Supporting Information

Copper-Catalyzed N-Arylation of Amines with Part-per-Million

Catalyst Loadings under Air at Room Temperature

Ruilong Xie,^{a,b} Hua Fu^{*,a} and Yun Ling^{*,b}

^aKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology

(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing

100084, P. R. China. E-mail: fuhua@mail.tsinghua.edu.cn

^bKey Laboratory of Pesticide Chemistry and Application, Department of Applied

Chemistry, College of Science, Ministry of Agriculture, China Agricultural University,

Beijing 100193, P. R. China. E-mail: lyun@cau.edu.cn

Table of contents

General experimental procedures	P2
General procedures for synthesis of oximes 1a-f	P2
General procedure for synthesis of compounds 3a-b'	P2
Characterization data of compounds 3a-b'	Р3
Synthesis of 3-methyl-1-phenyl-1 <i>H</i> -indazole (4)	P12
Synthesis of 2-methyl-1-phenyl-1 <i>H</i> -benzo[<i>d</i>]imidazole (5)	P13
References	P14
¹ H and ¹³ C NMR spectra of compounds 3a-b' , 4 and 5	P15

General experimental procedures

All reagents were weighed and handled in air at room temperature. Column chromatography was performed on silica gel (200 ~ 300 mesh). Proton magnetic resonance spectra (¹H NMR) were recorded using tetramethylsilane (TMS) (at 0.00 ppm) in the solvent, remaining CHCl₃ in CDCl₃ (at 7.26 ppm) or remaining DMSO in DMSO- d_6 (at 2.50 ppm) as the internal standard. Carbon magnetic resonance spectra (¹³C NMR) were recorded using CDCl₃ (at 77.2 ppm) or DMSO- d_6 (at 39.5 ppm) as the internal standard.

General procedures for synthesis of oximes 1a-f: Oximes were prepared according to the previous procedure.^[1] Ketone (10 mmol), hydroxylamine hydrochloride (15 mmol) and AcONa (15 mmol) were added a round bottom flask with 8 mL of H₂O/EtOH (v/v = 1:1) and a magnetic stirrer at room temperature. The solution was refluxed till consumption of the ketone (TLC determination). After cooling to room temperature, ethanol in the resulting solution was removed in vacuo, and 25 mL of water was added to the residue. The crude product was extracted with EtOAc (3 × 50 mL), and the organic phase was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by crystallization or flash chromatography to get oxime (**1a-f**).

General procedure for synthesis of compounds 3a-b': 12.1 mg of CuCl₂ was dissolved in 4 mL of methanol at room temperature to get 22.5 mM CuCl₂ solution. 0.89 uL of the CuCl₂ solution $(2.0 \times 10^{-5} \text{ mmol}, 2.69 \times 10^{-3} \text{ mg of CuCl}_2)$ was added to a round bottom flask, then methanol was removed with the aid of a rotary evaporator, and CuCl₂ was remained in the flask. Substituted (*E*)-1-(2-halophenyl)alkanone oxime (1) (0.25 mmol), amine (2) (0.50 mmol), *N*,*N*'-dimethylenediamine (0.025 mmol, 2.2 mg), 99.997% K₂CO₃ (0.50 mmol, 69 mg for free amine; 1.0 mmol, 138 mg for amine hydrochloride), cyclohexane (1.8 mL) and ethanol (0.2 mL) were added to the round bottom flask equipped with CuCl₂ (2.0×10^{-5} mmol, 2.69×10^{-3} mg) and a magnetic

stirrer. The mixture was allowed to stir under air (without extrusion of air) at room temperature (ca. 25 °C) for 24 h. The resulting solution was concentrated with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel using hexane/ ethyl acetate as eluent to provide the desired product (**3**).

(*E*)-1-(2-(Phenylamino)phenyl)ethanone oxime (3a).² Eluent: hexane/ethyl acetate (15:1). For substrate 1a, yield 90% (51 mg); for substrate 1e, yield 88% (50 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.94 (br s, 1H), 7.44-7.14 (m, 8H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.5, 142.7, 142.2, 129.6, 129.4, 122.3, 121.5, 120.8, 118.8, 116.0, 13.4. ESI-MS [M+H]⁺ m/z 227.2, [M+Na]⁺ m/z 249.2.

(*E*)-1-(2-(*p*-Tolylamino)phenyl)ethanone oxime (3b).² Eluent: hexane/ethyl acetate (15:1). Yield 88% (53 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.88 (br s, 1H), 7.50 (br s, 1H), 7.41 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz 1H), 7.24-7.04 (m, 6H), 6.82-6.77 (m, 1H), 2.38 (s, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.6, 143.6, 139.5, 132.3, 130.0, 129.6, 129.4, 121.8, 120.7, 118.1, 115.3, 20.9, 13.3. ESI-MS [M+H]⁺ m/z 241.2, [M+Na]⁺ m/z 263.2.

(*E*)-1-(2-(*o*-Tolylamino)phenyl)ethanone oxime (3c). Eluent: hexane/ethyl acetate (12:1). For substrate 1a, yield 63% (38 mg); for substrate 1e, yield 65% (39 mg).

Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.82 (br s, 1H), 7.44 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz 1H), 7.30-7.11 (m, 5H), 7.05-6.96 (m, 2H), 6.83-6.78 (m, 1H), 2.36 (s, 3H), 2.24 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.7, 143.6, 140.5, 131.0, 129.6, 129.3, 126.7, 123.2, 121.7, 120.5, 117.9, 115.4, 18.3, 13.2. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₇N₂O: 241.1341. Found: 241.1343.

(*E*)-1-(2-(*m*-Tolylamino)phenyl)ethanone oxime (3d). Eluent: hexane/ethyl acetate (12:1). Yield 85% (51 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.88 (br s, 1H), 7.44-7.40 (m, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.20-7.14 (m, 2H), 6.98-6.96 (m, 2H), 6.86-6.79 (m, 2H), 2.34 (s, 3H), 2.30 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.4, 142.8, 142.2, 139.3, 129.5, 129.4, 129.2, 123.1, 121.4, 118.6, 117.7, 116.1, 21.6, 13.4. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₇N₂O: 241.1341. Found: 241.1344.

(*E*)-1-(2-(4-Methoxyphenylamino)phenyl)ethanone oxime (3e).² Eluent: hexane/ethyl acetate (10:1). Yield 90% (58 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.92 (br s, 1H), 7.47 (br s, 1H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.14-7.02 (m, 4H), 6.88 (s, 1H), 6.85 (s, 1H), 6.78 (t, *J* = 7.4 Hz, 1H), 3.80 (s, 3H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.7, 156.0, 144.8, 134.9, 129.6, 129.3, 124.8, 119.5, 117.3, 114.7, 114.2, 55.7, 13.0. ESI-MS [M+H]⁺ m/z 257.2, [M+Na]⁺ m/z 279.2.

(*E*)-1-(2-(4-Chlorophenylamino)phenyl)ethanone oxime (3f).² Eluent: hexane/ethyl

acetate (12:1). Yield 86% (56 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.92 (br s, 1H), 7.50 (br s, 1H), 7.43 (dd, J = 7.9 Hz, J = 1.4 Hz, 1H), 7.27-7.04 (m, 6H), 6.87 (t, J = 7.6 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.5, 142.3, 140.9, 129.6, 129.5, 129.4, 126.9, 121.8, 119.2, 116.0, 13.4. ESI-MS [M+H]⁺ m/z 261.2, [M+Na]⁺ m/z 283.1.

(*E*)-1-(2-(4-Bromophenylamino)phenyl)ethanone oxime (3g). Eluent: hexane/ethyl acetate (12:1). Yield 84% (64 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.97 (br s, 1H), 7.44 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 7.38-7.26 (m, 4H), 7.21-7.16 (m, 1H), 7.04-6.99 (m, 2H), 6.90-6.85 (m, 1H), 2.35 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.4, 142.1, 141.4, 132.3, 129.6, 129.5, 122.0, 121.8, 119.3, 116.1, 114.2, 13.4. HR-MS [M+H]⁺ m/z Calcd for C₁₄H₁₄BrN₂O: 305.0290. Found: 305.0293.

(*E*)-1-(2-(4-Iodophenylamino)phenyl)ethanone oxime (3h). Eluent: hexane/ethyl acetate (12:1). Yield 90% (79 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.93 (br s, 1H), 7.54 (s, 1H), 7.51 (s, 1H), 7.45-7.42 (m, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 6.9 Hz, 1H), 6.92-6.86 (m, 3H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.4, 142.2, 141.8, 138.2, 129.6, 129.5, 122.1, 119.5, 116.3, 83.9, 13.4. HR-MS [M+H]⁺ m/z Calcd for C₁₄H₁₄IN₂O: 353.0151. Found: 353.0149.

(E)-1-(2-(Naphthalen-1-ylamino)phenyl)ethanone oxime (3i). Eluent: hexane/ethyl

acetate (10:1). Yield 75% (52 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 9.56 (br s, 1H), 8.08-8.05 (m, 1H), 7.87-7.84 (m, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.52-7.39 (m, 5H), 7.23 (s, 1H), 7.15-7.06 (m, 2H), 6.85-6.79 (m, 1H), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 159.0, 144.5, 138.1, 134.9, 129.7, 129.3, 129.2, 128.5, 126.2, 126.1, 126.0, 123.8, 122.6, 120.2, 118.7, 118.0, 115.5, 13.0. HR-MS [M+H]⁺ m/z Calcd for C₁₈H₁₇N₂O: 277.1341. Found: 277.1345.

(*E*)-1-(2-(Allylamino)phenyl)ethanone oxime (3j).³ Eluent: hexane/ethyl acetate (10:1). Yield 80% (38 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (br s, 1H), 7.41-7.38 (m, 1H), 7.25-7.17 (m, 2H), 6.70-6.66 (m, 2H), 6.02-5.90 (m, 1H), 5.31-5.13 (m, 2H), 3.86-3.84 (m, 2H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 159.2, 146.9, 135.3, 130.0, 129.2, 118.1, 116.0, 115.5, 111.4, 46.0, 12.7. ESI-MS [M+H]⁺ m/z 191.2.

(*E*)-1-(2-(Methylamino)phenyl)ethanone oxime (3k).³ Eluent: hexane/ethyl acetate (15:1). Yield 76% (31 mg). Light yellow solid. mp 71-72 °C. ¹H NMR (CDCl₃, 300 MHz) δ 7.39 (dd, *J* = 8.1 Hz, *J* = 1.4 Hz, 1H), 7.30-7.22 (m, 3H), 6.71-6.66 (m, 2H), 2.88 (s, 3H), 2.33 (s, 3H),. ¹³C NMR (CDCl₃, 75 MHz) δ 159.2, 148.0, 130.2, 129.1, 118.0, 115.2, 110.6, 30.2, 12.6. ESI-MS [M+H]⁺ m/z 165.2.

(*E*)-1-(2-(Propylamino)phenyl)ethanone oxime (3l). Eluent: hexane/ethyl acetate (15:1). Yield 77% (37 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.39 (dd, J = 7.9 Hz, J = 1.4 Hz, 1H), 7.24-7.18 (m, 3H), 6.70-6.63 (m, 2H), 3.14 (t, J = 6.9 Hz, 2H), 2.33 (s, 3H), 1.74-1.62 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 75

MHz) δ 159.2, 147.2, 130.1, 129.2, 117.8, 115.0, 111.0, 45.4, 22.5, 12.6, 12.0. HR-MS $[M+H]^+$ m/z Calcd for C₁₁H₁₇N₂O: 193.1341. Found: 193.1339.

(*E*)-1-(2-(Butylamino)phenyl)ethanone oxime (3m). Eluent: hexane/ethyl acetate (15:1). Yield 80% (41 mg). Light yellow solid. mp 56-57 °C. ¹H NMR (CDCl₃, 300 MHz) δ 7.44 (br s, 1H), 7.37 (dd, *J* = 7.9 Hz, *J* = 1.7 Hz, 1H), 7.23-7.18 (m, 2H), 6.70-6.63 (m, 2H), 3.16 (t, *J* = 7.2 Hz, 2H), 2.32 (s, 3H), 1.69-1.59 (m, 2H), 1.49-1.37 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 159.2, 147.2, 130.1, 129.2, 117.9, 115.1, 111.1, 43.3, 31.5, 20.6, 14.0, 12.8. HR-MS [M+H]⁺ m/z Calcd for C₁₂H₁₉N₂O: 207.1497. Found: 207.1495.

(*E*)-1-(2-(Cyclopropylamino)phenyl)ethanone oxime (3n). Eluent: hexane/ethyl acetate (15:1). Yield 86% (41 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.43 (br s, 1H), 7.36 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 7.32 (br s, 1H), 7.27-7.15 (m, 2H), 6.74-6.69 (m, 1H), 2.47-2.40 (m, 1H), 2.31 (s, 3H), 0.79-0.73 (m, 2H), 0.56-0.51 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 159.0, 147.6, 130.0, 129.0, 118.0, 115.9, 112.6, 24.9, 12.7, 7.6. HR-MS [M+H]⁺ m/z Calcd for C₁₁H₁₅N₂O: 191.1184. Found: 191.1181.

(*E*)-1-(2-(3-Hydroxypropylamino)phenyl)ethanone oxime (30). Eluent: hexane/ethyl acetate (1:1). Yield 56% (29 mg). Light yellow solid. mp 96-97 °C. ¹H NMR (DMSO- d_6 , 600 MHz) δ 11.02 (br s, 1H), 7.68 (t, *J* = 4.5 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 8.2 Hz, 1H), 6.54 (t, *J* = 7.6 Hz, 1H), 4.47 (t, *J* = 5.5 Hz, 1H), 3.49 (q, *J* = 6.2 Hz, 2H), 3.14 (q, *J* = 6.2 Hz, 2H), 2.16 (s, 3H), 1.72-1.68 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.6, 147.0, 130.0, 129.1, 118.7, 115.7, 111.2, 61.9, 41.3, 31.5, 12.7. HR-MS [M+H]⁺ m/z Calcd for C₁₁H₁₇N₂O₂: 209.1290. Found: 209.1293.

(*E*)-1-(4-Chloro-2-(phenylamino)phenyl)ethanone oxime (3p). Eluent: hexane/ethyl acetate (10:1). Yield 69% (45 mg). Light yellow oil. ¹H NMR (DMSO- d_6 , 300 MHz) δ 11.43 (br s, 1H), 9.67 (br s, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.38-7.33 (m, 2H), 7.17-7.13 (m, 3H), 7.05 (t, J = 7.3 Hz, 1H), 6.89-6.85 (m, 1H), 2.22 (s, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) δ 155.7, 144.2, 141.6, 134.0, 131.6, 130.1, 123.2, 121.2, 121.1, 118.6, 114.4, 13.3. HR-MS [M+H]⁺ m/z Calcd for C₁₄H₁₄ClN₂O: 261.0795. Found: 261.0792.

(*E*)-1-(4-Chloro-2-(*p*-tolylamino)phenyl)ethanone oxime (3q). Eluent: hexane/ethyl acetate (10:1). Yield 74% (51 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 9.18 (br s, 1H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.15-7.05 (m, 5H), 6.74-6.70 (m, 1H), 2.33 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz) δ 158.2, 145.3, 138.2, 135.6, 133.5, 130.4, 130.2, 122.9, 118.0, 117.5, 113.9, 21.0, 13.0. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₆ClN₂O: 275.0951. Found: 275.0955.

(*E*)-1-(4-Chloro-2-(4-chlorophenylamino)phenyl)ethanone oxime (3r). Eluent: hexane/ethyl acetate (10:1). Yield 62% (46 mg). White solid, mp 120-122 $^{\circ}$ C. ¹H

NMR (DMSO- d_6 , 300 MHz) δ 11.36 (br s, 1H), 9.49 (br s, 1H), 7.43 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 8.6 Hz, 2H), 7.10-7.07 (m, 3H), 6.88 (dd, J = 8.6 Hz, J = 2.1 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) δ 155.4, 143.5, 141.0, 134.1, 131.7, 129.9, 126.2, 122.5, 121.8, 119.6, 115.5, 13.5. HR-MS [M+H]⁺ m/z Calcd for C₁₄H₁₃Cl₂N₂O: 295.0405. Found: 295.0402.

(*E*)-1-(4-Chloro-2-(propylamino)phenyl)ethanone oxime (3s). Eluent: hexane/ethyl acetate (10:1). Yield 60% (34 mg). White solid, Light yellow oil. ¹H NMR (DMSO- d_6 , 300 MHz) δ 11.24 (br s, 1H), 8.11 (t, J = 5.2 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 6.66-6.61 (m, 2H), 3.16-3.10 (q, 2H), 2.24 (s, 3H), 1.71-1.59 (m, 2H), 1.07 (t, J = 7.6 Hz, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) δ 156.2, 148.3, 134.5, 130.7, 116.9, 114.3, 109.8, 44.5, 22.1, 12.4, 12.1. HR-MS [M+H]⁺ m/z Calcd for C₁₁H₁₆ClN₂O: 227. 0951. Found: 227. 0949.

(*E*)-1-(5-Fluoro-2-(phenylamino)phenyl)ethanone oxime (3t). Eluent: hexane/ethyl acetate (12:1). Yield 85% (52 mg). Light yellow solid, mp 106-107 °C. ¹H NMR (DMSO- d_6 , 600 MHz) δ 11.38 (br s, 1H), 8.87 (br s, 1H), 7.24-7.18 (m, 4H), 7.06 (td, J = 8.2 Hz, J = 2.8 Hz, 1H), 6.95 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.6 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (DMSO- d_6 , 150 MHz) δ 156.6 (d, J = 235.5 Hz), 155.1, 143.8, 138.3, 129.8, 127.0 (d, J = 5.8 Hz), 121.0, 120.3 (d, J = 7.2 Hz), 118.1, 116.2 (d, J = 21.7 Hz), 116.0 (d, J = 23.1 Hz), 13.8. HR-MS [M+H]⁺ m/z Calcd for C₁₄H₁₄FN₂O: 245.1090. Found: 245.1091.

(E)-1-(5-Fluoro-2-(propylamino)phenyl)ethanone oxime (3u). Eluent: hexane/ethyl

acetate (15:1). Yield 76% (40 mg). Light yellow oil. ¹H NMR (DMSO- d_6 , 600 MHz) δ 11.21 (br s, 1H), 7.55 (t, J = 4.8 Hz, 1H), 7.16 (dd, J = 11.0 Hz, J = 2.8 Hz, 1H), 6.96 (td, J = 8.2 Hz, J = 2.8 Hz, 1H), 6.58-6.56 (m, 1H), 3.02 (q, J = 6.2 Hz, 2H), 2.16 (s, 3H), 1.58-1.52 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C NMR (DMSO- d_6 , 150 MHz) δ 156.2, 153.6 (d, J = 228.3 Hz), 144.1, 118.8 (d, J = 7.2 Hz), 116.3 (d, J = 21.7 Hz), 115.3 (d, J = 23.1 Hz), 111.7 (d, J = 7.2 Hz), 45.3, 22.4, 12.6, 12.2. HR-MS [M+H]⁺ m/z Calcd for C₁₁H₁₆FN₂O: 211.1247. Found: 211.1244.

(*E*)-1-(2-(Phenylamino)phenyl)propan-1-one oxime (3v). Eluent: hexane/ethyl acetate (10:1). Yield 45% (27 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.82 (br s, 1H), 7.43 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 7.35-7.14 (m, 7H), 7.00-6.96 (m, 1H), 6.88-6.83 (m, 1H), 2.86 (q, *J* = 7.6 Hz, 2H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 163.2, 143.1, 142.3, 129.5, 129.4, 129.1, 122.2, 120.7, 120.5, 118.8, 116.1, 20.6, 11.4. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₇N₂O: 241.1341. Found: 241.1345.

(*E*)-1-(2-(*p*-Tolylamino)phenyl)propan-1-one oxime (3w). Eluent: hexane/ethyl acetate (10:1). Yield 52% (33 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 8.73 (br s, 1H), 7.43 (br s, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.24-7.03 (m, 6H), 6.80 (t, *J* = 7.2 Hz, 1H), 2.86 (q, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 163.3, 143.9, 139.5, 132.2, 130.0, 129.6, 129.1, 121.7, 119.8, 118.2, 115.4, 20.9, 20.6, 11.4. HR-MS [M+H]⁺ m/z Calcd for C₁₆H₁₉N₂O: 255.1497. Found: 255.1496.

(*E*)-1-(2-(Propylamino)phenyl)propan-1-one oxime (3x). Eluent: hexane/ethyl acetate (15:1). Yield 60% (31 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.39-7.36 (m, 2H), 7.24-7.16 (m, 2H), 6.71-6.64 (m, 2H), 2.85 (t, *J* = 6.9 Hz, 2H), 2.85 (q, *J* = 7.6 Hz, 2H), 1.74-1.62 (m, 2H), 1.20 (t, *J* = 7.6 Hz, 3H), 1.00 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 164.0, 147.6, 130.1, 128.9, 116.7, 115.1, 111.2, 45.4, 22.5, 20.0, 12.0, 11.6. HR-MS [M+H]⁺ m/z Calcd for C₁₂H₁₉N₂O: 207.1497. Found: 207.1493.

(*E*)-1-(2-(Butylamino)phenyl)propan-1-one oxime (3y). Eluent: hexane/ethyl acetate (15:1). Yield 62% (34 mg). Light yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.38 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 7.24-7.16 (m, 3H), 6.70-6.63 (m, 2H), 3.16 (t, *J* = 6.9 Hz, 2H), 2.86 (q, *J* = 7.6 Hz, 2H), 1.69-1.60 (m, 2H), 1.50-1.37 (m, 2H), 1.20 (t, *J* = 7.6 Hz, 3H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 164.0, 147.7, 130.1, 128.9, 116.6, 115.0, 111.1, 43.3, 31.5, 20.6, 20.0, 14.0, 11.6. HR-MS [M+H]⁺ m/z Calcd for C₁₃H₂₁N₂O: 221.1654. Found: 221.1652.

(*E*)-1-(4-Methoxy-2-(phenylamino)phenyl)ethanone oxime (3z). Eluent: hexane/ethyl acetate (10:1). Yield 84% (54 mg). White solid, mp 108-109 °C. ¹H NMR (DMSO- d_6 , 300 MHz) δ 11.15 (br s, 1H), 9.72 (br s, 1H), 7.46 (d, J = 8.9 Hz, 1H), 7.35 (t, J = 8.3 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 7.01 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 2.8 Hz, 1H), 6.50 (dd, J = 8.8 Hz, J = 2.4 Hz, 1H), 3.74 (s, 3H), 2.23 (s, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) δ 160.3, 156.0, 143.9, 142.4, 131.2, 130.0, 127.2, 120.1, 115.8, 105.2, 100.8, 55.5, 13.3. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₇N₂O₂: 257.1290. Found: 257.1293.

(*E*)-1-(4-Methoxy-2-(4-methoxyphenylamino)phenyl)ethanone oxime (3a'). Eluent: hexane/ethyl acetate (10:1). Yield 92% (66 mg). White solid, mp 154-156 °C. ¹H NMR (DMSO- d_6 , 300 MHz) δ 11.09 (br s, 1H), 9.66 (br s, 1H), 7.44 (d, J = 8.9 Hz, 1H), 7.17-6.96 (m, 4H), 6.50 (d, J = 2.8 Hz, 1H), 6.40 (dd, J = 8.8 Hz, J = 2.8 Hz, 1H), 3.79 (s, 3H), 3.69 (s, 3H), 2.26 (s, 3H). ¹³C NMR (DMSO- d_6 , 75 MHz) δ 160.4, 156.4, 155.9, 146.1, 134.6, 131.1, 124.4, 115.2, 113.7, 103.5, 98.7, 55.7, 55.3, 12.9. HR-MS [M+H]⁺ m/z Calcd for C₁₆H₁₉N₂O₃: 287.1396. Found: 287.1397.

(*E*)-1-(2-(4-Chlorophenylamino)-4-methoxyphenyl)ethanone oxime (3b'). Eluent: hexane/ethyl acetate (10:1). Yield 80% (58 mg). White solid, mp 127-128 °C. ¹H NMR (DMSO-*d*₆, 300 MHz) δ 11.16 (br s, 1H), 9.63 (br s, 1H), 7.46 (d, *J* = 8.6 Hz, 1H), 7.38-7.15 (m, 4H), 6.78 (d, *J* = 2.8 Hz, 1H), 6.56 (dd, *J* = 8.6 Hz, *J* = 2.4 Hz, 1H), 3.77 (s, 3H), 2.21 (s, 3H). ¹³C NMR (DMSO-*d*₆, 75 MHz) δ 160.3, 155.8, 143.1, 141.8, 131.3, 129.7, 125.1, 120.9, 117.0, 106.1, 101.8, 55.5, 13.5. HR-MS [M+H]⁺ m/z Calcd for C₁₅H₁₆ClN₂O₂: 291.0900. Found: 291.0906.

Synthesis of 3-methyl-1-phenyl-1*H*-indazole (4).² Compound 4 was synthesized according to the previous procedure.² (*E*)-1-(2-(Phenylamino)phenyl)ethanone oxime

(3a) (0.25 mmol, 57 mg) and 2-aminopyridine (0.50 mmol) were added to a round bottom flask equipped with 5 mL of CH₂Cl₂ and a magnetic stirrer. The solution was stirred at ambient temperature for 15 min, and then cooled to 0 °C. A solution of methanesulfonyl chloride (MsCl) (0.5 mmol) in CH₂Cl₂ (2 mL) was slowly added to the flask, and the solution was allowed to warm to ambient temperature over 6 h. The resulting solution was concentrated in vacuo, and the residue was purified by column chromatography on silica gel using hexane/ ethyl acetate (9:1) as eluent to provide the desired product (4). Yield 75% (39 mg). Yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.72-7.70 (m, 4H), 7.50 (t, *J* = 8.2 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 8.2 Hz, 1H), 2.65 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 144.1, 140.4, 139.5, 129.5, 127.2, 126.2, 125.0, 122.5, 120.9, 120.7, 110.4, 12.0. ESI-MS [M+H]⁺ m/z 209.2.

Synthesis of 2-methyl-1-phenyl-1*H*-benzo[*d*]imidazole (5).² Compound 5 was previous procedure.^[2] synthesized according to the (E)-1-(2-(Phenylamino)phenyl)ethanone oxime (3a) (0.25 mmol, 57mg) and Et_3N (0.50 mmol) were added to a round bottom flask equipped with 5 mL of CH₂Cl₂ and a magnetic stirrer. The solution was stirred at ambient temperature for 15 min, and then cooled to 0 °C. A solution of MsCl (0.30 mmol) in CH₂Cl₂ (2 mL) was slowly added to the flask, and the solution was allowed to warm to ambient temperature over 6 h. The resulting solution was concentrated, and the residue was dissolved in EtOAc. The solution was washed twice with water, and the organic phase was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel using hexane/ ethyl acetate (1:1) as eluent to provide the desired product (5). Yield 52% (27 mg). Yellow oil. ¹H NMR (CDCl₃, 600 MHz) δ 7.75 (d, J = 8.2 Hz, 1H), 7.59-7.52 (m, 3H), 7.37 (d, J = 8.2 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 150 MHz) δ 151.6,

142.7, 136.5, 136.2, 130.0, 128.9, 127.2, 122.6, 122.5, 119.0, 110.0, 14.5. ESI-MS [M+H]⁺ m/z 209.2.

References

- 1 Y.-J. Chen and C. Chen, Tetrahedron: Asymmetry, 2008, 19, 2201.
- 2 B. C. Wray and J. P. Stambuli, Org. Lett., 2010, 12, 4576.
- 3 C. M. Counceller, C. C. Eichman, B. C. Wray and J. P. Stambuli, *Org. Lett.*, **2008**, *10*, 1021.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

