Supporting information

Copper-Mediated Trifluoromethylation of ArylBoronic Acids by

Trifluoromethyl Sulfonium Salts

Cheng-Pan Zhang,^a Ji Cai,^a Chang-Bing Zhou,^a Xiao-Ping Wang,^{a,b} Xing Zheng,^b Yu-Cheng Gu,^c Yong Guo^a and Ji-Chang Xiao*^a

 ^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, Fax: (+) 86-21-64166128.
 ^b Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China.

^c Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.

jchxiao@mail.sioc.ac.cn

Experimental Details	S2
1. General	S2
2. General Procedure for the Trifluoromethylation of Ary	l- and Alkenylboronic
Acids	S2
References	
¹⁹ F NMR and MS Analysis of Reaction Mixtures	S6
Copies of NMR Spectra for 2a-k	

Experimental Details

1. General

Unless otherwise stated, NMR spectra were recorded in CDCl₃ at 300 MHz (¹H NMR) and 282 MHz (¹⁹F NMR). All chemical shifts are reported in ppm relative to TMS or CFCl₃ (positive for downfield shifts) as external standards. DMF (\geq 99.5%) and Cu (\geq 99.0%) were used without purification. *S*-(Trifluoromethyl)diphenylsulfonium triflate [Ph₂SCF₃]⁺[OTf]⁻ was synthesized according to the literature procedure.¹ Other reagents were purchased from commercial sources.

2. General Procedure for the Trifluoromethylation of Aryl- and Alkenylboronic Acids (1a-q).

In a 5 mL sealed tube, biphen-4-ylboronic acid (39.9 mg, 0.201 mmol) and $[Ph_2SCF_3]^+[OTf]^-$ (162 mg, 0.4 mmol) were dissolved in DMF (3 mL). Copper powder (26.3 mg, 0.4 mmol) and NaHCO₃ (17.1 mg, 0.2 mmol) were added. The reaction mixture was then stirred at 50 °C for 11 h. After dilution with diethyl ether (30 mL), the reaction mixture was washed with water (3×20 mL), dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography (eluent: pentane), providing 4-(trifluoromethyl)biphenyl **2c**^{2a} (22.6 mg, 0.102 mmol, 51% yield) as a white solid. ¹H NMR (300 MHz, CD₃COCD₃): δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 7.74 (dm, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.4 Hz, 1H). ¹⁹F NMR (282 MHz, CD₃COCD₃): -63.3 (s, 3F).

1-*tert*-Butyl-4-trifluoromethyl-benzene (**2b**) ^{2b}: Colorless oil. ¹H NMR (300MHz, CDCl₃): δ 7.55 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 1.34 (s, 9H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.0 (s, 3F).

1-Fluoro-4-(trifluoromethyl)benzene (**2d**) ^{2c}: ¹⁹F NMR (282MHz, CDCl₃): -60.7 (s, 3F). GC-MS (m/z): 164.0 (t = 2.542 min).

1-Chloro-4-(trifluoromethyl)benzene (**2e**) ^{2d}: Yellow oil. H NMR (300MHz, CDCl₃): δ 7.48 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H). ¹⁹F NMR (282MHz, CDCl₃): δ -61.4 (s, 3F).

1,3-Dichloro-5-(trifluoromethyl)benzene (2f) ^{2e}: Colorless oil. Η NMR (300MHz, CDCl₃): δ

7.55 (s, 1H), 7.52 (s, 2H). ¹⁹F NMR (282MHz, CDCl₃): -62.7 (s, 3F).

4-(Trifluoromethyl)benzonitrile (**2g**)^{2d}: White solid. ¹H NMR (300MHz, CDCl₃): δ 7.75 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H). ¹⁹F NMR (282MHz, CDCl₃): δ -63.9 (s, 3F).

4-(Trifluoromethyl)benzaldehyde (**2h**) ^{2f}: Colorless oil. ¹H NMR (300MHz, CDCl₃): δ 10.09 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 2H), 7.80 (d, *J* = 7.9 Hz, 2H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.7 (s, 3F).

 $O_2 N_{\rm N}$

1-Nitro-3-(trifluoromethyl)benzene (**2i**) ^{2b}: Yellow oil. ¹H NMR (300MHz, CDCl₃): δ 8.53 (s, 1H), 8.45 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 7.9 Hz), 7.75 (t, J = 8.1Hz, 1H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.6 (s, 3F).

(3-(Trifluoromethyl)phenyl)methanol (**2j**) ^{2g}: Yellow oil. ¹H NMR (300MHz, CDCl₃): δ 7.64 (s, 1H), 7.56-7.54 (m, 2H), 7.47 (t, *J* = 7.4Hz, 1H), 4.76 (d, *J* = 5.4Hz, 2H), 1.91 (t, *J* = 5.4Hz, 1H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.4 (s, 3F).

2-(Trifluoromethyl)naphthalene (**2k**) ^{2b}: White solid. ¹H NMR (300MHz, CDCl₃): δ 8.16 (s, 1H), 7.97-7.90 (m, 3H), 7.66-7.57 (m, 3H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.6 (s, 3F).

4-(3,3,3-Trifluoroprop-1-enyl)biphenyl (**2l**) ^{2h,2j}: White solid. ¹H NMR (300MHz, CDCl₃): δ 7.55 (m, 4H), 7.46 (d, *J* = 8.5Hz, 2H), 7.38 (tm, *J* = 7.7Hz, 2H), 7.31 (m, 1H), 7.12 (dq, *J* = 16.2Hz, *J* = 1.8Hz, 1H), 6.17 (dq, *J* = 16.1Hz, *J* = 6.5Hz, 1H). ¹⁹F NMR (282MHz, CDCl₃): δ -63.6 (d, *J* = 6.5Hz, 3F).

3-(Trifluoromethyl)quinoline (**2m**) ²ⁱ: White solid. ¹H NMR (300MHz, CDCl₃): δ 9.11 (d, *J* = 1.5 Hz, 1H), 8.46 (s, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.87 (tm, *J* = 7.2Hz, 1H), 7.68 (t, *J* = 7.2Hz, 1H). ¹⁹F NMR (282MHz, CDCl₃): δ -61.4 (s, 3F).

2-(Trifluoromethyl)benzofuran (**2n**) ^{2b}: Colorless oil. ¹H NMR (300MHz, CDCl₃): δ 7.68 (d, *J* = 7.9Hz, 1H), 7.58 (dm, *J* = 8.3Hz, 1H), 7.45 (tm, *J* = 7.7Hz, 1H), 7.34 (tm, *J* = 7.2Hz, 1H), 7.18 (m, 1H). ¹⁹F NMR (282MHz, CDCl₃): δ -65.2 (s, 3F).

4-(Trifluoromethyl)dibenzo[b,d]furan (**2o**) ^{2j}: White solid. ¹H NMR (300MHz, CDCl₃): δ 8.13 (d, *J* = 7.7 Hz, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 7.45-7.38 (m, 2H). ¹⁹F NMR (282MHz, CDCl₃): δ -60.8 (s, 3F).

1-Phenoxy-4-(trifluoromethyl)benzene (**2p**) ^{2k}: White solid. ¹H NMR (300MHz, CDCl₃): δ 7.53 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.15-7.05 (m, 5H). ¹⁹F NMR (282MHz, CDCl₃): δ -61.6 (s, 3F).

4-(Trifluoromethyl)dibenzo[b,d]thiophene (**2q**): White solid. ¹H NMR (300MHz, CDCl₃): δ 8.21 (d, *J* = 7.9Hz, 1H), 8.08 (m, 1H), 7.78 (m, 1H), 7.67 (d, *J* = 7.7Hz, 1H), 7.42(m, 3H). ¹⁹F NMR (282MHz, CDCl₃): δ -62.7 (s, 3F). ¹³C NMR (100MHz, CDCl₃): δ 139.5 (q, *J* = 1.5Hz), 137.4, 136.4, 134.3, 127.6, 125.2 (q, *J* = 33Hz), 124.8, 124.7, 124.3 (q, *J* = 5.2 Hz), 124.3, 124.2 (q, *J* = 273Hz), 122.6, 121.7. EI (m/z, %): 253 (14.7), 252 (100), 251 (14.0), 233 (12.1), 202 (9.4), 184 (52.2), 139 (18.1), 126 (10.0). IR (KBr): 1455, 1445, 1403, 1335, 1302, 1254, 1200, 1174, 1133, 1108, 1074, 1030, 799, 748 cm⁻¹. HRMS for C₁₃H₇F₃S: 252.0221; Found: 252.0223.

References

(1) (a) E. Magnier, J. C. Blazejewski, M. Tordeux and C. Wakselman, *Angew. Chem. Int. Ed.* 2006, **45**, 1279; (b) Y. Mace, B. Raymondeau, C. Pradet, J. -C. Blazejewski and E. Magnier, *Eur. J. Org. Chem.* 2009, 1390; (c) C. -P. Zhang, H. -P. Cao, Z. -L. Wang, C. -T. Zhang, Q. -Y. Chen and J. -C. Xiao, *Synlett.* 2010, **7**, 1089; (d) C. -P. Zhang, Z. -L. Wang, Q. -Y. Chen, C. -T. Zhang, Y. -C. Gu and J. -C. Xiao, *Angew. Chem. Int. Ed.* 2011, **50**, 1896.
(2) (a) S. Gao, Z. Zheng, L. Jian and R. Cao, *Chem. Commun.* 2010, **46**, 7584; (b) L. Chu and F. -L. Qing, *Org. Lett.* 2010, **12**, 5060; (c) D. Naumann and J. Kischkewitz, *J. Fluorine Chem.* 1990, **47**, 283; (d) M. Oishi, H. Kondo and H. Amii, *Chem. Commun.* 2009, 1909; (e) J. M. Paratian, E. Labbe, S. Sibille and J. Perichon, *J. Organomet. Chem.* 1995, **489**, 137; (f) P. V. Ramachandran and A. Chatterjee, *Org. Lett.* 2008, **10**, 1195; (g) K. Miyamoto, N. Tada and M. Ochiai, *J. Am. Chem. Soc.* 2007, **129**, 2772; (h) S. Furuta and T. Hiyama, *Synlett* 1996, 1199; (i) J. M. Paratian, S. Sibille and J. Perichon, *J. Chem. Soc. Chem. Commun.* 2011, **4**300; (k) T. D. Senecal, A. T. Parsons and S. L. Buchwald, *J. Org. Chem.* 2011, **76**, 1174.

¹⁹F NMR and MS Analysis of Reaction Mixtures

The NMR experiments listed in Table 1 were run directly without any further purification of the reaction mixtures. All the experiments were done in the reaction solvents, using $[OTf]^-$ (from $[Ph_2SCF_3]^+[OTf]^-$) as the internal standard.

Table 1, entry 1 (¹⁹F NMR in DMF) 77.782 OTI 0.03 -50 -100 -150 PPM Table 1, entry 2 (¹⁹F NMR in DMF) 71,803 OTI g.13 6.01 PPM -40 -50 -60 -70 -80 -90

Table 1, entry 3 (¹⁹F NMR in DMF)

Table 1, entry 6 (¹⁹F NMR in DMF)

Table 1, entry 9 (¹⁹F NMR in DMF)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Table 1, entry 12 (¹⁹F NMR in DMSO)

Table 1, entry 15 (¹⁹F NMR in DMF)

Table 1, entry 18 (¹⁹F NMR in DMF)

MS analysis of the reaction mixture (Table 1, entry 20)

S13

操作者	:	. 1		-41	BB +Y 口 #C as	
仪器	: 1义辞	1		1 <u>1</u> .	直: 杆 品 瓶 21	
进杆日期	: 2011-	-4-18 15:30	:55	进杆伏	奴: 1 	
亚相古社	D. MI		NDV M	过什	里: 5.0 µ1	
不朱月伝	: D:\MI	1-19 15.34	.03			
取/口 IS LX	: 2011-	(调用后修)	νσ)	EC	ADT Non	Conn
分析方法	• D • \ ME	THOD\STANI	BY.M	E7-	- MPI . Iveg	2 CMAI
最后修改	: 2011-	3-24 9:35	16			
m/z	丰度	m/z	丰度	m/z.	丰度	
79.90	0.6	492.80	1.8	912.80	0.2	
87.00	0.2	493.60	0.2	914.30	0.2	
98.20	0.3	494.90	0.2	914.70	0.2	
99.10	1.1	509.80	5.9	916.40	0.2	
111.00	0.2	510.60	0.4			
149.00	100.0	511.80	3.3			
150.00	017 2.3	512.60	0.2			Ter
151.00	5.3	513.70	0.6			ESI
200.80 C	$u(CF_3)_2 \xrightarrow{1.4}$	523.70	0.2			
202.80	0.5	534.80	0.3			
249.80	0.5	551 80	1 1			
263.80	0.2	553.60	0.9			
269.90	1.6	582.10	0.2			
271.00	0.8	593.80	0.2			
271.80	0.4	595.80	0.1			
280.90	rF. 0.5	610.80	0.2			
281.80 C	0.2	612.60	0.3			
282.90	0.4	622.70	0.2			
320.90	11.4	624.60	0.2			
321.90	0.4	636.50	0.2			
322.80	1.3	664.80	0.6			
338.90	28.8	665.60	0.2			
339.80	1.2	666.70	0.2			
340.90	13.9	681.70	2.4			
341.80	11.9	682.70	0.4			
343.90	14.5	684 50	0.2			
346 00	1.1	685 80	0.2			
349.90	0.3	723.70	0.5			
360.80	1.3	725.70	0.3			
362.90	0.9	740.60	0.7			
379.80	4.6	742.60	0.5			
380.80	0.2	744.50	0.2			
381.80	3.1	752.80	0.3			
383.90	0.2	754.70	0.4			
391.70	0.3	756.40	0.1			
393.80	0.2	765.60	0.1			
414.80	0.2	782.40	0.1			
418.80	0.8	836.50	0.2			
420.80	0.2	837.00	0.2			
422 70	0.2	855 60	0.5			
441.70	0.1	857 60	0.4			
442.80	0.3	870.20	0.2			
443.10	0.3	870.60	0.4			
470.70	0.5	872.60	0.4			
471.90	1.5	874.40	0.2			
472.80	0.4	874.70	0.2			
473.20	0.3	895.60	0.3			
472 00	0.8	897.50	0.2			

S15

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

S22

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

