6 Hz, 16H, Ha₁), 7.60 (d, *J*=8.6 Hz, 16H, Ha₅), 7.54 (d, *J*=8.6 Hz, 16H, Ha₅), 7.32 (s, 8H, Ha₃), 7.30 (s, 8H, Ha₃), 7.25 (d, *J*=8.4 Hz, 16H, Ha₄), 7.20 (d, *J*=8.4 Hz, 16H, Ha₄), 7.14 (d, *J*=7.8 Hz, 16H, Ha₂), 7.04 (d, *J*=7.8 Hz, 16H, Ha₂), 5.35-5.28 (m, 12H, Ho), 4.85-4.79 (m, 16H, Hm), 4.70 (m, 4H, Hi), 4.37-4.29 (m, 12H, Hi), 3.65 (m, 4H, Ho), 2.37-2.24 (m, 32H, H1), 1.49-1.32 (m, 96H, H2, H3 and H4), 0.96-0.86 (m, 48H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C) of C^a₄L^c₈: δ_{c} 160.39, 160.27, 159.56, 153.30, 153.07, 152.95, 152.82, 151.82, 151.70, 151.01, 139.02, 138.95, 138.80, 137.86, 137.79, 137.63, 135.75, 135.70, 135.62, 131.00, 130.77, 129.65, 129.23, 129.14, 128.87, 128.16, 128.09, 127.77, 122.04, 121.92, 121.89, 120.82, 120.71, 115.91, 101.44, 101.16, 99.77, 37.69, 37.64, 32.59, 31.06, 30.98, 30.53, 28.19, 23.22, 14.65. Dosy NMR (500 MHz, CDCl₃, 25 °C) of C^a₄L^c₈ m/z: 6119.9712 (M+H⁺, 100%); Calcd for C₄₁₆H₃₈₄O₃₂N₁₆ +H⁺: 6119.9100.

1.7.3 Tetra-cavitand capsule C^a₄L^d₈

From $C^{a[1]}$ (2.35 mg, 1.90 µmol), 1,4-ethylenedianiline (0.81 mg, 3.81 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** Based on GPC, the purity is 80% and the rest are di- and hexacavitand-aggregates.

Page S7

¹H NMR (500 MHz, CDCl₃, 25 °C) of $C^{a}_{4}L^{d}_{8}$: δ_{H} 8.50 (s, 8H, -CHN-), 8.47 (s, 8H, -CHN-), 7.92 (d, *J*=7.7 Hz, 16H, Ha₁), 7.85 (d, *J*=7.7 Hz, 16H, Ha₁), 7.37 (s, 8H, Ha₃), 7.36 (s, 8H, Ha₃), 7.34 (d, *J*=8.2 Hz, 16H, Ha₅), 7.29 (d, *J*=8.2 Hz, 16H, Ha₅), 7.24-7.16 (m, 48H, Ha₄ and Ha₂), 7.12 (d, *J*=7.6 Hz, 16H, Ha₂), 5.41-5.27 (m, 12H, Ho), 4.95-4.86 (m, 16H, Hm and Hi), 4.42-4.29 (m, 12H, Hi), 3.88 (m, 4H, Ho), 2.94 (s, 16H, H6), 2.91 (s, 16, H6), 2.46-2.27 (m, 32H, H1), 1.61-1.36 (m, 96H, H2, H3 and H4), 1.03-0.92 (m, 48H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C) of $C^{a}_{4}L^{d}_{8}$: δ_{C} 159.88, 159.52, 153.22, 153.06, 152.98, 152.87, 150.57, 150.24, 140.70, 140.52, 139.04, 139.00, 138.97, 138.81, 137.74, 137.67, 135.76, 135.73, 130.91, 130.71, 129.98, 129.72, 129.64, 129.45, 129.40, 129.30, 128.77, 121.59, 121.52, 120.77, 120.66, 115.70, 101.37, 100.16, 38.46, 38.43, 37.67, 37.62, 32.59, 31.01, 30.60, 28.19, 23.24, 23.21, 14.64. Dosy NMR (500 MHz, CDCl₃, 25 °C) of $C^{a}_{4}L^{d}_{8}$: D=2.06*10⁻¹⁰ m²/s. Ms (Maldi-tof) of $C^{a}_{4}L^{d}_{8}$ m/z: 6345.1584 (M+H⁺, 100%); Calcd for $C_{432}H_{416}O_{32}N_{16}$ +H⁺: 6345.1495.

1.7.4 Hexa-cavitand capsule C^a₆T₁₂

From $C^{a[1]}$ (2.41 mg, 1.90 µmol), 1,3,5-tris(4-aminophenyl)benzene (0.91 mg, 2.61 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** Based on GPC, the purity is >95%.

¹H NMR (300 MHz, CDCl₃, 25 °C): δ_{H} 8.53 (s, 24H, -CHN-), 7.92 (d, *J*=8.3 Hz, 48H, Ha₁), 7.82 (s, 24H, Ha₃), 7.76 (d, *J*=8.3 Hz, 48H, Ha₅), 7.39 (s, 24H, Ha₆), 7.32 (d, *J*=8.3 Hz, 48H, Ha₄), 7.19 (d, *J*=8.3 Hz, 48H, Ha₂), 5.24 (m, 24H, Ho), 4.89 (t, *J*=7.8 Hz, 24H, Hm), 4.25 (m, 24H, Hi), 2.39 (m, 48H, H1), 1.58-1.35 (m, 144H, H2, H3 and H4), 0.98 (t, *J*=6.7 Hz, 72H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{C} 160.48, 153.03, 152.10, 142.30, 139.21, 138.94, 138.14, 135.58, 130.68, 129.53, 128.90, 124.54, 125.02, 121.85, 120.72, 101.05, 37.59, 32.59, 30.84, 28.20, 23.21. Dosy NMR (500 MHz, CDCl₃, 25 °C): D=1.85*10⁻¹⁰ m²/s. Ms (Maldi-tof) m/z: 9779.8018 (M+H⁺, 100%); Calcd for C₆₇₂H₆₀₀O₄₈N₂₄+H⁺: 9780.5500

1.7.5 Hemicarcerand C^b₂L^a₄

From **C**^b (2.08 mg, 1.61 μmol), 1,2-ethylenediamine (0.19 mg, 3.23 μmol) and TFA (2 μL,

1%v/v in CDCl₃) according to **procedure A.** NMR shows that the purity is >95%.

¹H NMR (500 MHz, CDCl₃, 25 $^{\circ}$ C): δ_{H} 8.46 (s, 8H, -CHN-), 7.83 (d, J=8.6 Hz, 16H, Ha₁), 7.65 (s, 8H, Ha₃), 7.23 (d, J=8.6 Hz, 48H, Ha₁), 5.28 (t, J=7.8 Hz, 8H, Hm), 3.97-3.72 (m, 32H, Ho and H6), 3.39 (m, 16H, Hi), 2.24 (m, 16H, H1), 1.50-1.18 (m, 48H, H2, H3 and H4), 0.90 (t, J=7.1 Hz, 24H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 $^{\circ}$ C): δ_{C} 161.86, 151.89, 137.93, 136.31, 135.75, 130.63, 130.08, 128.23, 124.37, 72.53, 62.95, 34.95, 34.14, 32.19, 27.94, 22.92. Ms (Maldi-tof) m/z: 2676.5396 (M+H⁺, 100%); Calcd for C₁₇₆H₁₉₂O₁₆N₈ +H⁺: 2676.4652

1.7.6 Hexa-cavitand capsule C^b₆L^b₁₂

From C^{b} (2.32 mg, 1.80 µmol), 1,4-phenylenediamine (0.40 mg, 3.6 µmol) and TFA (2.5 µL, 1%v/v in CDCl₃) according to **procedure A.** NMR shows that the purity is >95%.

¹H NMR (300 MHz, CDCl₃, 25 °C): δ_{H} 8.53 (s, 24H, -CHN-), 7.93 (d, J=8.3 Hz, 48H, Ha₁), 7.67 (s, 24H, Ha₃), 7.31 (d, J=8.3 Hz, 48H, Ha₁), 7.26 (s, 48H, Ha₄), 5.30 (t, J=7.2 Hz, 24H, Hm), 3.89 (m, 48H, Ho), 3.46 (m, 48H, Hi), 2.26 (m, 48H, H1), 1.52-1.22 (m, 144H, H2, H3 and H4), 0.92 (t, J=6.4 Hz, 72H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{C} 159.81, 152.10, 150.45, 139.22, 136.68, 135.88, 130.82, 130.74, 128.88, 124.81, 122.32, 72.78, 35.20, 34.50, 32.47, 28.22, 23.19, 14.63. Dosy NMR (500 MHz, CDCl₃, 25 °C): D=2.11*10⁻¹⁰ m²/s. Ms (Maldi-tof) m/z: 8603.1035 (M+H⁺, 100%); Calcd for C₅₇₆H₅₇₆O₄₈N₂₄+H⁺: 8603.3647

1.7.7 Hexa-cavitand capsule $C_{6}^{b}L_{12}^{c}$

From C^{b} (2.07 mg, 1.61 µmol), benzidine (0.59 mg, 3.22 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** NMR shows that the purity is >95%.

¹H NMR (300 MHz, CDCl₃, 25 °C): δ_{H} 8.55 (s, 24H, -CHN-), 7.94 (d, J=7.8 Hz, 48H, Ha₁), 7.75-7.60 (m, 72H, Ha₃ and Ha₂), 7.41-7.25 (m, 96H, Ha₄ and Ha₅), 5.31 (t, J=8.1 Hz, 24H, Hm), 3.91 (m, 48H, Ho), 3.48 (m, 48H, Hi), 2.26 (m, 48H, H1), 1.49-1.28 (m, 144H, H2, H3 and H4), 0.92 (t, J=6.8 Hz, 72H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{C} 160.09, 152.10, 151.51, 139.22, 138.86, 136.69, 135.87, 130.82, 128.88, 128.11, 124.82, 121.89, 72.82, 35.24, 34.45, 32.48, 28.22, 23.20, 14.64. Dosy NMR (500 MHz, CDCl₃, 25 °C): D=1.73*10⁻¹⁰ m²/s. Ms (Maldi-tof) m/z: 9516.8574 (M+H⁺, 100%); Calcd for C₆₄₈H₆₂₄O₄₈N₂₄+H⁺: 9516.7676

1.7.8 Hexa-cavitand capsule C^b₆T₁₂

From C^{b} (1.88 mg, 1.46 µmol), 1,3,5-tris(4-aminophenyl)benzene (0.85 mg, 2.43 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** NMR shows that the purity is >95%.

¹H NMR (300 MHz, CDCl₃, 25 $^{\circ}$ C): δ_H 8.52 (s, 24H, -CHN-), 7.95 (d, J=8.2 Hz, 48H, Ha₁),

7.79 (s, 24H, Ha₃), 7.74 (d, J=8.2 Hz, Ha₂), 7.67 (s, 24H, Ha₆), 7.38-7.27 (m, 96H, Ha₄ and Ha₅), 5.32 (t, *J*=7.5 Hz, 24H, Hm), 3.87 (m, 48H, Ho), 3.68 (m, 48H, Hi), 2.28 (m, 48H, H1), 1.54-1.31 (m, 144H, H2, H3 and H4), 0.94 (t, *J*=6.8 Hz, 72H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ_{c} 160.37, 152.11, 151.98, 142.50, 139.45, 139.29, 136.72, 135.82, 131.03, 130.85, 128.90, 128.65, 125.23, 124.76, 121.87, 72.65, 35.12, 34.56, 32.51, 28.26, 23.20, 14.84. Dosy NMR (500 MHz, CDCl₃, 25 °C): D=1.80*10⁻¹⁰ m²/s. Ms (Maldi-tof) m/z: 10117.4707 (M+H⁺, 100%); Calcd for C₆₉₆H₆₄₈O₄₈N₂₄ +H⁺: 10117.4104

1.7.9 Hemicarcerand capsule C^b₂L^d₄

From C^{b} (2.12 mg, 1.65 µmol), 1,2-ethylenedianiline (0.70 mg, 3.30 µmol) and TFA (2 µL, 1%v/v in CDCl₃) according to **procedure A.** NMR shows that the purity is 95% and the rest are larger aggregates.

¹H NMR (500 MHz, CDCl₃, 25 °C) of $C_{2}^{b}L_{4}^{d}$: δ_{H} 8.44 (s, 8H, -CHN-), 7.89 (d, J=7.7 Hz, 16H, Ha₂), 7.69 (s, 8H, Ha₃), 7.29 (d, J=7.7 Hz, 48H, Ha₂), 7.04 (d, J=8.3 Hz, 16H, Ha₄), 6.96 (d, J=8.3 Hz, 16H, Ha₅), 5.31 (t, J=8.3 Hz, 8H, Hm), 3.90 (m, 16H, Ho), 3.45 (m, 16H, Hi), 2.98 (s, 16H, H6), 2.25 (m, 16H, H1), 1.46-0.90 (t, J=7.1 Hz, 24H, H5). ¹³C NMR (125 MHz, CDCl₃, 25 °C) of $C_{2}^{b}L_{4}^{d}$: δ_{C} 161.86, 151.89, 137.93, 136.31, 135.75, 130.63, 130.08, 128.23, 124.37, 72.53, 62.95, 34.95, 34.14, 32.19, 27.94, 22.92. Ms (Maldi-tof) of $C_{2}^{b}L_{4}^{d}$ m/z: 3284.6484 (M+H⁺, 100%); Calcd for C₂₂₄H₂₂₄O₁₆N₈+H⁺: 3284.7094

Reference:

- [1] C. B. Aakeroy, P. D. Chopade, *Org. Lett.* **2010**, *13*, 1-3.
- [2] R. C. Helgeson, K. Paek, C. B. Knobler, E. F. Maverick, D. J. Cram, J. Am. Chem. Soc. 1996, 118, 5590-5604.

2. NMR Spectra, Maldi-TOF Mass Spectra and GPC Chromatograms

Figure s-3: Maldi-tof Mass Spectrum of C^e.

Figure S-6: Maldi-tof Mass Spectrum of 2b.

Figure S-9: Maldi-tof Mass Spectrum of 2c.

Figure S-12: Maldi-tof Mass Spectrum of C^b.

Figure S-15: Maldi-tof Mass Spectrum of C^c.

Figure S-22: GPC chromatogram (CH₂Cl₂+1% TEA, 60 $^{\circ}$ C, 280 nm, 1 ml/min) of $C^{a}_{4}L^{c}_{8}$

Figure S-23: Maldi-tof Mass spectrum of C^a₄L^c₈

Figure S-27: Maldi-tof Mass spectrum of $C^a_4L^d_8$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Figure S-30: GPC chromatogram (CH₂Cl₂+1% TEA, 60 $^{\circ}$ C, 280 nm, 0.9 ml/min) of $C^{a}_{6}T_{8}$

Figure S-31: Maldi-tof Mass spectrum of C^a₆T₈

Figure S-46: GPC chromatogram (CH₂Cl₂+1% TEA, 60 $^{\circ}$ C, 280 nm, 1 ml/min) of C^b₆T₁₂

Figure S-47: Maldi-tof Mass spectrum of $C^{b}_{6}T_{12}$

Figure S-51: Maldi-tof Mass spectrum of $C_{2}^{b}L_{4}^{d}$