Supplementary Information

Cobalt-doped cadmium selenide colloidal nanowires

Zhen Li,*^a Ai Jun Du,^b Qiao Sun,^b Muhsen Aljada,^c Li Na Cheng,^a Mark J Riley,^d Zhong Hua Zhu,^e Zhen Xiang Cheng,^f Xiao Lin Wang,^f Jeremy Hall,^g Elmars Krausz,^g Shi Zhang Qiao,^a Sean C Smith,^b Gao Qing (Max) Lu*^a

^aARC Center of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia; ^bCentre for

Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia; ^cCentre for Organic Photonics and

Electronics, The University of Queensland, QLD 4072, Australia;^dSchool of Chemistry

and Molecular Biosciences, The University of Queensland, QLD 4072, Australia; ^eSchool of

Chemical Engineering ,The University of Queensland, QLD 4072, Australia; ¹Institute for Superconducting and Electronic Materials, The University of Wollongong, NSW 2522, Australia;

⁸Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia

* To whom correspondence should be addressed. Email: z.li3@uq.edu.au, m.lu@uq.edu.au

Preparation of undoped and doped CdSe colloidal nanowires:

Materials: Cadmium oxide (CdO, 99.99 %), selenium powder (Se, 99 %), octanoic acid (OCA, 99 %), octyl ether (99 %) and phenyl ether (99 %) were purchased from Aldrich. Trioctylphosphine oxide (TOPO, 98 %) and trioctylphosphine (TOP, 90 %) were received from Merck and Fluka, respectively. Cobalt stearate (CoSt₂) was ordered from Acros. Bismuth (Bi) nanoparticles were prepared according to previous reports.¹ Other solvents and chemicals were used as received.

Preparation: Co^{2^+} -doped and undoped CdSe nanowires were prepared by a solution-liquid-solid (SLS) approach^{2, 3} where Bi nanoparticles were used as catalysts.^{4, 5} The used parameters have been shown in Table S1. It should be noted that the samples with Code 2 – 5 were prepared without activation of Cd-precursor and the other samples were generated by activating Cd-precursor for 30 min. The synthesis procedure has been described using Code 1 as an example.

30.3 mg CdO, 3.04 g TOPO and 0.23 mL octanoic acid were added into a 50-mL three necked flask connected with a reflux condenser and a standard Schlenk line. This mixture was dried and degassed for 60 min at 100 °C under a vacuum. After the flask was filled back with N₂, the temperature was increased to 300 °C to result in clear solution and then decreased to 280 °C. Meanwhile, Coprecursor stock solution was prepared by dissolving 0.44 g cobalt (II) stearate (CoSt₂) in 17.0 mL phenyl ether (or octyl ether) in the presence of 0.5 mL octanoic acid. TOPSe (2.0 M) stock solution was obtained by dissolving 0.63 g Se powder in 4.0 mL TOP. Then a mixture of Bi nanoparticles (100 µL, 3.63 mM), TOPSe (100 µL, 2.0 M) and Co-precursor solution (1.0 mL, 0.04 M) was quickly injected into Cd-precursor solution at 280 °C and the temperature was dropped down to 260 °C. The solution reacted for 1 min and then cooled down to 80 °C, followed by the addition of 2 mL toluene to prevent the TOPO from solidifying. The resultant nanowires were separated from solution through high-speed

centrifugation (14800 rpm, 10 min) and washed with toluene for several times. The purified nanowires were re-dispersed in chloroform for characterization.

Code	CdO (mg)	TOPO (g) ^a	OCA (μL) ^b	TOPSe (μL) ^c	Bi- solution (μL) ^d	Co- solution (mL) ^e	T (°C) ^g	t (s)	D (nm)	Co %
1	30.3	3.04	230	100	100	1.0 ^f	280	60	17.7±1.9	0.3
2	24.9	3.02	230	100	100	0	250	60	30.3±5.8	-
3	24.8	3.08	230	100	100	0.25	250	60	19.0±7.4	0.08
4	24.5	3.01	230	100	100	0.50	250	60	12.1±3.1	0.14
5	24.7	3.02	230	100	100	1.0	250	60	14.6±4.7	0.25
6	25.2	3.02	230	100	100	0	330	30	13.0±2.6	-
7	24.8	3.16	230	100	100	0.25	330	60	8.8±1.7	0.36
8	24.8	3.06	230	100	100	0.50	330	60	9.1±1.2	0.64
9	25.1	3.05	230	100	120	1.0	330	60	8.2±1.5	2.1

^a TOPO: trioctylphosphine oxide; ^b OCA: octanoic acid; ^c Selenium concentration is 2.0 M; ^d Bi concentration is 3.63 mM; ^e CoSt₂ concentration is 41.8 mg/mL; ^f CoSt₂ concentration is 25.1 mg/mL; ^g injection temperature (T).

Characterizations:

Low-resolution TEM images were recorded on a JEOL 1011 electron microscope operating at an acceleration voltage of 100 kV. High-resolution images and energy-dispersive X-ray spectroscopy (EDAX) were collected on a Philips CM 300 UT microscope operating at an acceleration voltage of 200 kV. Energy-filtered TEM (EFTEM) maps were recorded on a FEI Tecnai G² F20 TEM installed with a Gatan GIF200 system and operated at an acceleration voltage of 200 kV. Powder X-ray diffraction (XRD) measurements were carried out on a Philipps X'Pert-diffractometer at 45 kV and 40 mA using a mixture radiation of Cu Ka1 and Ka2 (λ_1 = 1.54056 Å; λ_2 = 1.54439 Å, Ka2/ Ka1 = 0.5). Room-temperature absorption was measured with a Cary 50 UV-Vis spectrometer. Fluorescence and MCPL measurements were carried out using a laboratory-constructed spectrometer that has been described previously.⁶ Fluorescence and MCPL signals were detected by a photomultiplier tube (RCA C31034) and lock-in amplifier system. Samples were illuminated in a 0.5 mm path-length quartz cell with 514 nm laser (~30 mW/cm²).

Figure S1. Digital image of precursor solutions and their UV-Vis absorption profiles.

Figure S2. (a-b) low-resolution and high-resolution TEM images of Co²⁺-doped CdSe nanowires; **(c-d)** diameter and length distribution of nanowires.

Figure S3. Energy filtered TEM images of different parts of Co²⁺-doped CdSe nanowires.

Figure S4. Typical EDAX spectra of middle- and catalyst part of Co²⁺-doped CdSe nanowire. The red rectangle clearly shows the presence of Bi.

Figure S5. (a-d) TEM images and **(a'-d')** diameter distributions of $Co_{\chi}Cd_{1-\chi}Se$ (χ = 0, 0.08, 0.14 and 0.25 %) nanowires prepared at 250 °C.

Figure S6. Diameter distributions of $Co_{\chi}Cd_{1-\chi}Se$ ($\chi = 0, 0.36, 0.64$ and 2.1 %) nanowires shown in Figure 2.

Figure S7. Bulk phase diagrams of Bi-CdSe and Bi-Co.

Figure S8. (a-c) XRD patterns of $Co_{\chi}Cd_{1-\chi}Se$ (χ =0, 0.08, 0.14 and 0.25 %) nanowires shown in Figure S5; (d) Magnified XRD patterns shown in Figure 3a

Figure S9. (a) Room temperature UV-Vis spectra of Co²⁺-doped CdSe nanowires shown in Figure S5 and Figure 2; **(b)** low-temperature absorption of nanowires shown in Figure 2c

Figure S10. Photoluminescence temperature dependence of **(a)** undoped and **(b)** Co²⁺-doped CdSe nanowires measured in the presence of 5-T magnetic field. Their TEM images are shown in Figure 2a, c.

Figure S11. Temperature dependence of magnetic circularly polarized luminescence of undoped and Co⁻²⁺-doped CdSe nanowires measured in the presence of 5-T magnetic field.

References

- 1. Z. Li, A. Kornowski, A. Myalitsin and A. Mews, *Small*, 2008, **4**, 1698-1702.
- 2. F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu and W. E. Buhro, *Inorg. Chem.*, 2006, **45**, 7511-7521.
- 3. M. Kuno, *Phys. Chem. Chem. Phys.*, 2008, **10**, 620-639.
- 4. Z. Li, Ö. Kurtulus, F. Nan, A. Myalitsin, Z. Wang, A. Kornowski, U. Pietsch and A. Mews, *Adv. Funct. Mater.*, 2009, **19**, 3650-3661.
- 5. Z. Li, L. N. Cheng, Q. Sun, Z. H. Zhu, M. J. Riley, M. Aljada, Z. X. Cheng, X. L. Wang, G. R. Hanson, S. Z. Qiao, S. C. Smith and G. Q. Lu, *Angew. Chem. Int. Ed.*, 2010, **49**, 2777-2781.
- 6. R. Stranger, L. Dubicki and E. Krausz, *Inorg. Chem.*, 1996, **35**, 4218-4226.