Electronic supplementary information

Mechanistic Understanding of Multistep Assembly of DNA with Carbazole Ligand by Simple Adjustment of Host-Guest Concentrations

Norie Inukai, Tsuyoshi Kawai*, and Junpei Yuasa*

Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan,

* To whom correspondence should be addressed.

E-mail: yuasaj@ms.naist.jp; tkawai@ms.naist.jp

Experimental Section

Calf thymus DNA (approximate average size: >13 kb) was obtained from Aldrich. The synthesis of 9-ethyl-3,6-bis[(1-methyl-1H-imidazol-2-yl)ethynyl]-9-carbazole [Im₂Cz] was reported previously.¹ 2,2[']-(9-ethyl-9H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1H-imidazol-3-ium) [(Im⁺)₂Cz] was synthesized by methylation of Im₂Cz with methyl iodide in acetonitrile. A 15 ml flask was charged with Im₂Cz (515 mg, 0.75 mmol) and methyl iodide (500 μ l, 8.0 mmol) in acetonitrile. The mixture was stirred for 24 h and then filtered. This methylation reaction occurred stoichiometrically and the crude product was recrystallized in methanol to provide yellow solid. ¹H NMR (300 MHz, CD₃OD): δ 8.73 (s, 2H), 7.81 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.7 Hz, 2H), 7.58 (s, 4H), 4.47 (q, *J* = 7.2 Hz, 2H), 3.96 (s, 12H), 1.38 (t, *J* = 7.2 Hz, 3H). HRMS (ESI): *m/z* calcd. for C₂₈H₂₇IN₅ ([M – I]⁺), 560.1311; found 560.1311. Emission quantum yields of (Im⁺)₂Cz (2.5 × 10⁻⁶ M) in the presence of ct-DNA (2.8 × 10⁻⁶ M and 9.6 × 10⁻⁵ M) were measured using a calibrated integrating sphere system in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

Fig. S1 UV-vis absorption spectra of (a) $(Im^+)_2Cz$ (9.8 × 10⁻⁶ M) in the presence of ct-DNA (base pair concentration: 9.8 × 10⁻⁶ M) and NaCl [0 M (blue line) – 0.59 M (red solid line)] (b) $(Im^+)_2Cz$ (1.0 × 10⁻⁵ M) in the presence of ct-DNA (base pair concentration: 1.0 × 10⁻⁴ M) and NaCl [0 M (green line) – 0.81M (red solid line)] in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA at 298 K. The red dashed lines show UV-vis absorption spectra of free $(Im^+)_2Cz$. The right Figures show plots of absorbance (A) at $\lambda = 360$ nm versus [NaCl].

Fig. S2 Fluorescence spectra of $(Im^+)_2Cz$ ($[L]_0 = 1.2 \times 10^{-5}$ M) in the presence of ct-DNA (base pair concentration, [b.p.] = 0 M: red line -1.5×10^{-6} M: blue line -2.1×10^{-4} M: green line) in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA at 298 K. Excitation at $\lambda = 364$ nm.

Binding Mode I

$$(b.p.)_5(L)_5 + 4(b.p.)_5 \xrightarrow{Binding Mode II} 5(b.p.)_5(L)$$

The equilibrium constant (K_2) is expressed by eqn (1), where $[(b.p.)_5]_f$ denotes the concentration of unbound sequences of 5 base pairs in ct-DNA.

$$K_2 = [(b.p.)_5(L)]^5 / ([(b.p.)_5(L)_5][(b.p.)_5]_f^4)$$
(1)

Under the present conditions, almost all carbazole ligands (L) are converted to $(b.p.)_5(L)_5$ [binding state I] or $(b.p.)_5(L)$ [binding state II] in the presence of high concentrations of ct-DNA. In such a case, the initial concentration of carbazole ligands ([L]₀) can be explained by eqn (2).

$$[L]_0 = 5[(b.p.)_5(L)_5] + [(b.p.)_5(L)]$$
(2)

The conversion ratio of $(b.p.)_5(L)_5$ to $(b.p.)_5(L)$ [$\alpha = (A - A_0)(A_{\infty} - A_0)^{-1}$ or $(\Delta \varepsilon - \Delta \varepsilon_0)(\Delta \varepsilon_{\infty} - \Delta \varepsilon_0)^{-1}$] is expressed by eqn (3), where A_0 and A_{∞} are absorbance at $\lambda = 370$ nm, $\Delta \varepsilon_0$ and $\Delta \varepsilon_{\infty}$ are the molar circular dichroism at $\lambda = 330$ nm of $(b.p.)_5(L)_5$ and $(b.p.)_5(L)$, respectively.

$$\alpha = [(b.p.)_5(L)]/[L]_0$$
(3)

Then, eqn 4 is derived from eqn (2) and (3).

$$[(b.p.)_5(L)_5] = [L]_0(1-\alpha)/5$$
(4)

On the other hand, the total concentration of sequences of 5 base pairs in ct-DNA ($[(b.p.)_5]_T$) can be given by eqn (5).

$$[(b.p.)_5]_T = [(b.p.)_5(L)_5] + [(b.p.)_5(L)] + [(b.p.)_5]_f$$
(5)

From eqn (3)-(5), $[(b.p.)_5]_f$ can be explained by eqn (6).

$$[(b.p.)_5]_f = [(b.p.)_5]_T - [L]_0(1 + 4\alpha)/5$$
(6)

Then, eqn (7) is derived from eqn (1) and (6).

$$K_{2}\{[(\mathbf{b},\mathbf{p})_{5}]_{\mathrm{T}} - [\mathbf{L}]_{0}(1+4\alpha)/5\}^{4} = 5[\mathbf{L}]_{0}^{4}\alpha^{5}(1-\alpha)^{-1}$$
(7)

Since $[(b.p.)_5]_T = [b.p.]/5$, eqn (7) can be rearranged to eqn (8), where [b.p.] denotes the total concentration of base pairs introduced into the solution.

$$K_{2}\{[b,p.] - [L]_{0}(1+4\alpha)\}^{4} = (5\alpha)^{5}(1-\alpha)^{-1}[L]_{0}^{4}$$
(8)

Fitting equation for N = 4, 6, 7, and 8 can be derived by the same procedure.

$$K_{2}\{[b.p.] - [L]_{0}(1 + (N - 1)\alpha)\}^{(N-1)} = (N\alpha)^{N}(1 - \alpha)^{-1}[L]_{0}^{(N-1)}$$
(9)

S3

Fig. S4 Fitted lines calculated from eqn (1) using values for (a) N = 4, (b) N = 5, (c) N = 6, (d) N = 7, and (e) N = 8 with various K_2 values are drawn in plot of absorbance at $\lambda = 370$ nm vs. [b.p.]/[L]₀ for titration of (Im⁺)₂Cz ([L]₀ = 1.0×10^{-5} M) by ct-DNA in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA at 298 K.

* Calculated curves obtained from eqn (1) using values for N = 4 with $K_2 = 1.0 \times 10^2$ [red line in (a)] and for N = 5 with $K_2 = 5.0 \times 10^3$ [red line in (b)] fit to the experimental data. According to the self-complementary oligomer ([d-(GCGC)]₂) result, DNA sequence with length shorter than 5 base pairs is not support binding state II (see ESI† S8). Thus, we postulated that the (Im⁺)₂Cz ligand is bound per 5 DNA base pairs (N = 5) in binding state II.

Fig. S5 (a) UV-visible absorption spectra of $(Im^+)_2Cz$ ([L] = 1.8×10^{-6} M: green line – 3.9×10^{-5} M: blue line) in the presence of ct-DNA (base pair concentration, $[b.p.]_0 = 2.8 \times 10^{-5}$ M) in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA at 298 K. (b) Plot of absorbance (A) at $\lambda = 375$ nm versus the ratio of $(Im^+)_2Cz$ and base pair ([L]/[b.p.]_0) for the titration of ct-DNA by $(Im^+)_2Cz$.

Binding Mode II

$$(b.p.)_5(L) + 4L \xrightarrow{K_3^{-1}} (b.p.)_5(L)_5$$

The equilibrium constant (K_3) is expressed by eqn (1), where $[L]_f$ denotes the concentration of unbound (free) carbazole ligands.

$$K_3 = [(b.p.)_5(L)][L]_f^4 / [(b.p.)_5(L)_5]$$
(1)

Under the present conditions, almost all base pairs are converted to $(b.p.)_5(L)_5$ [binding state I] or $(b.p.)_5(L)$ [binding state II] in the presence of high concentrations of the carbazole ligand. In such a case, the initial concentration of base pair ([b.p.]₀) can be explained by eqn (2).

$$[b.p.]_{0} = 5[(b.p.)_{5}(L)_{5}] + 5[(b.p.)_{5}(L)]$$
(2)

The conversion ratio (β) of (b.p.)₅(L) to (b.p.)₅(L)₅ is expressed by eqn (3).

$$\beta = 5[(b.p.)_5(L)_5]/[b.p.]_0 \tag{3}$$

Then, eqn (4) is derived from eqn (2) and (3), and eqn (4) is rearranged to eqn (5).

$$[b.p.]_0 = \beta [b.p.]_0 + K_3 \beta [L]_f^{-4} [b.p.]_0$$
(4)

$$K_{3}\beta(1-\beta)^{-1} = [L]_{f}^{4}$$
(5)

On the other hand, eqn (6) represents the total concentration of the carbazole ligand ([L]) introduced into the solution.

$$[L] = 5[(b,p.)_5(L)_5] + [(b,p.)_5(L)] + [L]_f$$
(6)

Then, eqn (7) is derived from eqn (1), (3), (5), and (6).

$$[L] = \beta[b.p.]_0 + (1 - \beta)[b.p.]_0 / 5 + \{K_3\beta(1 - \beta)^{-1}\}^{1/4}$$
(7)

Thus, eqn (7) can be rearranged to eqn (8).

$$\{[L] - [b.p.]_0(1 + 4\beta)/5\}^4 = K_3\beta(1 - \beta)^{-1}$$
(8)

$$5L + (b.p.)_5 \xrightarrow{K_1} (b.p.)_5(L)_5$$
$$(b.p.)_5(L)_5 + 4(b.p.)_5 \xrightarrow{K_2} 5(b.p.)_5(L)$$
$$(b.p.)_5(L)_5 \xrightarrow{K_3} (b.p.)_5(L) + 4L$$

The equilibrium constants K_1 , K_2 , and K_3 are expressed by eqn (1), (2), and (3), respectively. In these equations, $[L]_f$: the concentration of unbound (free) carbazole ligands; $[(b.p.)_5]_f$: the concentration of unbound sequences of 5 base pairs in ct-DNA.

$$K_{1} = [(b.p.)_{5}(L)_{5}]/([L]_{f}^{5}[(b.p.)_{5}]_{f})$$
(1)

$$K_{2} = [(b.p.)_{5}(L)]^{5} / ([(b.p.)_{5}(L)_{5}][(b.p.)_{5}]_{f}^{4})$$
(2)

$$K_{3} = [(b.p.)_{5}(L)][L]_{f}^{4}/[(b.p.)_{5}(L)_{5}]$$
(3)

Then, K_1K_2 and K_1K_3 values are derived from eqn (1)-(3).

$$K_1 K_2 = \{ [(b.p.)_5(L)] / ([L]_f[(b.p.)_5]_f) \}^5$$
(4)

$$K_1 K_3 = [(b.p.)_5(L)]/([L]_f[(b.p.)_5]_f)$$
(5)

Thus, eqn (6) can be derived from eqn (4)-(5).

$$K_1 K_2 = (K_1 K_3)^5$$
(6)

Thus, eqn (7) can be obtained from eqn (6).

$$K_2 = K_1^4 K_3^5 \tag{7}$$

Fig. S8 (a) UV-vis absorption spectra of $(\text{Im}^+)_2\text{Cz}$ ($[\text{L}]_0 = 4.9 \times 10^{-6}$ M) in the presence of $[d-(\text{GCGC})]_2$ (base pair concentration, [b.p.] = 0 M $- 2.5 \times 10^{-4}$ M) in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA at 298 K. Plots of (b) absorbance (A) at $\lambda = 360$ nm versus $[\text{b.p.}]/[\text{L}]_0$ and (c) (A $- A_0)(A_{\infty} - A)^{-1}$ versus ($[\text{b.p.}] - \alpha[\text{L}]_0$), where $\alpha = (A - A_0)(A_{\infty} - A_0)^{-1}$ at $\lambda = 360$ nm. Equation for the simple 1:1 binding equilibrium: the absorbance change due to binding between $(\text{Im}^+)_2\text{Cz}$ and $[d-(\text{GCGC})]_2$ can be expressed by $(A - A_0)/(A_{\infty} - A) = K([\text{b.p.}] - \alpha[\text{L}]_0)$.

Reference

(1) N. Inukai, J. Yuasa and T. Kawai, Chem. Commun. 2010, 46, 3929.