- Supplementary Information -

Controlling stereoselectivity of solid-state photoreactions by co-crystal formation

Ryo Sekiya and Reiko Kuroda*
Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1
Komaba, Meguro-ku, Tokyo 153-8902, Japan
E-mail: ckuroda@mail.ecc.u-tokyo.ac.jp

Contents

Experimental Section

- Materials and instruments S3
- X-ray crystallography S3
- Stereochemistry S4
- Experimental procedure of the photochemical reactions S4
- Table S1 Crystallographic parameters S5-S6
- Physical properties of 1, 2 and $\mathbf{3}$ S7
- Physical properties of $\mathbf{1 t}, \mathbf{2 t}$ and $\mathbf{3 t}$ S8
- Physical properties of 1c, 2c and 3c S9

Supporting Figures

- Fig. S1. Typical UV/vis absorption spectra of the reactant (1), the trans isomer (1t) and the cis isomer (1c). S10
- Fig. S2 The change of IR spectra of $\mathbf{X (3)}$ in a KCl disk upon UV irradiation S10
- Fig. S3 Typical ${ }^{1} \mathrm{H}$ NMR spectra of the trans isomer (3t) and the cis isomer (3c) S11
- Fig. S4 ORTEP drawing of 1t S11
- Fig. S5 ORTEP drawing of 3c S12
- Fig. S6 ORTEP drawing of 1 S12
- Fig. S7 ORTEP drawing of 2 S13
- Fig. S8 ORTEP drawing of 3 S13
- Fig. S9 ${ }^{1} \mathrm{H}$ NMR spectra of the photochemical reaction products of $\mathbf{1 - 3}$ in degassed benzene solution. S14
- Fig. S10 Intermolecular carbonyl-Br (a) and carbonyl-Me (b) contacts found in X(3) and $X_{3}(\mathbf{1 : 3}=1: 9)$, respectively. S14
- Fig. S11 ${ }^{1} H$ NMR spectra of the photochemical reaction products of $\left.\mathbf{X}_{\mathbf{3}} \mathbf{(1 : 3}=9: 1\right)$ and$X_{3}(2: 3=1: 1)$S15
- ReferencesS15

Materials and instruments.

All chemicals and solvents were purchased from Kanto Chemical Co., Ltd., Wako Pure Chemical Co., Ltd., and Tokyo Kasei Kogyo Co., Ltd., and were used without further purification. Compounds 1-3 were synthesized according to procedures reported by Schultz et.al. ${ }^{1}$ Melting points were measured on Yanaco Micro Melting Point Apparatus 3120. ${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded on a JEOL $\alpha-500$ spectrometer. In addition to CHCl_{3} in CDCl_{3} solution, fluorene was selected as the internal standard (see Fig. S8c) because its methylene singlet peak at 3.8 ppm does not overlap with other relevant peaks. The chemical shift values reported here are with respect to an external tetramethylsilane (TMS) standard. IR data were recorded on a JASCO FT/IR-350 spectrometer. EI-MS was acquired on JEOL JMS-600H MSroute.

X-ray crystallography.

X-ray crystallographic data of $\mathbf{X (1) , ~} \mathbf{X (2)}, \mathbf{X (3)}, \mathbf{X}_{\mathbf{3}}(\mathbf{1}: \mathbf{3}=1: 1)$ and $\mathbf{3 c}$ were collected on a Bruker SMART APEX CCD diffractometer using graphite-monochromatized Mo $\operatorname{K} \alpha$ radiation ($\lambda=0.71073 \AA$) at 103 K . X-ray crystallographic data of $\mathbf{X}_{\mathbf{3}}(\mathbf{2}: \mathbf{3}=1: 1), \mathbf{X}_{\mathbf{3}} \mathbf{(1 : 3 = 9 : 1)}$ and $\mathbf{1 t}$ were collected on a Rigaku RAXIS-RAPID imaging plate area detector using graphite-monochromatized Mo K α radiation $(\lambda=$ $0.71073 \AA$) at 153 K or 103 K . Crystallographic parameters are summarized in Table S1. The crystal structures were solved by the direct method using SHELXS-97 program and refined by the successive differential Fourier syntheses and full-matrix least-squares procedure using SHELXL-97 program. ${ }^{2}$ Anisotropic thermal factors were applied to all non-hydrogen atoms. All hydrogen atoms were generated geometrically. The occupancy factors of the disordered atoms in $\mathbf{X}_{\mathbf{3}}(\mathbf{2}: \mathbf{3}=1: 1)$ and $\mathbf{X}_{\mathbf{3}}(\mathbf{1}: \mathbf{3}=9: 1)$ were fixed to $0.5: 0.5$ and $0.9: 0.1$, respectively. The occupancy factors of the disordered atoms in $\mathbf{X}_{\mathbf{3}}(\mathbf{1}: \mathbf{3}=1: 1)$ were estimated by SHELXL-97 program. ${ }^{2}$ Computer graphics of ORTEP drawing of the Xray crystal structures were portrayed with Mercury 2.3 program. ${ }^{3}$

Stereochemistry.

The stereochemistry of the photochemical reaction products (the trans and the cis isomers) were determined by single crystal X-ray diffraction analysis. Crystal and molecular structures of $\mathbf{1 t}$ (trans isomer) and 3c (cis isomer) are shown in Fig. S4 and S5, respectively. They are representatives of the trans isomers ($\mathbf{1 t}, \mathbf{2 t}$, and $\mathbf{3 t}$) and the cis isomers ($\mathbf{1 c}, \mathbf{2 c}$, and $\mathbf{3 c}$).

Experimental procedure of the photochemical reactions.

A single crystal of a reactant (ca. $1.6 \sim 2 \mathrm{mg}$) was stored in a NMR sampling tube (KUSANO SCIENCE Corp., hard glass, $\phi 5 \mathrm{~mm}$). The NMR sampling tube was degassed and then filled with dry argon (this process was repeated three times). The single crystal was irradiated at 365 nm with SPOT CURE SP-V (USHIO SCIENCE Corp.) using a cut-filter ($\lambda<350 \mathrm{~nm}$). After irradiation, the sample was dissolved in CDCl_{3} and then subjected to ${ }^{1} \mathrm{H}$ NMR measurement.

Table S1 Crystallographic parameters

Crystal	X(1)	X(2)	X(3)	$\mathbf{X}_{3}(2: 3=1: 1)$
Compound	1	2	3	$2+3$
Ratio	-	-	-	2:3 $=0.52: 0.48$
Formula	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSCl}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSBr}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSCl}_{0.5} \mathrm{Br}_{0.5}$
Formula weight	232.3	252.7	297.2	275.0
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P $\overline{1}(\# 2)$	Pbca (\#61)	Pbca (\#61)	Pbca (\#61)
a/ \AA	7.923(2)	15.596(3)	15.730(5)	15.8902(4)
b / \AA	10.418(2)	14.935(3)	15.142(5)	15.2239(3)
c/ \AA	15.473(3)	20.531(4)	20.590(6)	20.6540(5)
$\alpha /{ }^{\text {o }}$	91.07 (3)	90	90	90
$\beta)^{\text {o }}$	102.32(3)	90	90	90
$\gamma^{\prime}{ }^{\circ}$	104.43(3)	90	90	90
V/ \AA^{3}	1204.9(4)	4782.2(2)	4904(3)	4996.4(2)
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.28	1.40	1.61	1.46
Z	4	16	16	16
$2 \theta_{\text {max }} /{ }^{\circ}$	55.6	55.8	55.8	54.8
$\mu(\mathrm{MoK} \alpha) / \mathrm{mm}^{-1}$	0.244	0.468	3.498	1.941
Temperature /K	103	103	103	153
Crystal form	block	block	block	block
Crystal size / mm	$0.40 \times 0.35 \times 0.20$	$0.40 \times 0.40 \times 0.20$	$0.40 \times 0.40 \times 0.20$	$0.60 \times 0.52 \times 0.42$
Crystal colourless	colourless	colourless	colourless	colourless
h range	$-9 \rightarrow 10$	$-20 \rightarrow 20$	$-11 \rightarrow 20$	$0 \rightarrow 20$
k range	$-10 \rightarrow 13$	$-19 \rightarrow 19$	$-19 \rightarrow 16$	$0 \rightarrow 19$
l range	$-20 \rightarrow 14$	$-26 \rightarrow 26$	$-26 \rightarrow 25$	$-26 \rightarrow 0$
\# of total reflections	7394	39673	28443	43366
\# of unique reflections	5205	5630	5696	5653
\# of observed reflections	4521	4938	4446	2699
$R_{\text {int }}$	0.0230	0.0412	0.0461	0.0406
Criterion for observed reflections	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$
X-ray apparatus	SMART-CCD	SMART-CCD	SMART-CCD	Rigaku-IP
R1 (observed)	0.0423	0.0393	0.0345	0.0413
$w R 2$ (observed)	0.1066	0.0930	0.0771	0.0969
G. O. F.	1.035	1.063	1.014	0.815
\# of parameters used	293	291	291	309
$\Delta \rho_{\text {max }}\left(\mathrm{e}^{\AA^{-3}}\right)$	+0.403	+0.452	+0.754	+0.360
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.282	-0.323	-0.627	-0.297
$C C D C$ number	679703	679704	679705	679709

Table S1 Crystallographic parameters (continued)

Crystal	$\left.\mathbf{X}_{3} \mathbf{(1 : 3}=1: 1\right)$	$\mathbf{X}_{\mathbf{3}}(\mathbf{1}: 3=9: 1)$	-	-
Compound	$1+3$	$1+3$	1t	3c
Ratio	1:3 $=0.49: 0.51$	$\mathbf{1}: \mathbf{3}=0.9: 0.1$	-	-
Formula	$\mathrm{C}_{27.18} \mathrm{H}_{29.54} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br}_{0.82} \mathrm{C}_{13.9} \mathrm{H}_{15.7} \mathrm{OSBr}_{0.1}$		$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSBr}$
Formula weight	517.8	238.8	232.3	297.2
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	Pbca (\#61)	Pbca (\#61)	P2 ${ }_{1} / n(\# 14)$	P2 1_{1} n (\#14)
a/ \AA A	15.591(3)	15.5798(4)	6.9911(2)	9.607(2)
b / \AA	15.064(3)	15.0633(4)	17.8652(4)	7.577(2)
c/ \AA	20.669(4)	20.6424(5)	9.4401(2)	17.375(4)
$\alpha /^{\circ}$	90	90	90	90
$\beta /^{\circ}$	90	90	96.020(1)	103.40(3)
$\gamma^{\prime}{ }^{\circ}$	90	90	90	90
V/ \AA^{3}	4854.4(2)	4844.4(2)	1172.54(5)	1230.3(4)
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.42	1.32	1.32	1.60
Z	8	16	4	4
$2 \theta_{\max } /{ }^{\circ}$	55.8	59.8	59.8	55.8
$\mu(\operatorname{MoK} \alpha) / \mathrm{mm}^{-1}$	1.590	0.573	0.251	3.486
Temperature $/ K$	103	103	153	103
Crystal form	plate	block	block	block
Crystal size / mm	$0.20 \times 0.20 \times 0.05$	$0.52 \times 0.50 \times 0.46$	$0.25 \times 0.25 \times 0.05$	$0.40 \times 0.10 \times 0.10$
Crystal colourless	colourless	colourless	colourless	colourless
h range	$-20 \rightarrow 20$	$-20 \rightarrow 21$	$0 \rightarrow 9$	$-12 \rightarrow 12$
k range	$-19 \rightarrow 19$	$-21 \rightarrow 21$	$0 \rightarrow 25$	$-9 \rightarrow 9$
l range	$-26 \rightarrow 26$	$-28 \rightarrow 28$	$-13 \rightarrow 13$	$-22 \rightarrow 22$
\# of total reflections	40034	53767	13602	10251
\# of unique reflections	5714	6998	3385	2840
\# of observed reflections	4730	5748	2475	2553
$R_{\text {int }}$	0.0502	0.0551	0.0331	0.0387
Criterion for observed				
reflections	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$	$I>2 \sigma\left(F_{o}\right)$
X-ray apparatus	SMART-CCD	Rigaku-IP	Rigaku-IP	SMART-CCD
$R 1$ (observed)	0.0464	0.0517	0.0380	0.0317
$w R 2$ (observed)	0.1092	0.1215	0.0923	0.0793
G. O. F.	1.112	1.193	1.003	1.066
\# of parameters used	301	299	146	145
$\Delta \rho_{\text {max }}\left(\mathrm{e}^{-3}\right)$	+0.520	+1.461	+0.491	+0.923
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.318	-1.142	-0.282	-0.351
$C C D C$ number	679710	801654	679706	679707

Physical properties of 2-(2-methylphenylthio)-3-methyl-2-cyclohexene-1-one (1)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.06(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}),, 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.3, 21.9, 24.5, 24.5. 34.4, 38.4, 124.9, 125.7, 126.1, 129.4, 130.0, 135.6, 169.3, 194.3; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): 232 (M+); Elemental Analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 72.37$; H, 6.94; N, 0. Found: C, 72.40; H, 7.07; N, 0.; Melting Point: $103.0-103.5^{\circ} \mathrm{C}$.

Physical properties of 2-(2-chlorophenylthio)-3-methyl- 2-cyclohexene-1-one (2)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.08(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{ddd}, J=1.5,7.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=1.2,7.6,7.9 \mathrm{~Hz}$, 1 H), 7.31 (dd, $J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.7,24.4,34.4,38.2,126.0,126.9$, 127.0, 129.5, 129.6, 131.9, 135.7, 170.7, 194.1; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): 254 ($\mathrm{M}+,{ }^{37} \mathrm{Cl}$), $252\left(\mathrm{M}+,{ }^{35} \mathrm{Cl}\right)$; Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSCl}: \mathrm{C}, 61.77$; H, 5.18 ; N, 0. Found: C, $61.70 ; \mathrm{H}, 5.30$; N, 0. ; Melting Point: $94.0-95.0^{\circ} \mathrm{C}$.

Physical properties of 2-(2-bromophenylthio)-3-methyl- 2-cyclohexene-1-one (3)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}),, 2.59(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.1 \mathrm{~Hz}$, 2H), 6.78 (dd, $J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, J=1.5,7.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=1.2,7.3,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.7, 24.5, 34.4, 38.2, 121.5, 126.1, 126.7, 127.5, 128.9, 132.9, 137.7, 170.8, 194.1; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): $298\left(\mathrm{M}+,{ }^{81} \mathrm{Br}\right), 296\left(\mathrm{M}+{ }^{79} \mathrm{Br}\right)$; Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSBr}$: C, 52.54 ; H, 4.41; N, 0. Found: C, 52.60; H, 4.47; N, 0.; Melting Point: $99.0-100.0^{\circ} \mathrm{C}$.

1

2

3

Physical properties of trans-6,9b-dimethyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one (1t)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.13(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 18.8,20.6,23.2,34.0,40.4,55.0,70.5,118.9$, 125.3, 128.6, 133.5, 138.9, 147.5, 204.9; MS (EI, $70 \mathrm{eV}, m / z$): 232 (M+); Elemental Analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 72.37 ; \mathrm{H}, 6.94 ; \mathrm{N}, 0$. Found: C, 72.36; H, 6.98; $\mathrm{N}, 0 . ;$ Melting Point: $161.0-163.5^{\circ} \mathrm{C}$.

Physical properties of trans-6-chloro-9b-methyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one

 (2t)${ }^{1}{ }^{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.15(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=1.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=$ $1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.8, 23.0, 33.9, 40.3, 55.7, 70.3, 119.6, 126.5, 128.0, 149.5, 204.1; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): 254 (M+, ${ }^{37} \mathrm{Cl}$), 252 (M+, ${ }^{35} \mathrm{Cl}$); Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSCl}: \mathrm{C}, 61.77$; H, 5.18; N, 0 . Found: C, 61,63; H, 5.32; N, 0.; Melting Point: $148.0-149.5^{\circ} \mathrm{C}$.

Physical properties of trans-6-bromo-9b-methyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one (3t)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.16(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H})$), $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=2.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $18.9,23.0,34.0,40.3,56.1,69.9,118.2,120.2,126.6,131.0,141.7,149.2,204.1$; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): $298\left(\mathrm{M}+,{ }^{81} \mathrm{Br}\right), 296\left(\mathrm{M}+,{ }^{79} \mathrm{Br}\right)$; Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSBr}: \mathrm{C}, 52.54$; $\mathrm{H}, 4.41 ; \mathrm{N}, 0$. Found: C, $52.44 ; \mathrm{H}, 4.45 ; \mathrm{N}, 0 . ;$ Melting Point: $129.0-130.5^{\circ} \mathrm{C}$.

1t

2t

3t

Physical properties of cis-6,9b-dimethyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one (1c)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 20.5, 21.1, 25.8, 34.3, 37.5, 54.5, 64.4, 120.0, 125.4, 128.7, 132.2, 138.9, 145.9, 208.5; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): $232\left(\mathrm{M}+\right.$); Elemental Analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 72.37$; H , 6.94; N, 0. Found: C, 72.18 ; H, 7.15; N, 0.; Melting Point: $99.0-100.0^{\circ} \mathrm{C}$.

Physical properties of cis-6-chloro-9b-methyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one

 (2c)${ }^{1} \mathrm{H}^{2}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.1,7.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 21.0, 25.8, 34.4, 37.4, 64.8, 120.7, 126.6, 128.1, 148.0, 207.5; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): $254\left(\mathrm{M}+,{ }^{37} \mathrm{Cl}\right), 252\left(\mathrm{M}+,{ }^{35} \mathrm{Cl}\right)$; Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSCl}: \mathrm{C}, 61.77$; H, 5.18; N, 0. Found: C, 61.71 ; H, 5.24; N, 0.; Melting Point: $65.0-66.0^{\circ} \mathrm{C}$.

Physical properties of cis-6-bromo-9b-methyl-2,3,4a,9b-tetrahydro-1H-dibenzothiophene-4-one (3c)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=1.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.9, $25.9,34.5,37.4,55.8,63.6,116.3,121.2,126.6,131.0,141.5,147.6,207.5$; MS (EI, $70 \mathrm{eV}, \mathrm{m} / \mathrm{z}$): 298 $\left(\mathrm{M}+,{ }^{81} \mathrm{Br}\right), 296\left(\mathrm{M}+{ }^{79} \mathrm{Br}\right)$; Elemental Analysis calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OSBr}$: C, 52.54; H, 4.41; N, 0. Found: $\mathrm{C}, 52.65 ; \mathrm{H}, 4.57 ; \mathrm{N}, 0 . ;$ Melting Point: $73.0-74.0^{\circ} \mathrm{C}$.

1c

2c

3c

Fig. S1 Typical UV/vis absorption spectra $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of (a) the reactant (1), (b) the trans isomer (1t) and (c) the cis isomer (1c).

Fig. S2 The change of IR spectra of $\mathbf{X (3)}$ in a KCl disk upon UV irradiation at rt. Reaction time: 0 - 960 s.

Fig. S3 Typical ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CDCl}_{3}$) of (a) the trans isomer (3t) and (b) the cis isomer $(\mathbf{3 c}) .(\bullet)$ and (\circ) denote the methine proton of $3 \mathbf{t}$ and the methine proton of $3 \mathbf{c}$, respectively.

Top view

Side view

1t

Fig. S4 ORTEP drawing (50 \% probability ellipsoids) of top (left) and side (right) views of $\mathbf{1 t}$. Colour scheme: black (carbon), black (hydrogen), red (oxygen), orange (sulphur).

Fig. S5 ORTEP drawing (50 \% probability ellipsoids) of top (left) and side (right) views of 3c. Colour scheme: black (carbon), black (hydrogen), red (oxygen), orange (sulphur), brown (bromine).

Molecule A

Molecule B

1

Fig. S6 ORTEP drawing (50 \% probability ellipsoids) of the two independent molecules (Molecule A and B) of $\mathbf{1}$ in $\mathbf{X (1) . ~ C o l o u r ~ s c h e m e : ~ b l a c k ~ (c a r b o n) , ~ b l a c k ~ (h y d r o g e n) , ~ r e d ~ (o x y g e n) , ~ o r a n g e ~ (s u l p h u r) . ~}$

Molecule A

Molecule B

2

Fig. S7 ORTEP drawing (50 \% probability ellipsoids) of the two independent molecules (Molecule A and B) of $\mathbf{2}$ in $\mathbf{X (2) . ~ C o l o u r ~ s c h e m e : ~ b l a c k ~ (c a r b o n) , ~ b l a c k ~ (h y d r o g e n) , ~ r e d ~ (o x y g e n) , ~ o r a n g e ~ (s u l p h u r) , ~}$ green (chorine).

Molecule A

Molecule B

3

Fig. S8 ORTEP drawing (50 \% probability ellipsoids) of the two independent molecules (Molecule A and B) of $\mathbf{3}$ in $\mathbf{X}(\mathbf{3})$. Colour scheme: black (carbon), black (hydrogen), red (oxygen), orange (sulphur), brown (bromine).

Fig. S9 Photochemical reaction products of (a) compound 1, (b) compound 2 and (c) compound 3 in degassed benzene solution after UV irradiation $(\lambda=365 \mathrm{~nm})$ for $2.0 h .(\bullet)$ and (\circ) denote the cis and the trans isomers, respectively.
(a)

(b)

Fig. S10 Intermolecular carbonyl-Br (a) and carbonyl-Me (b) contacts found in $\mathbf{X (3)}$ and $\left.\mathbf{X}_{\mathbf{3}} \mathbf{(1 : 3}=1: 9\right)$, respectively.

There are two independent molecules in crystals $\mathbf{X (3)}$ and $\left.\mathbf{X}_{\mathbf{3}} \mathbf{(1 : 3}=1: 9\right)$. Contacts for one molecule are shown in Fig. 3 and those for the other are shown in this Figure.

Fig. S11 The photochemical reaction products after UV irradiation for $0.5 h$ on single crystals of $\mathbf{X}_{\mathbf{3}}(\mathbf{1}: 3=9: 1)$ (a) and $\mathbf{X}_{\mathbf{3}}(2: 3=1: 1)$ (b). (\bullet), (○), ($\mathbf{\Delta}$) and (\square) denote the cis isomer, the trans isomer, the reactant and $\mathrm{H}_{2} \mathrm{O}$, respectively.

References

1 A. G. Schultz, W. Y. Fu, R. D. Lucci, B. G. Kurr, K. M. Lo and M. Boxer, J. Am. Chem. Soc., 1978, 100, 2140.

2 G. M. Sheldrick, A short history of SHELX, Acta. Cryst. 2008, A64, 112.

3 See: http://www.ccdc.cam.ac.uk/products/mercury/

