Supporting Materials to

Palladium-catalyzed haloallylation of aromatic ynol ethers with allyl chlorides: a highly regio- and stereoselective approach to (1E)- α chloroenol ethers

Haiting Cai,^a Zheliang Yuan,^a Weidong Zhu,^b and Gangguo Zhu*^{a,b}

^aDepartment of Chemistry, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China. ^bKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China

General	S2
Materials	
General procedure for synthesis and analytical data	S2
NMR spectra	S14

General: Unless otherwise noted, all reactions and manipulations were conducted under air atmosphere. Column chromatography was performed using silica gel (300-400 mesh) or neutral aluminum oxide (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz NMR spectrometers. Chemical shifts were reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard. MS and microanalysis were performed in the state authorized analytical center of this university.

Materials: THF, toluene and dioxane was distilled from sodium prior to use. Unless otherwise noted, all the reagents were obtained commercially and used without further purification.

Representative Procedure for Palladium-Catalyzed Haloallylation of Ynol Ethers with Allyl Halides:

To a mixture of **2a** (114.0 mg, 1.5 mmol) and PdCl₂ (4.4 mg, 0.025 mmol) in 2 mL of THF was added **1a** (73 mg, 0.5 mmol). After stirring for 1 h at 50 °C, the reaction mixture was concentrated and purified by column chromatography on neutral aluminum oxide (petroleum ether) to give 103 mg (yield: 87%) of **3aa** as a colorless oil. The stereochemistry was assigned by NOE measurements. ¹H NMR (CDCl₃, 400 MHz): δ 1.15 (t, *J* = 7.2 Hz, 3 H), 3.26 (dt, *J* = 6.0, 1.6 Hz, 2 H), 3.93 (q, *J* = 7.2 Hz, 2 H), 5.00-5.15 (m, 2 H), 5.77-5.90 (m, 1 H), 7.18-7.41 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 38.2, 67.7, 115.8, 119.4, 126.8, 127.9 (2 C), 128.4 (2 C), 134.7, 138.3, 142.7; MS (EI, *m/z*): 224 (7), 222 (M⁺, 21), 194 (2), 187 (3); Anal. Calcd. for C₁₃H₁₅ClO, HRMS: Cacl. 222.0811, Found: 222.0817.

Compound **3ba**: yield: 78%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.17 (t, *J* = 7.2 Hz, 3 H), 1.27 (d, *J* = 7.2 Hz, 6 H), 2.84-2.97 (m, 1 H), 3.24 (d, *J* = 6.0 Hz, 2 H), 3.94 (q, *J* = 7.2 Hz, 2 H), 5.02-5.17 (m, 2 H), 5.78-5.90 (m, 1 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 23.9 (2 C), 33.8, 38.2, 67.7, 115.7, 119.1, 126.0 (2 C), 128.2 (2 C), 134.9, 135.5, 142.6, 147.3; MS (EI, *m/z*): 266 (10), 264 (M⁺, 29), 209 (8), 207 (21), 185 (25); Anal. Calcd. for C₁₆H₂₁ClO, HRMS: Cacl. 264.1281, Found: 264.1277.

Compound **3ca**: yield: 85%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.13 (t, *J* = 7.2 Hz, 3 H), 2.32 (s, 3 H), 3.21 (dt, *J* = 6.0, 1.6 Hz, 2 H), 3.90 (q, *J* = 7.2 Hz, 2 H), 4.97-5.13 (m, 2 H), 5.73-5.86 (m, 1 H), 7.11 (d, *J* = 8.0 Hz, 2 H), 7.23 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 21.2, 38.2, 67.7, 115.8, 119.2, 128.3 (2 C), 128.7 (2 C), 134.8, 135.2, 136.4, 142.5; MS (EI, *m*/*z*): 238 (6), 236 (M⁺, 15), 181 (10), 179 (32); Anal. Calcd. for C₁₄H₁₇ClO, HRMS: Cacl. 236.0968, Found: 236.0965.

Compound **3da**: yield: 81%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.33 (t, *J* = 7.2 Hz, 3 H), 3.20 (dt, *J* = 6.0, 1.6 Hz, 2 H), 3.91 (q, *J* = 7.2 Hz, 2 H), 4.94-5.11 (m, 2 H), 5.71-5.85 (m, 1 H), 7.18-7.24 (m, 2 H), 7.39-7.50 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 37.9, 67.7, 116.1, 118.0, 120.6, 130.1 (2 C), 131.0 (2 C), 134.4, 137.1, 143.0; MS (EI, *m*/*z*): 302 (24), 300 (M⁺, 20), 274 (4), 272 (5); Anal. Calcd. for C₁₃H₁₄BrClO, HRMS: Cacl. 299.9917, Found: 299.9912.

Compound **3ea**: yield: 76%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.17 (t, *J* = 7.2 Hz, 3 H), 3.21 (d, *J* = 6.0 Hz, 2 H), 3.94 (q, *J* = 7.2 Hz, 2 H), 5.02-5.14 (m, 2 H), 5.74-5.85 (m, 1 H), 7.18 (t, *J* = 8.0 Hz, 1 H), 7.27 (d, *J* = 8.0 Hz, 1 H), 7.36 (d, *J* = 8.0 Hz, 1 H), 7.51 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.3, 37.9, 67.8, 116.2, 117.8, 121.9, 127.1, 129.4, 129.7, 131.5, 134.3, 140.3, 143.4; MS (EI, *m/z*): 302 (13), 300 (M⁺, 11), 274 (2), 272 (2); Anal. Calcd. for C₁₃H₁₄BrClO, HRMS: Cacl. 299.9917, Found: 299.9923.

Compound **3fa**: yield: 68%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.06 (t, J = 7.2 Hz, 3 H), 3.05 (br, s, 1 H), 3.31 (br, s, 1 H), 3.90 (q, J = 7.2 Hz, 2 H), 4.94-5.06 (m, 2 H), 5.67-5.79 (m, 1 H), 7.05-7.20 (m, 2 H), 7.22-7.29 (m, 1 H), 7.58 (dd, J = 8.0, 0.8 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.5, 37.7, 67.3, 116.4, 119.6, 123.4, 126.9, 128.6, 131.4, 132.6, 133.8, 139.1, 142.4; MS (EI, m/z): 302 (17), 300 (M⁺, 15), 267 (21), 265 (22); Anal.

Calcd. for C₁₃H₁₄BrClO, HRMS: Cacl. 299.9917, Found: 299.9914.

Compound **3ga**: yield: 83%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.14 (t, *J* = 7.2 Hz, 3 H), 3.21 (d, *J* = 6.0 Hz, 2 H), 3.92 (q, *J* = 7.2 Hz, 2 H), 4.99-5.12 (m, 2 H), 5.72-5.86 (m, 1 H), 7.25-7.33 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 38.0, 67.7, 116.1, 118.1, 128.1 (2 C), 129.8 (2 C), 132.4, 134.4, 136.6, 143.0; MS (EI, *m/z*): 258 (63), 256 (M⁺, 100), 230 (8), 228 (14); Anal. Calcd. for C₁₃H₁₄Cl₂O, HRMS: Cacl. 256.0422, Found: 256.0430.

Compound **3ha**: yield: 79%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.05 (t, *J* = 7.2 Hz, 3 H), 3.18 (br, s, 2 H), 3.89 (q, *J* = 7.2 Hz, 2 H), 4.89-5.05 (m, 2 H), 5.66-5.78 (m, 1 H), 7.09-7.25 (m, 3 H), 7.33-7.42 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 37.6, 67.3, 116.4, 117.9, 126.3, 128.4, 129.4, 131.3, 133.1, 133.9, 137.1, 142.3; MS (EI, *m/z*): 258 (58), 256 (M⁺, 80), 230 (7), 228 (12); Anal. Calcd. for C₁₃H₁₄Cl₂O, HRMS: Cacl. 256.0422, Found: 256.0424.

Compound **3ia**: yield: 82%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (t, *J* = 7.2 Hz, 3 H), 3.20 (dt, *J* = 6.0, 1.6 Hz, 2 H), 3.90 (q, *J* = 7.2 Hz, 2 H), 4.97-5.12 (m, 2 H), 5.72-5.85 (m, 1 H), 6.93-7.05 (m, 2 H), 7.22-7.34 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.3, 38.2, 67.7, 114.8 (d, *J* = 21.1 Hz, 2 C), 116.0, 118.4, 130.1 (d, *J* = 7.9 Hz, 2 C), 134.1 (d, *J* = 3.4 Hz), 134.5, 142.7 (d, *J* = 1.3 Hz), 161.5 (d, *J* = 244.5 Hz); MS (EI, *m/z*): 242 (17), 240 (M⁺, 50), 214 (2), 212 (9), 205 (8); Anal. Calcd. for C₁₃H₁₄CIFO, HRMS: Cacl. 240.0717, Found: 240.0722.

Compound **3ja**: yield: 74%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.16 (t, *J* = 7.2 Hz, 3 H), 3.23 (d, *J* = 6.0 Hz, 2 H), 3.80 (s, 3 H), 3.93 (q, *J* = 7.2 Hz, 2 H), 5.00-5.16 (m, 2 H), 5.75-5.89 (m, 1 H), 6.79 (d, *J* = 7.6 Hz, 1 H), 6.90-6.96 (m, 2 H), 7.23 (t, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 38.2, 55.2, 67.8, 112.2, 114.2, 115.9, 119.2, 120.9, 128.9, 134.7, 139.6, 142.8, 159.1; MS (EI, *m*/*z*): 254 (11), 252 (M⁺, 33), 197 (5), 195 (16); Anal. Calcd. for C₁₄H₁₇ClO₂, HRMS: Cacl. 252.0917, Found: 252.0915.

Compound **3ka**: yield: 76%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.08 (t, *J* = 7.2 Hz, 3 H), 3.16 (br, s, 2 H), 3.90 (q, *J* = 7.2 Hz, 2 H), 4.95-5.06 (m, 2 H), 5.63-5.76 (m, 1 H), 7.06 (d, *J* = 8.0 Hz, 1 H), 7.20 (dd, *J* = 8.0, 2.0 Hz, 1 H), 7.41 (d, *J* = 2.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 37.4, 67.3, 116.6, 116.7, 126.7, 129.3, 132.1, 133.5, 133.6, 134.0, 135.7, 142.6; MS (EI, *m*/*z*): 292 (10), 290 (M⁺, 6), 257 (3), 255 (1); Anal. Calcd. for C₁₃H₁₃Cl₃O, HRMS: Cacl. 290.0032, Found: 290.0036.

Compound **3la**: yield: 72%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.16 (t, *J* = 7.2 Hz, 3 H), 3.23 (d, *J* = 6.0 Hz, 2 H), 3.80-3.99 (m, 8 H), 5.00-5.16 (m, 2 H), 5.78-5.90 (m, 1 H), 6.81 (d, *J* = 8.0 Hz, 1 H), 6.91 (dd, *J* = 8.0, 2.0 Hz, 1 H), 6.98 (d, *J* = 2.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.5, 38.3, 55.78, 55.80, 67.7, 110.5, 112.0, 115.8, 119.0, 120.7, 130.8, 134.9, 142.4, 147.7, 148.1; MS (EI, *m/z*): 284 (14), 282 (M⁺, 48), 227 (27), 225 (100); Anal. Calcd. for C₁₅H₁₉ClO₃, HRMS: Cacl. 282.1023, Found: 282.1020.

Compound **3ma**: yield: 77%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.44 (t, *J* = 7.2 Hz, 3 H), 3.37 (d, *J* = 6.0 Hz, 2 H), 4.16 (q, *J* = 7.2 Hz, 2 H), 5.03-5.20 (m, 2 H), 5.83-5.97 (m, 1 H), 6.92-7.00 (m, 1 H), 7.11 (d, *J* = 3.6 Hz, 1 H), 7.23 (d, *J* = 5.2 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.5, 36.1, 67.5, 113.5, 115.9, 124.8, 125.0, 126.2, 134.6,

139.2, 141.7; MS (EI, *m*/*z*): 230 (22), 228 (M⁺, 62), 199 (14), 173 (21), 171 (60); Anal. Calcd. for C₁₁H₁₃ClOS, HRMS: Cacl. 228.0376, Found: 228.0380.

Compound **3na**: yield: 75%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.13 (t, *J* = 7.2 Hz, 3 H), 3.35 (d, *J* = 6.0 Hz, 2 H), 3.95 (q, *J* = 7.2 Hz, 2 H), 5.00-5.19 (m, 2 H), 5.80-5.93 (m, 1 H), 7.40-7.56 (m, 3 H), 7.75-7.90 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 38.3, 67.8, 116.0, 119.4, 125.8, 125.9, 127.0, 127.1, 127.3, 127.5, 128.0, 132.3, 133.2, 134.7, 135.8, 143.1; Anal. Calcd. for C₁₇H₁₇ClO, HRMS (ESI): Cacl. 272.0968, Found: 272.0973.

Compound **3ab**: yield: 82%, colorless oil; 4*E*/4*Z* = 64/36; MS (EI, *m*/*z*): 280 (17), 278 (M⁺, 56), 244 (10), 243 (51), 215 (38); Anal. Calcd. for C₁₇H₂₃ClO, C: 73.23, H: 8.31, Cl: 12.72, O: 5.74, Found C: 73.01, H 8.57, Cl: 12.95.

Compound **3ac**: yield: 73%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.15 (t, *J* = 7.2 Hz, 3 H), 1.75 (s, 3 H), 3.20 (s, 2 H), 3.93 (q, *J* = 7.2 Hz, 2 H), 4.71-4.77 (m, 2 H), 7.18-7.37 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.4, 22.6, 42.0, 67.7, 111.4, 119.4, 126.7,

127.8 (2 C), 128.4 (2 C), 138.2, 142.2, 143.3.; MS (EI, *m/z*): 238 (3), 236 (M⁺, 10), 210 (1), 208 (2); Anal. Calcd. for C₁₄H₁₇ClO, HRMS: Cacl. 236.0968, Found: 236.0964.

Compound **3ad**: yield: 71%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.01-1.08 (m, 6 H), 3.65-3.74 (m, 1 H), 3.84 (t, *J* = 7.2 Hz, 2 H), 5.01-5.13 (m, 2 H), 5.78-5.88 (m, 1 H), 7.09-7.17 (m, 2 H), 7.21-7.35 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.3, 17.5, 39.9, 67.5, 113.8, 125.4, 126.8, 127.6 (2 C), 129.5 (2 C), 136.4, 140.6, 141.3; MS (EI, *m/z*): 238 (19), 236 (M⁺, 60), 223 (22), 221 (22), 201 (33); Anal. Calcd. for C₁₄H₁₇ClO, HRMS: Cacl. 236.0968, Found: 236.0962.

Compound **3ag**: yield: 83%, colorless oil; E/Z = 4/1; MS (EI, m/z): 268 (19), 266 (M⁺, 17), 159 (22), 158 (20); Anal. Calcd. for C₁₃H₁₅BrO, C: 58.44, H: 5.66, Br: 29.91, O: 5.99, Found C: 58.62, H 5.88, Br: 29.75.

Compound **4a**: To a mixture of 4-Me-C₆H₄B(OH)₂ (51 mg, 0.38 mmol), Pd(OAc)₂ (2.8 mg, 0.013 mmol), Cs₂CO₃ (163 mg, 0.5 mmol), Xphos (15 mg, 0.05 mol) in 2 mL of THF was added **3aa** (56 mg, 0.25 mmol). After stirring at 50 °C for 2 h, the reaction mixture was

quenched with saturated NaHCO₃, extracted with EtOAc, washed with brine, and dried over anhydrous Na₂SO₄. Column chromatography on neutral aluminum oxide gave 54 mg (yield: 77%) of **4a** as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.11 (t, *J* = 7.2 Hz, 3 H), 2.43 (s, 3 H), 3.12 (dt, *J* = 6.0, 1.6 Hz, 2 H), 3.54 (q, *J* = 7.2 Hz, 2 H), 4.95-5.07 (m, 2 H), 5.73-5.84 (m, 1 H), 7.22-7.30 (m, 3 H), 7.36-7.43 (m, 4 H), 7.44-7.48 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 15.1, 21.4, 37.2, 65.3, 115.4, 120.6, 126.2, 127.8 (2 C), 128.90 (2 C), 128.94 (2 C), 129.2 (2 C), 132.8, 137.1, 138.0, 140.0, 151.4; MS (EI, *m/z*): 279 (6), 278 (M⁺, 41), 263 (6), 119 (100); Anal. Calcd. For C₂₀H₂₂O, HRMS: Cacl. 278.1671, Found: 278.1674.

Compound **4b**: To a mixture of 1-hexyne (82 mg, 1.0 mmol), Pd(OAc)₂ (2.8 mg, 0.013 mmol), Cs₂CO₃ (163 mg, 0.5 mmol), Xphos (15 mg, 0.05 mol) in 2 mL of THF was added **3aa** (56 mg, 0.25 mmol). After stirring at 60 °C for 4 h, the reaction mixture was quenched with saturated NaHCO₃, extracted with EtOAc, washed with brine, and dried over anhydrous Na₂SO₄. Column chromatography on neutral aluminum oxide gave 43 mg (yield: 82%) of **4b** as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 0.99 (t, *J* = 7.2 Hz, 3 H), 1.23 (t, *J* = 7.2 Hz, 3 H), 1.49-1.65 (m, 4 H), 2.48 (t, *J* = 6.8 Hz, 2 H), 3.39 (dt, *J* = 6.0, 1.6 Hz, 2 H), 4.01 (q, *J* = 7.2 Hz, 2 H), 4.99 (dd, *J* = 10.0, 1.6 Hz, 1 H), 5.09 (dd, *J* = 17.2, 1.6 Hz, 1 H), 5.78-5.94 (m, 1 H), 7.12-7.25 (m, 1 H), 7.31 (dt, *J* = 7.2, 1.6 Hz, 2 H), 7.40-7.55 (m, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 13.6, 15.2, 19.2, 22.0, 30.7, 38.0, 65.0, 74.5, 97.5, 115.2, 124.2, 126.3, 127.7 (2 C), 128.7 (2 C), 135.5, 136.6, 138.5; MS (EI, *m/z*): 269 (5), 268 (M⁺, 25), 240 (35), 225 (22), 211 (15); Anal. Calcd. for C₁₉H₂₄O, HRMS:

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Cacl. 268.1827, Found: 268.1821.

To a solution of **4a** (50 mg, 0.18 mmol) in 1 mL of THF was added 1 mL of 6 N HCl at rt. After stirring at 50 °C for 1 h, the reaction mixture was quenched by saturated NaHCO₃, extracted with EtOAc, washed with brine, and dried over Na₂SO₄. Column chromatography on silica gel gave 43 mg (yield: 95%) of **5** as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 2.36 (s, 3 H), 2.54-2.64 (m, 1 H), 2.93-3.04 (m, 1 H), 4.64 (t, *J* = 7.2 Hz, 1 H), 4.95-5.11 (m, 2 H), 5.71-5.84 (m, 1 H), 7.16-7.24 (m, 3 H), 7.28-7.36 (m, 4 H), 7.89 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.6, 38.2, 53.4, 116.6, 127.1, 128.2 (2 C), 128.86 (2 C), 128.90 (2 C), 129.2 (2 C), 134.2, 136.1, 139.3, 143.7, 198.8; MS (EI, *m/z*): 250 (M⁺, 2), 235 (1), 165 (3), 119 (100); Anal. Calcd. for C₁₈H₁₈O, HRMS: Cacl. 250.1358, Found: 250.1250.

General Procedure of the Synthesis of α -Allylated Ester:

Compound 6a: To a mixture of allyl bromide (114.0 mg, 1.5 mmol) and Pd(OAc)₂ (5.6 mg, 0.025 mmol) in 2 mL of THF was added **1a** (73 mg, 0.5 mmol). After stirring for 1 h at 50 °C, the reaction mixture was concentrated and then dissolved in 2 mL of 95% EtOH, followed by adding of AgNO₃ (128 mg, 0.75 mmol). After stirring at 60 °C for 5 h, the reaction mixture was quenched by water, extracted with EtOAc, washed by brine, and concentrated. Column purification on silica gel gave compound 78 mg (yield: 76%) of **6a** as a colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.22 (t, *J* = 7.2 Hz, 3 H), 2.47-2.58 (m, 1)

H), 2.78-2.89 (m, 1 H), 3.60-3.68 (m, 1 H), 4.05-4.21 (m, 2 H), 4.98-5.13 (m, 2 H), 5.68-5.81 (m, 1 H), 7.23-7.40 (m, 5 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 37.7, 51.5, 60.8, 116.9, 127.3, 127.9 (2 C), 128.6 (2 C), 135.3, 138.7, 173.4; MS (EI, *m/z*): 204 (M⁺, 1), 163 (8), 135 (13), 131 (100).

Compound **6b**: yield: 67%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.21 (t, *J* = 7.2 Hz, 3 H), 2.44-2.54 (m, 1 H), 2.75-2.86 (m, 1 H), 3.54-3.64 (m, 1 H), 4.04-4.21 (m, 2 H), 4.99-5.12 (m, 2 H), 5.64-5.76 (m, 1 H), 7.21 (dd, *J* = 8.4, 2.0 Hz, 2 H), 7.45 (dd, *J* = 8.4, 2.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 37.5, 50.9, 61.0, 117.3, 121.3, 129.7 (2 C), 131.7 (2 C), 134.8, 137.6, 173.0; MS (EI, *m/z*): 285 (3), 283 (M⁺+H, 3), 243 (30), 241 (29), 211 (100), 209 (87); Anal. Calcd. for C₁₃H₁₅BrO₂, HRMS: Cacl. 283.0334 (M⁺+H), Found: 283.0337.

Compound **6c**: yield: 62%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.18-1.33 (m, 9 H), 2.46-2.57 (m, 1 H), 2.78-2.97 (m, 2 H), 3.62 (dd, *J* = 8.8, 6.4 Hz, 1 H), 4.04-4.23 (m, 2 H), 4.99-5.15 (m, 2 H), 5.69-5.83 (m, 1 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 7.25 (d, *J* = 8.0 Hz, 2 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 24.0 (2 C), 33.7, 37.8, 51.2, 60.7, 116.8, 126.6 (2 C), 127.8 (2 C), 135.5, 136.0, 147.8, 173.6; MS (EI, *m/z*): 246 (M⁺, 3), 231 (3), 206 (7), 205 (54), 173 (100); Anal. Calcd. for C₁₆H₂₂O₂, HRMS: Cacl. 246.1620, Found: 246.1627.

Compound **6d**: yield: 71%, colorless oil; ¹H NMR (CDCl₃, 400 MHz): δ 1.21 (t, *J* = 7.2 Hz, 3 H), 2.43-2.54 (m, 1 H), 2.73-2.84 (m, 1 H), 3.50-3.59 (m, 1 H), 3.86 (s, 3 H), 3.88 (s, 3 H), 4.03-4.21 (m, 2 H), 4.97-5.13 (m, 2 H), 5.66-5.78 (m, 1 H), 6.78-6.90 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 37.8, 51.0, 55.8, 55.9, 60.7, 110.8, 111.1, 116.9, 120.1, 131.2, 135.4, 148.2, 148.9, 173.6; MS (EI, *m/z*): 265 (4), 264 (M⁺, 25), 224 (13), 223 (100), 191 (34).

3ha

3ja

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

3ag

4b

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Selected NOE data

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

