TFP as Ligand in Au(I)-catalyzed Dihydropyran Synthesis. Unprecedented Rearrangement of Dihydropyrans into Cyclopentenones

Eliška Matoušová,^a Aleš Růžička,^b Jiří Kuneš,^a Jarmila Králová^a and Milan Pour*^a

^{*a*} Centre for New Antivirals and Antineoplastics, Department of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-500 03 Hradec Králové, Czech Republic

^b Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, Studentská 573, CZ-53210 Pardubice, Czech Republic

*Corresponding author. Tel.: +420 49 5067277; fax: +420 49 5067166. E-mail address: milan.pour@faf.cuni.cz

Supporting information

General Methods

All reagents were purchased from Sigma-Aldrich. CH_2Cl_2 was distilled from CaH_2 , THF was distilled from sodium and benzophenone, MeOH was distilled over 3A molecular sieves. Silica gel 60 (Merck) was used for column chromatography. TLC was performed on Silica gel 60 F_{254} aluminum sheets (Merck).

¹H and ¹³C NMR spectra were recorded on a VNMR S500 and a VARIAN MERCURY Vx BB 300 spectrometers. Chemical shifts were recorded as δ values in parts per million (ppm), and were indirectly referenced to tetramethylsilane (TMS) *via* the solvent signal (3.30 ppm for ¹H and 49.0 ppm for ¹³C). Coupling constants (*J*) are given in Hz. Melting points

were determined on a Büchi B-545 apparatus without correction. Mass spectra were recorded on a ZAB-SEQ (VG-Analytical) and a LCMS Agilent 500 instruments. Infrared spectra were recorded on a NICOLET 6700 FT-IR/ATR-Ge spectrometer and are reported in wave numbers (cm⁻¹). Elemental analyses were recorded on a CHNS-OCE FISONS EA 1110 instrument.

Preparation of Gold Catalyst

Chloro(tetrahydrothiophene)gold(I) was prepared according to a literature procedure.¹

Tetrahydrothiophene (0.19 ml, 2.1 mmol) was added dropwise to a solution of $HAuCl_4 3H_2O$ (394 mg, 1 mmol) in a mixture of water (0.7 ml) and ethanol (3.3 ml). The reaction mixture was stirred for 30 min at room temperature until the yellow precipitate was transformed to a white solid. The resulting white precipitate was filtred, washed with ethanol and vacuum dried. Yield 95 %.

Chloro(trifurylphoshine)gold(I) was prepared according to a literature procedure.²

(tht)AuCl (64 mg, 0.2 mmol) and trifurylphosphine (47 mg, 0.2 mmol) were stirred together in CH_2Cl_2 (3 ml) at room temperature for 1 hour. The solvent was removed, the resulting powder dissolved in a minimum amount of CH_2Cl_2 , and precipitated by petroleum ether. The precipitate was filtred, washed with petroleum ether and vacuum dried. Yield 90 %. The spectral data of the catalyst were identical with those reported in the literature.³

Formation of Propargylic Alcohols. 3-Phenylprop-2-yn-1-ol, oct-2-yn-1-ol, but-2-yn-1-ol, 4-phenylbut-3-yn-2-ol, hex-5-en-2-yn-1-ol and hex-2-yn-1-ol were obtained commercially from Sigma-Aldrich.

3-(Naphthalen-1-yl)prop-2-yn-1-ol, 3-(thiophen-3-yl)prop-2-yn-1-ol, 4-phenylbut-2-yn-1-ol, 3-(4-methoxyphenyl)prop-2-yn-1-ol and 4-(3-hydroxyprop-1-ynyl)benzonitrile were synthesized from the corresponding alkynes: generally, an alkyne (5 mmol) was dissolved in anhydrous THF (10 ml) under argon atmosphere and cooled to - 78 °C. Then butyllithium (2 ml of 2.5 M solution in hexanes, 5 mmol) was added dropwise and after 30 min of stirring at

¹ R. Usón, A. Laguna, M. Laguna, *Inorg. Synth.*, 1989, **26**, 85.

² T. L. Stott, M. O. Wolf, B. O. Patrick, *Inorg. Chem.*, 2005, 44, 620.

³ M. R. Karver, D. Krishnamurthy, R. A. Kulkarni, N. Bottini, A. M. Barrios, J. Med. Chem., 2009, 52, 6912.

this temperature, paraformaldehyde (275 mg, 5 mmol) was added. The reaction mixture was warmed to room temperature and stirred for approx. 2 hours until a dissolution of paraformaldehyde was observed. The mixture was diluted with ethyl acetate and washed with a saturated aqueous NH₄Cl solution. The organic layer was dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

4-(Benzyloxy)but-2-yn-1-ol was prepared by the protection of but-2-yn-1,4-diol according to a literature procedure.⁴

General Procedure for the Addition of Propargylic Alcohols to Methyl Propiolate.

Methyl propiolate (0.09 ml, 1 mmol) and triethylamine (0.42 ml, 3 mmol) were added to a solution of propargylic alcohol (1 mmol) in 5 ml of anhydrous CH_2Cl_2 under argon atmosphere. The reaction mixture was stirred at room temperature for approx. 0.5 - 2 hours (conversion was monitored by TLC analysis). The mixture was diluted with ethyl acetate and washed with a saturated aqueous NH₄Cl solution. The organic layer was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

(*E*)-Methyl 3-(3-phenylprop-2-ynyloxy)acrylate 3a: Prepared according to general procedure in 99 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (d, *J* = 12.6 Hz, 1H, H3), 7.47-7.43 (m, 2H, Ar), 7.36-7.30 (m, 3H, Ar), 5.39 (d, *J* = 12.6 Hz, 1H, H2), 4.75 (s, 2H, OCH₂), 3.72 (s, 3H, OCH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.8, 160.9, 131.9, 129.0, 128.3, 121.7, 98.0, 88.4, 81.8, 59.1, 51.2; **IR** v_{max} [cm⁻¹] 2952, 2230, 1711, 1644, 1626, 1491, 1441, 1377, 1329, 1259, 1190, 1129; **MS (TOF CI)** *m/z* (relative intensity) 217.1 [M+H]⁺ (48), 185.1 (49), 157.1 (18), 115.1

⁴ M. M. Faul, L. L. Winneroski, C. A. Krumrich, J. Org. Chem., 1999, 64, 2465.

(100), 105.0 (4), 71.0 (3); **HRMS (TOF CI)** m/z calcd. for C₁₃H₁₃O₃: 217.0865, found: 217.0858.

(*E*)-Methyl 3-(oct-2-ynyloxy)acrylate 3b: Prepared according to general procedure in 98 % yield, purified by column chromatography (petroleum ether/ethyl acetate 98:2), yellowish oil. ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, *J* = 12.6 Hz, 1H, H3), 5.31 (d, *J* = 12.6 Hz, 1H, H2), 4.50 (t, *J* = 2.2 Hz, 2H, OCH₂), 3.69 (s, 3H, OCH₃), 2.25-2.17 (m, 2H, CH₂), 1.55-1.44 (m, 2H, CH₂), 1.39-1.22 (m, 4H, CH₂), 0.88 (t, *J* = 7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 161.0, 97.6, 89.9, 73.0, 59.1, 51.1, 30.9, 28.0, 22.1, 18.7, 13.9; **IR** v_{max} [cm⁻¹] 2933, 2861, 2229, 1715, 1646, 1626, 1461, 1435, 1379, 1327, 1286, 1258, 1188, 1159, 1126; **MS** (**TOF CI**) *m/z* (relative intensity) 211.1 [M+H]⁺ (100), 179.1 (24), 151.1 (10), 125.1 (6), 109.1 (27), 103.0 (19), 67.1 (12); **HRMS (TOF CI)** *m/z* calcd. for C₁₂H₁₉O₃: 211.1334, found: 211.1327.

(*E*)-Methyl 3-(but-2-ynyloxy)acrylate 3c: Prepared according to general procedure in 99 % yield, purified by column chromatography (petroleum ether/ethyl acetate 85:15), white amorphous solid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.57 (d, J = 12.6 Hz, 1H, H3), 5.30 (d, J = 12.6 Hz, 1H, H2), 4.47 (q, J = 2.4 Hz, 2H, OCH₂), 3.69 (s, 3H, OCH₃), 1.86 (t, J = 2.4 Hz, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.9, 161.0, 97.7, 85.3, 72.3, 59.0, 51.1, 3.6; **IR** v_{max} [cm⁻¹] 2953, 2231, 1711, 1645, 1625, 1437, 1330, 1287, 1255, 1187, 1163, 1127; **LRMS (APCI)** *m/z* (relative intensity) 155.0 [M+H]⁺ (100), 140.2 (18), 123.1 (40), 102.4 (20), 84.9 (31), 52.6 (19).

(*E*)-Methyl 3-(3-(naphthalen-1-yl)prop-2-ynyloxy)acrylate 3d: Prepared according to general procedure in 96 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellow solid, mp 39.4 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.13-8.08 (m, 1H, Ar), 7.71-7.69 (m, 2H, Ar), 7.58-7.51 (d, J = 12.6 Hz, m, 2H, H3, Ar, overlapped), 7.43-7.34 (m, 2H, Ar), 7.30-7.24 (m, 1H, Ar), 5.32 (d, J = 12.6 Hz, 1H, H2), 4.73 (s, 2H, OCH₂), 3.56 (s, 3H, OCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 167.7, 160.9, 133.2, 133.0, 131.0, 129.5, 128.3, 127.0, 126.5, 125.9, 125.1, 119.3, 98.1, 86.7, 86.6, 59.2, 51.2; **IR** v_{max} [cm⁻¹] 3088, 3057, 3044, 2947, 2237, 1703, 1640, 1435, 1397, 1339, 1230, 1196, 1169, 1138; **MS** (**TOF EI**) *m/z* (relative intensity) 266.1 [M]⁺ (57), 250.1 (44), 234.1 (100), 218.1 (16), 206.1 (76), 190.1 (18), 125.0 (10), 79.0 (18); **HRMS** (**ESI**) *m/z* calcd. for C₁₇H₁₅O₃: 267.1016, found: 267.1016.

(*E*)-Methyl 3-(3-(thiophen-3-yl)prop-2-ynyloxy)acrylate 3e: Prepared according to general procedure in 99 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellowish solid, mp 35.0 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.62 (d, J = 12.6 Hz, 1H, H3), 7.53-7.50 (m, 1H, Ar), 7.30-7.25 (m, 1H, Ar), 7.14-7.11 (m, 1H, Ar), 5.37 (d, J = 12.6 Hz, 1H, H2), 4.73 (s, 2H, OCH₂), 3.72 (s, 3H, OCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 167.7, 160.9, 130.1, 129.8, 125.5, 120.7, 98.0, 83.6, 81.6, 59.1, 51.2; **IR** v_{max} [cm⁻¹] 3107, 2950, 2228, 1708, 1647, 1625, 1434, 1372, 1328, 1257, 1188, 1125; **MS (TOF EI)** *m/z* (relative intensity) 222.0 [M]⁺ (6), 207.0 (6), 193.0 (15), 163.0 (92), 134.0 (17), 121.0 (100), 111.0 (10), 63.0 (13); **HRMS (TOF EI)** *m/z* calcd. for C₁₁H₁₀O₃S: 222.0351, found: 222.0357.

(*E*)-Methyl 3-(hex-5-en-2-ynyloxy)acrylate 3f: Prepared according to general procedure in 87 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), colourless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.58 (d, J = 12.6 Hz, 1H, H3), 5.84-5.72 (m, 1H, H5'), 5.37-5.25 (m, 2H, H2, H6', overlapped), 5.13 (m, 1H, H6'), 4.54 (s, 2H, OCH₂), 3.70 (s, 3H, OCH₃), 3.04-2.98 (m, 2H, H4'); ¹³**C NMR** (125 MHz, CDCl₃) δ 167.8, 160.9, 131.5, 116.6, 97.8, 86.2, 75.4, 58.9, 51.2, 23.0; IR v_{max} [cm⁻¹] 2951, 2240, 1712, 1645, 1626, 1436, 1328, 1287, 1259, 1188, 1158, 1127; **MS (TOF EI)** *m/z* (relative intensity) 280.1 [M]⁺ (4), 165.1 (2), 151.1 (12), 139.0 (9), 121.1 (14), 111.0 (10), 93.1 (7), 77.0 (100), 51.0 (9); **HRMS (ESI)** *m/z* calcd. for C₁₀H₁₃O₃: 181.0859, found: 181.0857.

(*E*)-Methyl 3-(4-phenylbut-2-ynyloxy)acrylate 3g: Prepared according to general procedure in 31 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.56 (d, J = 12.6 Hz, 1H, H3), 7.31-7.16 (m, 5H, Ar), 5.30 (d, J = 12.6 Hz, 1H, H2), 4.52 (t, J = 2.2 Hz, 2H, OCH₂), 3.66 (s, 3H, OCH₃), 3.61 (t, J = 2.2 Hz, 2H, CH₂); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.8, 160.9, 135.8, 128.6, 127.8, 126.8, 97.8, 87.1, 75.2, 58.9, 51.2, 25.1; **IR** v_{max} [cm⁻¹] 2950, 1712, 1646, 1625, 1495, 1453, 1436, 1328, 1288, 1258, 1188, 1128; **MS (TOF EI)** *m/z* (relative intensity) 230.1 [M]⁺ (2), 201.1 (15), 170.1 (14), 141.1 (24), 128.1 (100), 115.1 (7), 102.0 (5); **HRMS (ESI)** *m/z* calcd. for C₁₄H₁₅O₃: 231.1016, found: 231.1015.

(*E*)-Methyl 3-(4-(benzyloxy)but-2-ynyloxy)acrylate 3h: Prepared according to general procedure in 98 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), colourless amorphous solid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.59 (d, J = 12.6 Hz, 1H, H3), 7.37-7.27 (m, 5H, Ar), 5.35 (d, J = 12.6 Hz, 1H, H2), 4.60-4.57 (m, 4H, OCH₂), 4.22 (t, J = 1.8 Hz, 2H, OCH₂), 3.71 (s, 3H, OCH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.7, 160.7, 137.1, 128.4, 128.1, 127.9, 98.0, 84.9,

79.5, 71.8, 58.5, 57.1, 51.2; **IR** v_{max} [cm⁻¹] 2950, 1711, 1645, 1626, 1437, 1329, 1288, 1259, 1188, 1129; **MS (TOF EI)** *m/z* (relative intensity) 260.1 [M]⁺ (1), 186.1 (21), 155.0 (36), 127.0 (23), 116.0 (48), 111.0 (32), 98.0 (16), 85.0 (100), 71.0 (21), 59.0 (48); **HRMS (ESI)** *m/z* calcd. for C₁₅H₁₇O₄: 261.1121, found: 261.1121.

(*E*)-Methyl 3-(3-(4-methoxyphenyl)prop-2-ynyloxy)acrylate 3i: Prepared according to general procedure in 95 % yield, purified by column chromatography (petroleum ether/ethyl acetate 85:15), yellowish solid, mp 39.9 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.64 (d, J = 12.6 Hz, 1H, H3), 7.41-7.36 (m, 2H, AA', BB', Ar), 6.86-6.80 (m, 2H, AA', BB', Ar), 5.38 (d, J = 12.6 Hz, 1H, H2), 4.73 (s, 2H, OCH₂), 3.80 (s, 3H, OCH₃), 3.71 (s, 3H, COOCH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.8, 161.0, 160.1, 133.4, 114.0, 113.7, 97.9, 88.5, 80.5, 59.3, 55.3, 51.2; **IR** v_{max} [cm⁻¹] 2956, 2840, 2233, 1706, 1626, 1605, 1511, 1443, 1433, 1379, 1335, 1294, 1246, 1227, 1186, 1177, 1142; **LRMS** (**APCI**) m/z (relative intensity) 246.8 [M+H]⁺ (100), 219.6 (30), 216.6 (6), 205.6 (16), 187.6 (6), 168.1 (65), 145.3 (13).

(*E*)-Methyl 3-(hex-2-ynyloxy)acrylate 3j: Prepared according to general procedure in 95 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 12.6 Hz, 1H, H3), 5.31 (d, *J* = 12.6 Hz, 1H, H2), 4.50 (t, *J* = 2.2 Hz, 2H, OCH₂), 3.70 (s, 3H, OCH₃), 2.20 (tt, *J* = 7.0 Hz, *J* = 2.2 Hz, 2H, CH₂), 1.60-1.47 (m, 2H, CH₂), 0.97 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 167.9, 161.0, 97.6, 89.7, 73.2, 59.1, 51.2, 21.7, 20.7, 13.4; **IR** v_{max} [cm⁻¹] 2964, 2874, 2232, 1713, 1645, 1626, 1438, 1380, 1328, 1286, 1259, 1189, 1159, 1128; **LRMS (APCI)** *m/z* (relative intensity) 382.8 [M+H]⁺ (100), 168.9 (12), 164.2 (14), 152.5 (8), 142.5 (7), 131.7 (7), 124.4 (15), 104.9 (9), 91.9 (11).

(*E*)-Methyl 3-(3-(4-cyanophenyl)prop-2-ynyloxy)acrylate 31: Prepared according to general procedure in 95 % yield, purified by column chromatography (petroleum ether/ethyl acetate 8:2), yellow solid, mp 107.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.64-7.59 (m, 3H, H3, AA', BB', Ar, overlapped), 7.55-7.50 (m, 2H, AA', BB', Ar), 5.38 (d, J = 12.6 Hz, 1H, H2), 4.76 (s, 2H, OCH₂), 3.71 (s, 3H, OCH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 167.5, 160.6, 132.3, 132.0, 126.5, 118.1, 112.5, 98.2, 86.5, 86.1, 58.7, 51.3; **IR** v_{max} [cm⁻¹] 2222, 1706, 1618, 1503, 1430, 1338, 1325, 1231, 1191, 1146; **LRMS (APCI)** *m/z* (relative intensity) 242.3 [M+H]⁺ (80), 228.5 (7), 210.4 (18), 140.4 (100), 87.5 (34), 75.5 (18), 59.3 (13).

(*E*)-Methyl 3-(4-phenylbut-3-yn-2-yloxy)acrylate 6: Prepared according to general procedure in 99 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellowish oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.68 (d, J = 12.4 Hz, 1H, H3), 7.46-7.41 (m, 2H, Ar), 7.35-7.29 (m, 3H, Ar), 5.43 (d, J = 12.4 Hz, 1H, H2), 4.91 (q, J = 6.6 Hz, 1H, CH), 3.71 (s, 3H, OCH₃), 1.65 (d, J = 6.6 Hz, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 168.1, 160.3, 131.8, 128.9, 128.3, 121.7, 98.6, 87.1, 86.1, 68.0, 51.1, 21.9; **IR** v_{max} [cm⁻¹] 2991, 2950, 2229, 1712, 1644, 1624, 1491, 1436, 1330, 1191, 1138, 1111; **MS (TOF CI)** *m/z* (relative intensity) 253.1 [M+Na]⁺ (1), 239.1 (4), 227.1 (12), 199.1 (100), 171.1 (45), 143.1 (5), 131.1 (4), 77.0 (1); **HRMS (ESI)** *m/z* calcd. for C₁₄H₁₄O₃Na: 253.0835, found: 253.0834.

Addition of Propargylic Alcohol to 3,3,3-Trifluoroprop-1-yne.

(*E*)-3,3,3-Trifluoro-1-(3-phenylprop-2-ynyloxy)prop-1-ene 5: Trifluoropropyne gas was bubbled into anhydrous CH_2Cl_2 at - 60 °C and 3-phenylprop-2-yn-1-ol (0.65 ml, 5 mmol) and triethylamine (2.1 ml, 15 mmol) were added. The reaction mixture was stirred for 30 min at - 60 °C and then warmed to room temperature. After 2.5 hours the mixture turned black and complete consumption of the starting material was observed. The mixture was diluted with ethyl acetate and washed with a saturated aqueous NH_4Cl solution. The organic layer was dried with anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 95:5). Yield 100 %, yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.51-7.43 (m, 2H, Ar), 7.38-7.30 (m, 3H, Ar), 7.11 (dq, J = 12.8 Hz, J = 2.0 Hz, 1H, H1), 5.18 (dq, J = 12.8 Hz, J = 6.5 Hz, 1H, H2), 4.71 (s, 2H, OCH₂); ¹³**C NMR** (75 MHz, CDCl₃) δ 153.0 (q, J = 7.8 Hz), 131.8, 129.1, 128.4, 124.5 (q, J = 266.9 Hz), 121.7, 96.1 (q, J = 33.8 Hz), 88.6, 81.7, 58.7; **IR** v_{max} [cm⁻¹] 2870, 2228, 1682, 1662, 1491, 1444, 1371, 1346, 1327, 1260, 1207, 1179, 1093; **MS (TOF EI)** *m/z* (relative intensity) 225.1 [M]⁺ (18), 157.1 (27), 115.0 (100), 105.0 (18), 89.0 (17), 63 (10); **HRMS (TOF EI)** *m/z* calcd. for C₁₂H₈OF₃: 225.0527, found: 225.0533.

Preparation of Methyl 3-(Boc-indol-5-yl-prop-2-ynyloxy)acrylate.

tert-Butyl 5-iodo-1*H*-indole-1-carboxylate: Prepared from 5-iodo-1*H*-indole according to literature procedure.⁵ Yield 100 %, white solid, mp 51.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.95-7.88 (m, 2H, Ar), 7.60-7.53 (m, 2H, Ar), 6.50-6.47 (m, 1H, Ar), 1.67 (s, 9H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 180.6, 149.4, 134.4, 132.6, 129.7, 126.6, 117.0, 106.2, 86.6, 84.1, 28.1; **IR** ν_{max} [cm⁻¹] 3163, 2982, 1734, 1531, 1443, 1367, 1362, 1341, 1325, 1276, 1249, 1200, 1184, 1157, 1130, 1084.

MS spectra were identical with literature.⁶

⁵ S. D. Erickson, J. A. Simon, W. C. Still, J. Org. Chem., 1993, 58, 1305.

⁶ Eu. Pat., 2 108 642 (A1), 2009.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

(*E*)-tert-Butyl 5-(3-(3-methoxykarbonylprop-1-enyloxy)prop-1-ynyl)-1*H*-indole-1-carboxylate 3k: To a solution of *tert*-butyl 5-iodo-1*H*-indole-1-carboxylate (344 mg, 1 mmol) in anhydrous THF (7.5 ml) (PPh₃)₂PdCl₂ (35 mg, 0.05 mmol), CuI (9.5 mg, 0.05 mmol), triethylamine (1.4 ml, 10 mmol) and (*E*)-methyl 3-(prop-2-ynyloxy)acrylate (155 mg, 1.1 mmol) were added. The reaction mixture was stirred at room temperature for 20 hours. The mixture was diluted with ethyl acetate and washed with a saturated aqueous NH₄Cl solution. The organic layer was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 9:1). Yield 49 %, brown oil.

¹**H NMR** (300 MHz, CDCl₃) δ 8.13-8.06 (m, 1H, Ar), 7.70-7.64 (m, 2H, CH, Ar, overlapped), 7.63-7.59 (m, 1H, Ar), 7.42-7.36 (m, 1H, Ar), 6.55-6.52 (m, 1H, Ar), 5.41 (d, *J* = 12.6 Hz, 1H, CH), 4.77 (s, 2H, OCH₂), 3.72 (s, 3H, OCH₃), 1.67 (s, 9H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 180.6, 167.8, 161.0, 149.4, 130.4, 127.8, 126.9, 124.9, 115.7, 115.2, 107.0, 97.9, 89.2, 84.1, 80.5, 59.3, 51.2, 28.1; **IR** v_{max} [cm⁻¹] 2980, 2229, 1732, 1645, 1625, 1468, 1437, 1366, 1331, 1286, 1257, 1231, 1154, 1132, 1084; **LRMS (APCI)** *m/z* (relative intensity) 355.8 [M+H]⁺ (100), 327.9 (15), 299.8 (24), 253.7 (28), 199.4 (11).

General Procedure for Gold(I)-Catalyzed Cyclisation to Dihydropyrans. (TFP)AuCl (23 mg, 0.05 mmol) and AgBF₄ (10 mg, 0.05 mmol) were placed into a dry flask under argon atmosphere and 10 ml of anhydrous CH_2Cl_2 and 0.13 ml of anhydrous methanol (3 mmol) were added. Subsequently, a solution of propargyl vinyl ether (1 mmol) in anhydrous CH_2Cl_2 (6.5 ml) was added. The reaction mixture was stirred at room temperature for approx. 0.5 - 4 hours (conversion was monitored by TLC analysis). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

Methyl 3,6-dihydro-2-methoxy-4-phenyl-2*H***-pyran-3-carboxylate 4a:** Prepared according to general procedure in 98 % yield (66 % *trans*, 32 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellowish amorphous solid.

trans isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.22 (m, 5H, Ar), 6.22 (t, *J* = 3.0 Hz, 1H, H5), 5.15 (d, *J* = 2.2 Hz, 1H, H2), 4.38 (t, *J* = 2.2 Hz, 2H, H6), 3.73-3.69 (m, 1H, H3), 3.63 (s, 3H, COOCH₃), 3.51 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 139.1, 130.1, 128.4, 127.5, 125.2, 123.7, 98.6, 60.7, 55.8, 52.3, 48.0; IR v_{max} [cm⁻¹] 2926, 2851, 1723, 1652, 1598, 1496, 1437, 1364, 1240, 1194, 1136, 1093, 1072; MS (TOF EI) *m/z* (relative intensity) 248.1 [M]⁺ (4), 216.1 (15), 184.1 (15), 157.1 (100), 129.1 (68), 115.1 (19), 77 (10); HRMS (ESI) *m/z* calcd. for C₁₄H₁₆O₄Na: 271.0946, found: 271.0941; Anal calcd. for C₁₄H₁₆O₄: C, 67.7; H, 6.5; O, 25.8; found: C, 67.7; H, 6.6; O, 25.7 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.22 (m, 5H, Ar), 6.24-6.21 (m, 1H, H5), 4.98 (d, *J* = 4.2 Hz, 1H, H2), 4.54 (dt, *J* = 17.0 Hz, *J* = 2.6 Hz, 1H, H6), 4.32 (dt, *J* = 17.0 Hz, *J* = 2.6 Hz, 1H, H6), 3.98-4.00 (m, 1H, H3), 3.59 (s, 3H, COOCH₃), 3.52 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 139.1, 131.2, 128.5, 127.5, 124.8, 124.2, 98.5, 62.0, 56.4, 52.2, 47.5; **IR** v_{max} [cm⁻¹] 2936, 2838, 1730, 1654, 1492, 1446, 1438, 1366, 1249, 1238, 1206, 1135, 1101, 1079; **MS (TOF CI)** *m/z* (relative intensity) 249.1 [M+H]⁺ (3), 231.1 (6), 217.1 (37), 189.1 (100), 157.1 (23), 129.1 (4); **HRMS (TOF CI)** *m/z* calcd. for C₁₄H₁₇O₄: 249.1127, found: 249.1124; **Anal** calcd. for C₁₄H₁₆O₄: C, 67.7; H, 6.5; O, 25.8; found: C, 67.9; H, 6.65; O, 25.5 %.

Methyl 3,6-dihydro-2-methoxy-4-pentyl-2*H***-pyran-3-carboxylate 4b:** Prepared according to general procedure in 83 % yield (62 % *trans*, 21 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 98:2), colourless oil.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.63-5.53 (m, 1H, H5), 4.94 (d, J = 2.8 Hz, 1H, H2), 4.21-4.13 (m, 2H, H6), 3.72 (s, 3H, COOCH₃), 3.45 (s, 3H, OCH₃), 3.08-3.05 (m, 1H, H3), 2.08-1.90 (m, 2H, CH₂), 1.48-1.19 (m, 6H, CH₂), 0.87 (t, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 130.9, 120.6, 98.9, 60.9, 55.8, 52.1, 49.2, 35.2, 31.4, 26.5, 22.4, 14.0; **IR** v_{max} [cm⁻¹] 2953, 2929, 2857, 1736, 1435, 1383, 1312, 1244, 1193, 1138, 1118, 1097, 1069; **MS** (**TOF CI**) *m/z* (relative intensity) 243.2 [M+H]⁺ (6), 225.1 (8), 211.1 (100), 193.1 (32), 183.1 (27), 179.1 (13), 151.1 (28); **HRMS (TOF CI)** *m/z* calcd. for C₁₃H₂₃O₄: 243.1596, found: 243.1599; **Anal** calcd. for C₁₃H₂₂O₄: C, 64.4; H, 9.15; O, 26.4; found: C, 64.5; H, 9.3; O, 26.2 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.62-5.59 (m, 1H, H5), 4.80 (d, J = 4.3 Hz, 1H, H2), 4.31 (d, J = 16.1 Hz, 1H, H6), 4.07 (d, J = 16.1 Hz, 1H, H6), 3.70 (s, 3H, COOCH₃), 3.48 (s, 3H, OCH₃), 3.34-3.30 (m, 1H, H3), 2.05 (t, J = 7.7 Hz, 2H, CH₂), 1.40-1.18 (m, 6H, CH₂), 0.84 (t, J = 7.0 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 131.7, 121.3, 98.3, 61.4, 56.1, 51.9, 48.3, 34.8, 31.3, 26.7, 22.4, 13.9; IR v_{max} [cm⁻¹] 2953, 2929, 2857, 1750, 1677, 1435, 1382, 1363, 1306, 1270, 1246, 1193, 1139, 1119, 1090, 1059; LRMS (APCI) *m/z* (relative intensity) 243.1 [M+H]⁺ (6), 224.8 (30), 212.4 (48), 210.8 (100), 192.9 (25), 183.8 (8), 162.7 (9), 151.0 (14), 134.7 (12), 121.7 (9); Anal calcd. for C₁₃H₂₂O₄: C, 64.4; H, 9.15; O, 26.4; found: C, 64.2; H, 9.1; O, 26.7 %.

Methyl 3,6-dihydro-2-methoxy-4-methyl-2*H***-pyran-3-carboxylate 4c:** Prepared according to general procedure in 70 % yield (57 % *trans*, 13 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellowish oil.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.60-5.57 (m, 1H, H5), 4.96 (d, J = 2.7 Hz, 1H, H2), 4.16-4.11 (m, 2H, H6), 3.71 (s, 3H, COOCH₃), 3.44 (s, 3H, OCH₃), 2.98 (s, 1H, H3), 1.73-1.75 (m, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 126.6, 121.7, 98.6, 60.6, 55.8, 52.1, 50.2, 22.0; **IR** ν_{max} [cm⁻¹] 2918, 2848, 1736, 1436, 1388, 1325, 1306, 1194, 1157, 1137, 1110, 1082, 1073; **MS** (**TOF CI**) *m/z* (relative intensity) 209.1 [M+Na]⁺ (3), 183.1 (22), 169.0 (100), 155.1 (1), 141.1 (3), 112.1 (3); **HRMS (ESI)** *m/z* calcd. for C₉H₁₄O₄Na: 209.0784, found: 209.0784; **Anal** calcd. for C₉H₁₄O₄: C, 58.05; H, 7.6; O, 34.4; found: C, 58.1; H, 7.7; O, 34.2 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.65-5.62 (m, 1H, H5), 4.87 (d, J = 4.4 Hz, 1H, H2), 4.32-4.25 (m, 1H, H6), 4.07-4.01 (m, 1H, H6), 3.72 (s, 3H, COOCH₃), 3.45 (s, 3H, OCH₃), 3.33-3.28 (m, 1H, H3), 1.76 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 127.4, 122.3, 98.0, 60.8, 56.1, 52.0, 49.5, 21.3; LRMS (APCI) *m/z* (relative intensity) 187.2 [M+H]⁺ (1), 169.2 (100), 155.2 (21), 141.3 (15), 128.2 (9), 111.9 (6); Anal calcd. for C₉H₁₄O₄: C, 58.05; H, 7.6; O, 34.4; found: C, 58.3; H, 7.5; O, 34.2 %.

Methyl 3,6-dihydro-2-methoxy-4-(naphthalen-1-yl)-2*H*-pyran-3-carboxylate 4d:

Prepared according to general procedure in 84 % yield (61 % *trans*, 23 % *cis*), purified by column chromatography (gradient elution, petroleum ether/ethyl acetate 95:5 – 9:1), yellowish solid, mp 110.5 °C (*trans*), 95.0 °C (*cis*).

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.14 (m, 1H, Ar), 7.87-7.83 (m, 1H, Ar), 7.81-7.86 (m, 1H, Ar), 7.52-7.35 (m, 4H, Ar), 5.98-5.96 (m, 1H, H5), 5.24-5.22 (m, 1H, H2), 4.47-4.43 (m, 2H, H6), 3.70-3.66 (m, 1H, H3), 3.61 (s, 3H, COOCH₃), 3.50 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 138.4, 133.6, 131.4, 130.1, 128.2, 127.7, 127.2, 126.1, 126.0, 125.7, 125.4, 125.2, 98.5, 60.6, 55.9, 52.0, 50.4; **IR** v_{max} [cm⁻¹] 3061, 3003, 2945, 2917, 2856, 1732, 1591, 1506, 1441, 1360, 1321, 1274, 1218, 1190, 1136, 1069; **MS** (**TOF EI**) *m/z* (relative intensity) 298.1 [M]⁺ (19), 266.1 (7), 234.1 (20), 207.1 (98), 195.1 (17), 179.1 (100), 165.1 (32), 152.1 (28), 127.1 (3), 89.0 (7); **HRMS (TOF EI)** *m/z* calcd. for C₁₈H₁₈O₄: 298.1205, found: 298.1200; **Anal** calcd. for C₁₈H₁₈O₄: C, 72.5; H, 6.1; O, 21.45; found: C, 72.2; H, 6.2; O, 21.6 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 8.09-8.03 (m, 1H, Ar), 7.86-7.82 (m, 1H, Ar), 7.79-7.75 (m, 1H, Ar), 7.51-7.39 (m, 3H, Ar), 7.32-7.28 (m, 1H, Ar), 6.02-6.00 (m, 1H, H5), 5.11 (d, *J* = 4.1 Hz, 1H, H2), 4.65 (dt, *J* = 16.7 Hz, *J* = 2.3 Hz, 1H, H6), 4.41-4.35 (dt, *J* = 16.7 Hz, *J* = 2.3 Hz, 1H, H6), 4.41-4.35 (dt, *J* = 16.7 Hz, *J* = 2.3 Hz, 1H, H6), 3.98-3.94 (m, 1H, H3), 3.58 (s, 3H, COOCH₃), 3.49 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 138.0, 133.8, 131.3, 130.8, 128.3, 128.1, 127.7, 126.0, 125.7, 125.3, 125.2, 125.1, 98.7, 62.1, 56.4, 51.9, 50.0; **IR** v_{max} [cm⁻¹] 3042, 3006, 2928, 2831, 1739, 1506, 1442, 1384, 1358, 1259, 1244, 1211, 1193, 1156, 1137, 1110, 1102; **MS (TOF EI)** *m/z* (relative intensity) 298.1 [M]⁺ (9), 266.1 (4), 234.1 (7), 207.1 (100),

195.1 (8), 179.1 (75), 165.1 (22), 152.1 (17), 127.1 (2), 89.0 (5); **HRMS (TOF EI)** *m/z* calcd. for C₁₈H₁₈O₄: 298.1205, found: 298.1193; **Anal** calcd. for C₁₈H₁₈O₄: C, 72.5; H, 6.1; O, 21.45; found: C, 72.7; H, 6.0; O, 21.3 %.

Molecular structure of 4d, an ORTEP view, 50% probability level.

4d crystallizes in orthorhombic centrosymmetric space group Pbca. The molecular structure of 4d consists of two ring systems where one is the planar aromatic naphthyl moiety and the second one is the skewed partially saturated six membered heterocycle. All interatomic distances are in line with the standard single and double bond distances.⁷

The X-ray data for colourless crystals of **4d** were obtained at 150K using Oxford Cryostream low-temperature device on a Nonius KappaCCD diffractometer with MoK_{α} radiation ($\lambda = 0.71073$ Å), a graphite monochromator, and the ϕ and χ scan mode. Data reductions were performed with DENZO-SMN.⁸ The absorption was corrected by integration methods.⁹ Structures were solved by direct methods (Sir92)¹⁰ and refined by full matrix least-square

⁷ F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, *J. Chem. Soc. Perkin. Trans. II*, 1987, **12**, S1.

⁸ Z. Otwinowski, W. Minor, *Methods in Enzymology*, 1997, **276**, 307.

⁹ P. Coppens, in: *Crystallographic Computing*, ed. F. R. Ahmed, S. R. Hall, C. P. Huber Editors, Copenhagen, Munksgaard, 1970, pp. 255-270.

¹⁰ A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.

based on F^2 (SHELXL97).¹¹ Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of the treatment of the crystal, all hydrogen atoms were recalculated into idealized positions (riding model) and assigned temperature factors $H_{iso}(H) = 1.2 U_{eq}$ (pivot atom) or of $1.5U_{eq}$ for the methyl moiety with C-H = 0.96, 0.97, 0.98 and 0.93 Å for methyl, methylene, methine and hydrogen atoms in aromatic rings or unsaturated carbon atom, respectively.

Crystallographic data for structural analysis have been deposited with the Cambridge Crystallographic Data Centre. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Crystallographic data for **4d**: C₁₈H₁₈O₄, M = 298.32, orthorhombic, *P*bca, a = 12.9230(7), b = 7.4390(12), c = 30.766(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$, Z = 8, V = 2957.7(6) Å³, D_c = 1.340 g.cm-3, $\mu = 0.094 \text{ mm}^{-1}$, T_{min} = 0.977, T_{max} = 0.986; 16499 reflections measured ($\theta_{max} = 27.5^{\circ}$), 16377 independent ($R_{int} = 0.0567$), 3373 with I > 2 σ (I), 199 parameters, S = 1.140, R_I (obs. data) = 0.0548, wR_2 (all data) = 0.1065; max., min. res. El. density = 0.356, -0.239 e Å⁻³. CCDC Deposition number: 829174.

Methyl 3,6-dihydro-2-methoxy-4-(thiophen-3-yl)-2H-pyran-3-carboxylate 4e: Prepared according to general procedure in 87 % yield (61 % *trans*, 26 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellowish solid, mp 82.5 °C (*trans*), yellowish amorphous solid (*cis*).

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.24 (m, 1H, Ar), 7.21-7.18 (m, 1H, Ar), 7.10-7.08 (m, 1H, Ar), 6.24 (t, *J* = 2.9 Hz, 1H, H5), 5.11 (d, *J* = 1.7 Hz, 1H, H2), 4.37-4.34 (m, 2H, H6), 3.69 (s, 3H, COOCH₃), 3.62-3.59 (m, 1H, H3), 3.49 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 140.8, 125.8, 125.1, 124.7, 122.3, 119.4, 98.2, 60.1, 55.8, 52.5, 48.2; **IR** v_{max} [cm⁻¹] 3104, 2950, 2842, 1729, 1435, 1386, 1364, 1321, 1246, 1197, 1165,

¹¹ G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, 1997.

1134, 1070; **MS (TOF EI)** m/z (relative intensity) 254.1 [M]⁺ (19), 222.0 (15), 190.0 (27), 179.0 (15), 163.0 (100), 135.0 (62), 121.0 (11), 109.0 (13), 91.1 (21); **HRMS (TOF EI)** m/z calcd. for C₁₂H₁₄O₄S: 254.0613, found: 254.0612; **Anal** calcd. for C₁₂H₁₄O₄S: C, 56.7; H, 5.55; O, 25.2; S, 12.6; found: C, 56.7; H, 5.7; O, 25.3; S, 12.3 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.29-7.25 (m, 1H, Ar), 7.21-7.13 (m, 2H, Ar), 6.27 (t, *J* = 2.5 Hz, 1H, H5), 4.85 (d, *J* = 3.9 Hz, 1H, H2), 4.63 – 4.57 (m, 1H, H6), 4.39-4.33 (m, 1H, H6), 3.84-3.81 (m, 1H, H3), 3.69 (s, 3H, COOCH₃), 3.54 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 140.3, 126.9, 126.0, 124.5, 122.9, 119.5, 98.9, 63.1, 56.5, 52.3, 48.0; **IR** v_{max} [cm⁻¹] 3103, 2952, 2923, 2851, 1724, 1428, 1380, 1370, 1251, 1238, 1203, 1136, 1108, 1076; **MS (TOF EI)** *m/z* (relative intensity) 254.1 [M]⁺ (5), 222.0 (12), 195.0 (13), 179.0 (12), 163.0 (100), 135.0 (47), 121.0 (7), 109.0 (10), 91.1 (13); **HRMS (TOF EI)** *m/z* calcd. for C₁₂H₁₄O₄S: 254.0613, found: 254.0621; **Anal** calcd. for C₁₂H₁₄O₄S: C, 56.7; H, 5.55; O, 25.2; S, 12.6; found: C, 56.9; H, 5.3; O, 25.5; S, 12.3 %.

Methyl 4-allyl-3,6-dihydro-2-methoxy-2*H*-pyran-3-carboxylate 4f: Prepared according to general procedure in 67 % yield (52 % *trans*, 15 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 98:2), colourless oil.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.80-5.69 (m, 1H, H2'), 5.63 (s, 1H, H5), 5.09-5.04 (m, 2H, H3'), 5.02-4.95 (m, 1H, H2), 4.18-4.14 (m, 2H, H6), 3.70 (s, 3H, COOCH₃), 3.43 (s, 3H, OCH₃), 3.06 (s, 1H, H3), 2.86-2.71 (m, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 134.6, 128.9, 122.2, 117.3, 98.5, 60.4, 55.7, 52.1, 48.5, 39.7; **IR** v_{max} [cm⁻¹] 2951, 2847, 1737, 1638, 1435, 1385, 1364, 1312, 1257, 1194, 1171, 1136, 1107, 1080, 1070; **MS** (**TOF EI**) *m/z* (relative intensity) 212.1 [M]⁺ (1), 180.1 (19), 171.1 (7), 152.1 (50), 139.0 (53), 121.1 (100), 91.0 (79), 77.0 (47), 65.0 (13), 59.0 (12); **HRMS (ESI)** *m/z* calcd. for C₁₁H₁₆O₄Na: 235.0941, found: 235.0940; **Anal** calcd. for C₁₁H₁₆O₄: C, 62.25; H, 7.6; O, 30.15; found: C, 62.4; H, 7.6; O, 30.0 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.77-5.63 (m, 2H, H2', H5, overlapped), 5.08-5.00 (m, 2H, H3'), 4.86 (d, *J* = 4.3 Hz, 1H, H2), 4.36-4.29 (m, 1H, H6), 4.12-4.04 (m, 1H, H6), 3.71 (s, 3H, COOCH₃), 3.45 (s, 3H, OCH₃), 3.39-3.35 (m, 1H, H3), 2.92-2.78 (m, 2H, CH₂); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 134.9, 129.9, 122.8, 117.4, 98.1, 61.0, 56.1, 52.0, 47.9,

39.4; **IR** v_{max} [cm⁻¹] 2951, 2926, 2854, 1749, 1638, 1435, 1383, 1362, 1312, 1267, 1191, 1170, 1136, 1113, 1087, 1059; **LRMS (APCI)** *m/z* (relative intensity) 213.0 [M+H]⁺ (4), 181.0 (30), 153.1 (41), 140.0 (38), 121.9 (91), 92.0 (100), 78.0 (5), 60.0 (7); **Anal** calcd. for C₁₁H₁₆O₄: C, 62.25; H, 7.6; O, 30.15; found: C, 61.9; H, 7.9; O, 30.2 %.

Methyl 4-benzyl-3,6-dihydro-2-methoxy-2H-pyran-3-carboxylate 4g: Prepared according to general procedure in 75 % yield (57 % *trans*, 18 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 98:2), colourless oil.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.16 (m, 5H, Ar), 5.52 (s, 1H, H5), 5.00 (d, J = 2.2 Hz, 1H, H2), 4.20-4.16 (m, 2H, H6), 3.68 (s, 3H, COOCH₃), 3.47-3.32 (m, 5H, OCH₃, CH₂), 3.04 (bs, 1H, H3); ¹³C NMR (125 MHz, CDCl₃) δ 171.0, 138.0, 130.1, 129.3, 128.3, 126.3, 123.1, 98.5, 60.4, 55.7, 52.1, 48.5, 41.8; IR v_{max} [cm⁻¹] 3027, 2930, 2848, 1736, 1602, 1495, 1453, 1435, 1384, 1364, 1311, 1255, 1195, 1168, 1134, 1107, 1081, 1070; MS (TOF EI) *m*/*z* (relative intensity) 262.1 [M]⁺ (1), 230.1 (21), 202.1 (92), 171.1 (100), 143.1 (96), 139.0 (61), 128.1 (79), 115.1 (42), 91.1 (49), 65.0 (15), 59.0 (6); HRMS (ESI) *m*/*z* calcd. for C₁₅H₁₉O₄: 263.1278, found: 263.1278; Anal calcd. for C₁₅H₁₈O₄: C, 68.7; H, 6.9; O, 24.4; found: C, 68.8; H, 6.8; O, 24.4 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.13 (m, 5H, Ar), 5.69-5.65 (m, 1H, H5), 4.83 (d, J = 4.4 Hz, 1H, H2), 4.39-4.30 (m, 1H, H6), 4.14-4.07 (m, 1H, H6), 3.72-3.70 (m, 5H, COOCH₃, CH₂, overlapped), 3.45 (s, 3H, OCH₃), 3.28-3.25 (m, 1H, H3); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 138.2, 131.2, 129.2, 128.4, 126.4, 123.4, 98.1, 60.9, 56.1, 52.0, 47.5, 41.5; **IR** v_{max} [cm⁻¹] 2954, 2923, 2853, 1739, 1642, 1494, 1462, 1378, 1364, 1312, 1248, 1189, 1161, 1136, 1112, 1083, 1061; **MS** (**TOF EI**) *m*/*z* (relative intensity) 262.1 [M]⁺ (1), 230.1 (19), 202.1 (89), 171.1 (98), 143.1 (100), 139.0 (60), 128.1 (75), 115.1 (38), 91.1 (44), 65.0 (15), 59.0 (7); **HRMS (ESI)** *m*/*z* calcd. for C₁₅H₁₉O₄: 263.1278, found: 263.1278; **Anal** calcd. for C₁₅H₁₈O₄: C, 68.7; H, 6.9; O, 24.4; found: C, 69.0; H, 6.65; O, 24.3 %.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Methyl 4-((benzyloxy)methyl)-3,6-dihydro-2-methoxy-2*H*-pyran-3-carboxylate 4h:

Prepared according to general procedure in 70 % yield (49 % *trans*, 21 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), colourless amorphous solid.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.27 (m, 5H, Ar), 5.93-5.90 (m, 1H, H5), 5.08 (d, J = 2.0 Hz, 1H, H2), 4.51 (d, J = 11.7 Hz, 1H, OCH₂), 4.41 (d, J = 11.7 Hz, 1H, OCH₂), 4.24-4.21 (m, 2H, OCH₂), 4.12-4.08 (m, 1H, H6), 3.99-3.94 (m, 1H, H6), 3.68 (s, 3H, COOCH₃), 3.47 (s, 3H, OCH₃), 3.28-3.25 (m, 1H, H3); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 138.1, 128.3, 127.8, 127.8, 127.5, 124.6, 98.3, 72.0, 71.7, 60.0, 55.8, 52.2, 46.2; IR v_{max} [cm⁻¹] 2923, 2853, 1737, 1496, 1453, 1356, 1311, 1259, 1196, 1156, 1136, 1082; LRMS (APCI) *m/z* (relative intensity) 293.4 [M+H]⁺ (2), 261.4 (100), 243.4 (30), 229.4 (38), 211.4 (28), 183.4 (38), 153.4 (7), 129.4 (11), 91.4 (20); Anal calcd. for C₁₆H₂₀O₅: C, 65.7; H, 6.9; O, 27.4; found: C, 65.9; H, 6.9; O, 27.2 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.26 (m, 5H, Ar), 5.93 (s, 1H, H5), 4.91 (d, *J* = 4.3 Hz, 1H, H2), 4.50-4.40 (m, 2H, OCH₂), 4.34 (d, *J* = 16.5 Hz, 1H, H6), 4.20 (d, *J* = 12.0 Hz, 1H, OCH₂), 4.14 (d, *J* = 16.5 Hz, 1H, H6), 4.00 (d, *J* = 12.0 Hz, 1H, OCH₂), 3.68 (s, 3H, COOCH₃), 3.55 (s, 1H, H3), 3.46 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 138.0, 128.9, 128.3, 127.6, 127.6, 124.6, 97.9, 72.2, 71.9, 60.6, 56.1, 52.0, 45.9; IR v_{max} [cm⁻¹] 2954, 2923, 2853, 1741, 1462, 1454, 1378, 1309, 1264, 1169, 1137, 1092; LRMS (APCI) *m*/*z* (relative intensity) 293.4 [M+H]⁺ (3), 260.9 (100), 243.0 (33), 228.9 (24), 210.9 (17), 183.9 (8), 153.1 (9), 91.9 (3); Anal calcd. for C₁₆H₂₀O₅: C, 65.7; H, 6.9; O, 27.4; found: C, 66.0; H, 6.7; O, 27.3 %.

Methyl 3,6-dihydro-2-methoxy-4-(4-methoxyphenyl)-2H-pyran-3-carboxylate 4i:

Prepared according to general procedure in 89 % yield (63 % *trans*, 26 % *cis*), purified by column chromatography (gradient elution, petroleum ether/ethyl acetate 9:1 – 8:2), white solid, mp 75.4 °C (*trans*), 127.8 °C (*cis*).

trans isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.23 (m, 2H, AA', BB', Ar), 6.88-6.81 (m, 2H, AA', BB', Ar), 6.12 (t, *J* = 2.5 Hz, 1H, H5), 5.13-5.11 (m, 1H, H2), 4.38-4.34 (m, 2H, H6), 3.79 (s, 3H, OCH₃), 3.68-3.65 (m, 1H, H3), 3.64 (s, 3H, COOCH₃), 3.50 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 159.1, 131.7, 129.5, 126.3, 122.0, 113.8, 98.7, 60.7, 55.8, 55.2, 52.4, 48.1; **IR** v_{max} [cm⁻¹] 2943, 2843, 1722, 1608, 1515, 1439, 1367, 1302, 1272, 1238, 1181, 1138, 1095, 1072; **LRMS (APCI)** *m/z* (relative intensity) 279.1 [M+H]⁺ (3), 248.3 (12), 219.4 (100), 217.1 (9), 188.1 (6); **Anal** calcd. for C₁₅H₁₈O₅: C, 64.7; H, 6.5; O, 28.7; found: C, 64.9; H, 6.5; O, 28.6 %.

cis isomer: ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.23 (m, 2H, AA', BB', Ar), 6.87-6.81 (m, 2H, AA', BB', Ar), 6.17-6.12 (m, 1H, H5), 4.94 (d, *J* = 4.1 Hz, 1H, H2), 4.54 (dt, *J* = 16.9 Hz, *J* = 2.7 Hz, 1H, H6), 4.31 (dt, *J* = 16.9 Hz, *J* = 2.7 Hz, 1H, H6), 3.96-3.90 (m, 1H, H3), 3.79 (s, 3H, OCH₃), 3.62 (s, 3H, COOCH₃), 3.52 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 159.1, 131.5, 130.7, 125.9, 122.5, 113.9, 98.7, 62.3, 56.4, 55.2, 52.2, 47.6; IR v_{max} [cm⁻¹] 2945, 2842, 1729, 1607, 1514, 1462, 1428, 1379, 1300, 1265, 1250, 1239, 1202, 1183, 1139, 1108, 1082; LRMS (APCI) *m*/*z* (relative intensity) 279.2 [M+H]⁺ (1), 260.9 (17), 248.2 (34), 219.1 (100), 217.1 (21), 188.1 (8); Anal calcd. for C₁₅H₁₈O₅: C, 64.7; H, 6.5; O, 28.7; found: C, 64.55; H, 6.7; O, 28.7 %.

Methyl 3,6-dihydro-2-methoxy-4-propyl-2*H***-pyran-3-carboxylate 4j:** Prepared according to general procedure in 77 % yield (65 % *trans*, 12 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), colourless oil.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.60-5.56 (m, 1H, H5), 4.94 (d, J = 2.8 Hz, 1H, H2), 4.19-4.16 (m, 2H, H6), 3.72 (s, 3H, COOCH₃), 3.45 (s, 3H, OCH₃), 3.07-3.04 (m, 1H, H3), 2.01-1.96 (m, 2H, CH₂), 1.53-1.36 (m, 2H, CH₂), 0.89 (t, J = 7.3 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 130.6, 120.8, 98.8, 60.8, 55.8, 52.1, 49.1, 37.3, 20.0, 13.6; IR v_{max} [cm⁻¹] 2956, 2873, 2843, 1738, 1462, 1435, 1383, 1310, 1257, 1193, 1140, 1116, 1093, 1066; LRMS (APCI) *m/z* (relative intensity) 215.1 [M+H]⁺ (1), 197.2 (11), 184.2 (18),

165.2 (100), 133.2 (63), 106.1 (8); **Anal** calcd. for C₁₁H₁₈O₄: C, 61.7; H, 8.5; O, 29.9; found: C, 61.8; H, 8.2; O, 30.0 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 5.61-5.58 (m, 1H, H5), 4.79 (d, J = 4.3 Hz, 1H, H2), 4.34-4.28 (m, 1H, H6), 4.10-4.04 (m, 1H, H6), 3.69 (s, 3H, COOCH₃), 3.43 (s, 3H, OCH₃), 3.33-3.29 (m, 1H, H3), 2.08-1.97 (m, 2H, CH₂), 1.46-1.30 (m, 2H, CH₂), 0.85 (t, J = 7.3 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 131.4, 121.5, 98.3, 61.4, 56.1, 51.9, 48.2, 36.9, 20.1, 13.6; **IR** v_{max} [cm⁻¹] 2958, 2874, 1737, 1462, 1439, 1383, 1309, 1265, 1198, 1141, 1120, 1094, 1057; **LRMS (APCI)** *m*/*z* (relative intensity) 215.2 [M+H]⁺ (1), 197.4 (45), 184.2 (25), 165.2 (76), 133.2 (100), 106.0 (11); **Anal** calcd. for C₁₁H₁₈O₄: C, 61.7; H, 8.5; O, 29.9; found: C, 62.0; H, 8.25; O, 29.8 %.

tert-Butyl 5-(2-methoxy-3-(methoxycarbonyl)-3,6-dihydro-2*H*-pyran-4-yl)-1*H*-indole-1carboxylate 4k: Prepared according to general procedure in 38 % yield (25 % *trans*, 13 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellowish solid, mp 115.3 °C (*trans*), 124.8 °C (*cis*)

trans isomer: ¹H NMR (300 MHz, CDCl₃) δ 8.10-8.02 (m, 1H, Ar), 7.59-7.55 (m, 1H, Ar), 7.51-7.48 (m, 1H, Ar), 7.35-7.29 (m, 1H, Ar), 6.55-6.52 (m, 1H, Ar), 6.21 (t, *J* = 2.8 Hz, 1H, H5), 5.16 (d, *J* = 2.2 Hz, 1H, H2), 4.40 (t, *J* = 2.4 Hz, 2H, H6), 3.80-3.76 (m, 1H, H3), 3.61 (s, 3H, COOCH₃), 3.53 (s, 3H, OCH₃), 1.66 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 180.6, 171.0, 149.6, 134.1, 130.7, 130.4, 126.3, 123.1, 122.0, 117.7, 115.0, 107.4, 98.8, 83.7, 60.8, 55.9, 52.3, 48.5, 28.2; **IR** v_{max} [cm⁻¹] 2931, 2853, 1736, 1471, 1439, 1366, 1339, 1286, 1246, 1193, 1160, 1137, 1089, 1072; **LRMS (APCI)** *m/z* (relative intensity) 388.3 [M+H]⁺ (16), 370.4 (7), 329.4 (100), 300.4 (78), 272.4 (23), 268.4 (63), 256.4 (16), 224.4 (11), 197.4 (14); **Anal** calcd. for C₂₁H₂₅NO₆: C, 65.1; H, 6.5; N, 3.6; O, 24.8; found: C, 65.0; H, 6.4; N, 3.9; O, 24.7 %.

cis isomer: ¹H NMR (300 MHz, CDCl₃) δ 8.09-8.01 (m, 1H, Ar), 7.59-7.55 (m, 1H, Ar), 7.51-7.47 (m, 1H, Ar), 7.33-7.27 (m, 1H, Ar), 6.55-6.51 (m, 1H, Ar), 6.25-6.21 (m, 1H, H5),

5.01 (d, J = 4.2 Hz, 1H, H2), 4.57 (dt, J = 16.9 Hz, J = 2.6 Hz, 1H, H6), 4.34 (dt, J = 16.9 Hz, J = 2.6 Hz, 1H, H6), 4.08-4.03 (m, 1H, H3), 3.58 (s, 3H, COOCH₃), 3.54 (s, 3H, OCH₃), 1.66 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 180.8, 170.4, 149.9, 134.2, 131.8, 131.0, 126.6, 123.9, 121.8, 117.5, 115.4, 107.7, 98.9, 84.0, 62.4, 56.6, 52.4, 48.1, 28.4; **IR** v_{max} [cm⁻¹] 2930, 2856, 1732, 1470, 1439, 1369, 1336, 1276, 1257, 1237, 1194, 1159, 1138, 1112, 1084, 1056; **LRMS (APCI)** *m*/*z* (relative intensity) 388.2 [M+H]⁺ (9), 370.2 (12), 329.2 (100), 300.2 (53), 272.2 (18), 268.3 (70), 256.2 (8), 224.2 (18), 197.1 (6); **Anal** calcd. for C₂₁H₂₅NO₆: C, 65.1; H, 6.5; N, 3.6; O, 24.8; found: C, 64.85; H, 6.7; N, 3.7; O, 24.8 %.

Methyl 4-(4-cyanophenyl)-2-methoxy-3,6-dihydro-2H-pyran-3-carboxylate 41: Prepared according to general procedure in 92 % yield (68 % *trans*, 24 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 9:1), white solid, mp 121.2 °C (*trans*), yellowish amorphous solid (*cis*)

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.58 (m, 2H, AA', BB', Ar), 7.44-7.40 (m, 2H, AA', BB', Ar), 6.35-6.31 (m, 1H, H5), 5.21-5.18 (m, 1H, H2), 4.40-4.36 (m, 2H, H6), 3.67-3.62 (m, 4H, H3, COOCH₃, overlapped), 3.50 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 143.7, 132.3, 128.9, 127.0, 125.9, 118.7, 111.0, 98.1, 60.4, 55.8, 52.5, 47.4; **IR** v_{max} [cm⁻¹] 2923, 2848, 2227, 1603, 1438, 1362, 1274, 1247, 1136, 1093, 1074; **LRMS** (APCI) *m/z* (relative intensity) 274.1 [M+H]⁺ (1), 256.3 (23), 243.2 (18), 210.3 (100), 215.2 (50), 183.3 (12), 154.3 (29), 75.2 (3); **Anal** calcd. for C₁₅H₁₅NO₄: C, 65.9; H, 5.5; N, 5.1; O, 23.4; found: C, 65.8; H, 5.4; N, 5.1; O, 23.7 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.62-7.58 (m, 2H, AA', BB', Ar), 7.41-7.36 (m, 2H, AA', BB', Ar), 6.33 (s, 1H, H5), 5.09-5.05 (m, 1H, H2), 4.51 (d, *J* = 17.3 Hz, 1H, H6), 4.32 (d, *J* = 17.3 Hz, 1H, H6), 4.00 (s, 1H, H3), 3.60 (s, 3H, COOCH₃), 3.51 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 144.0, 132.4, 130.0, 127.4, 125.4, 118.7, 111.0, 97.8, 60.9, 56.3, 52.3, 46.9; **IR** v_{max} [cm⁻¹] 2924, 2851, 2227, 1734, 1605, 1558, 1507, 1437, 1385, 1362, 1307, 1250, 1197, 1168, 1134, 1112, 1057; **LRMS (APCI)** *m/z* (relative intensity) 274.1 [M+H]⁺ (3), 256.4 (100), 242.4 (98), 226.4 (28), 210.4 (29), 182.4 (41), 85.5 (9), 75.5

(14), 61.3 (6); **Anal** calcd. for C₁₅H₁₅NO₄: C, 65.9; H, 5.5; N, 5.1; O, 23.4; found: C, 66.0; H, 5.4; N, 5.3; O, 23.3 %.

3-(Trifluoromethyl)-3,6-dihydro-2-methoxy-4-phenyl-2H-pyran 7: Prepared according to general procedure in 38 % yield (20 % *trans*, 18 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 9:1), white solid, mp 82.1 °C (*trans*), white amorphous solid (*cis*).

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.27 (m, 5H, Ar), 6.21 (t, J = 2.5 Hz, 1H, H5), 5.21 (s, 1H, H2), 4.39-4.34 (m, 2H, H6), 3.51 (s, 3H, OCH₃), 3.51-3.47 (m, 1H, H3); ¹³C NMR (125 MHz, CDCl₃) δ 139.7, 128.5, 127.7, 127.7, 127.4 (q, J = 2.0 Hz), 125.7, 124.8 (q, J = 281.2 Hz), 95.0 (q, J = 3.7 Hz), 60.0, 55.6, 44.8 (q, J = 25.6 Hz); **IR** v_{max} [cm⁻¹] 2932, 2886, 2851, 1600, 1495, 1447, 1393, 1365, 1320, 1260, 1160, 1144, 1117, 1110, 1069; **LRMS (APCI)** *m/z* (relative intensity) 259.2 [M+H]⁺ (100), 241.0 (24), 208.5 (9), 190.5 (19), 185.0 (17), 85.2 (6); **Anal** calcd. for C₁₃H₁₃F₃O₂: C, 60.5; H, 5.1; F, 22.1; O, 12.4; found: C, 60.7; H, 5.0; F, 22.2; O, 12.1 %.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.24 (m, 5H, Ar), 6.05 (s, 1H, H5), 4.97-4.94 (m, 1H, H2), 4.51 (dt, *J* = 17.2 Hz, *J* = 2.4 Hz, 1H, H6), 4.34 (dt, *J* = 17.2 Hz, *J* = 2.4 Hz, 1H, H6), 3.75-3.67 (m, 1H, H3), 3.59-3.57 (m, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 139.5, 130.2 (q, *J* = 2.1 Hz), 128.4, 128.2, 127.6, 126.5, 124.9 (q, *J* = 281.7 Hz), 97.6 (q, *J* = 2.3 Hz), 62.3, 56.6, 44.7 (q, *J* = 25.1 Hz); **IR** v_{max} [cm⁻¹] 2939, 2850, 1600, 1498, 1446, 1397, 1362, 1329, 1256, 1245, 1155, 1144, 1112, 1069; **LRMS (APCI)** *m/z* (relative intensity) 259.4 [M+H]⁺ (100), 241.3 (35), 208.4 (17), 190.3 (8), 185.4 (23), 85.2 (11); **Anal** calcd. for C₁₃H₁₃F₃O₂: C, 60.5; H, 5.1; F, 22.1; O, 12.4; found: C, 60.8; H, 4.7; F, 22.5; O, 12.0 %.

Methyl 3,6-dihydro-2-methoxy-6-methyl-4-phenyl-2*H***-pyran-3-carboxylate 8:** Prepared according to general procedure in 71 % yield, purified by column chromatography (gradient elution, petroleum ether/ethyl acetate 95:5 - 9:1), colourless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.20 (m, 5H, Ar), 6.16 (d, J = 2.0 Hz, 1H, H5), 5.21-5.19 (m, 1H, H2), 4.50-4.44 (m, 1H, H6), 3.67-3.65 (m, 4H, COOCH₃, H3), 3.48 (s, 3H, OCH₃), 1.39 (d, J = 6.8 Hz, 3H, CH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.9, 139.1, 129.1, 128.4, 128.3, 127.5, 125.2, 98.7, 65.1, 55.6, 52.4, 47.7, 20.4; **IR** v_{max} [cm⁻¹] 3025, 2977, 2951, 2951, 2838, 1744, 1728, 1600, 1496, 1445, 1435, 1347, 1313, 1246, 1192, 1155, 1118, 1070, 1045; **MS** (**TOF CI**) *m/z* (relative intensity) 285.1 [M+Na]⁺ (1), 261.1 (7), 249.1 (7), 245.1 (10), 231.1 (44), 221.1 (13), 203.1 (100), 189.1 (48), 171.1 (23), 105.0 (4); **HRMS (ESI)** *m/z* calcd. for C₁₅H₁₈O₄Na: 285.1097, found: 285.1098; **Anal** calcd. for C₁₅H₁₈O₄: C, 68.7; H, 6.9; O, 24.4; found: C, 68.6; H, 6.9; O, 24.5 %.

General Procedure for the Rearrangement of Dihydropyrans to Cyclopentenones. Methanol (0.03 ml, 0.2 mmol) and anhydrous *p*-toluenesulfonic acid (138 mg, 0.8 mmol) were added to a solution of dihydropyran (0.2 mmol) in toluene (1.5 ml). The reaction mixture was heated to 80 °C and stirred overnight at this temperature. The mixture was diluted with ethyl acetate and washed with a saturated aqueous NaHCO₃ solution. The organic layer was dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel.

Methyl 3-oxo-2-phenylcyclopent-1-enecarboxylate 9a: Prepared according to general procedure in 69 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), yellow oil. The spectral data were identical with those in the literature.¹²

¹**H NMR** (300 MHz, CDCl₃) δ 7.43-7.28 (m, 5H, Ar), 3.74 (s, 3H, OCH₃), 2.98-2.91 (m, 2H, H5), 2.69-2.63 (m, 2H, H4); ¹³**C NMR** (75 MHz, CDCl₃) δ 207.2, 166.2, 156.4, 146.3, 130.1, 128.9, 128.8, 127.9, 52.2, 34.5, 27.0; **MS (TOF CI)** *m/z* (relative intensity) 217.1 [M+H]⁺

¹² J. T. Kuethe, A. Wong, J. Wu, I. W. Davies, P. G. Dormer, C. J. Welch, M. C. Hillier, D. L. Hughes, P. J. Reider, *J. Org. Chem.*, 2002, **67**, 5993.

(100), 185.1 (34), 129.1 (3); **HRMS (TOF CI)** m/z calcd. for C₁₃H₁₃O₃: 217.0865, found: 217.0863.

Methyl 3-oxo-2-pentylcyclopent-1-enecarboxylate 9b: Prepared according to general procedure in 20 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 3.85 (s, 3H, OCH₃), 2.78-2.72 (m, 2H, H5), 2.52 (t, *J* = 7.7 Hz, 2H, CH₂), 2.48-2.43 (m, 2H, H4), 1.46-1.34 (m, 2H, CH₂), 1.34-1.22 (m, 4H, CH₂), 0.87 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 209.6, 165.8, 154.0, 151.8, 52.0, 34.0, 31.9, 28.1, 26.4, 24.0, 22.4, 13.9; **IR** v_{max} [cm⁻¹] 2955, 2928, 2859, 1713, 1679, 1461, 1436, 1274, 1224, 1182, 1101; **MS** (**TOF CI**) *m/z* (relative intensity) 211.1 [M+H]⁺ (100), 195.1 (5), 151.1 (4); **HRMS (TOF CI)** *m/z* calcd. for C₁₂H₁₉O₃: 211.1334, found: 211.1328.

Methyl 3-oxo-2-propylcyclopent-1-enecarboxylate 9c: Prepared according to general procedure in 44 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 3.85 (s, 3H, OCH₃), 2.78-2.72 (m, 2H, H5), 2.54-2.43 (m, 4H, H4, CH₂), 1.50-1.37 (m, 2H, CH₂), 0.90 (t, J = 7.4 Hz, 3H, CH₃); ¹³**C NMR** (75 MHz, CDCl₃) δ 209.6, 165.8, 154.2, 151.4, 52.0, 34.0, 26.4, 25.9, 21.8, 14.1; **IR** v_{max} [cm⁻¹] 2958, 2929, 2872, 1712, 1693, 1462, 1439, 1366, 1256, 1237, 1207, 1190, 1179, 1129, 1100; **LRMS** (**APCI**) *m/z* (relative intensity) 183.7 [M+H]⁺ (100), 151.6 (5), 123.6 (13), 105.7 (4), 75.7 (5), 59.5 (3).

Methyl 2-(naphthalen-1-yl)-3-oxocyclopent-1-enecarboxylate 9d: Prepared according to general procedure in 40 % yield, purified by column chromatography (petroleum ether/ethyl acetate 9:1), brown amorphous solid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.91-7.85 (m, 2H, Ar), 7.55-7.39 (m, 5H, Ar), 3.50 (s, 3H, OCH₃), 3.22-2.99 (m, 2H, CH₂), 2.83-2.75 (m, 2H, CH₂); ¹³**C** NMR (75 MHz, CDCl₃) δ 207.5, 165.4, 158.6, 147.4, 133.4, 131.1, 129.0, 128.5, 128.2, 126.7, 126.1, 125.8, 125.0, 124.7, 52.1, 34.7, 27.2; **IR** v_{max} [cm⁻¹] 2925, 2854, 1729, 1709, 1507, 1436, 1395, 1259, 1231, 1201, 1161, 1108, 1047; **LRMS (APCI)** *m*/*z* (relative intensity) 267.4 [M+H]⁺ (12), 235.5 (100), 85.5 (5), 59.1 (4).

Methyl 2-benzyl-3-oxocyclopent-1-enecarboxylate 9e: Prepared according to general procedure in 38 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellowish oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.33-7.14 (m, 5H, Ar), 3.92 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃), 2.82-2.75 (m, 2H, CH₂), 2.50-2.44 (m, 2H, CH₂); ¹³**C NMR** (75 MHz, CDCl₃) δ 209.1, 165.6, 154.6, 149.6, 138.3, 129.0, 128.4, 126.3, 52.1, 34.0, 29.6, 26.6; **IR** ν_{max} [cm⁻¹] 2951, 2922, 2852, 1754, 1710, 1494, 1453, 1435, 1292, 1252, 1233, 1173, 1109, 1077, 1051; **LRMS** (**APCI**) *m/z* (relative intensity) 230.9 [M+H]⁺ (100), 198.9 (34), 182.5 (12), 158.7 (24), 137.1 (3).

Methyl 2-(4-cyanophenyl)-3-oxocyclopent-1-enecarboxylate 9f: Prepared according to general procedure in 22 % yield, purified by column chromatography (petroleum ether/ethyl acetate 85:15), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 7.72-7.63 (m, 2H, AA', BB', Ar), 7.46-7.38 (m, 2H, AA', BB', Ar), 3.76 (s, 3H, OCH₃), 3.02-2.92 (m, 2H, CH₂), 2.73-2.62 (m, 2H, CH₂); ¹³**C NMR** (75 MHz, CDCl₃) δ 206.1, 165.2, 158.0, 145.1, 134.9, 131.6, 129.8, 118.5, 112.4, 52.4, 34.5, 27.2; **IR** v_{max} [cm⁻¹] 2927, 2852, 2222, 1730, 1712, 1437, 1343, 1214, 1183, 1161, 1091; **LRMS (APCI)** *m/z* (relative intensity) 242.3 [M+H]⁺ (100), 210.3 (50), 156.4 (3), 75.6 (5).

Methyl 2-(4-(methoxycarbonylphenyl)-3-oxocyclopent-1-enecarboxylate 9g: Prepared according to general procedure in 20 % yield, purified by column chromatography (petroleum ether/ethyl acetate 85:15), yellow oil.

¹**H NMR** (300 MHz, CDCl₃) δ 8.08-8.03 (m, 2H, AA', BB', Ar), 7.40-7.35 (m, 2H, AA', BB', Ar), 3.92 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 2.99-2.94 (m, 2H, CH₂), 2.71-2.65 (m, 2H, CH₂); ¹³**C NMR** (75 MHz, CDCl₃) δ 206.6, 166.7, 165.8, 157.5, 145.7, 134.8, 130.2, 129.1, 129.0, 52.3, 52.2, 34.6, 27.1; **IR** v_{max} [cm⁻¹] 2923, 2852, 1715, 1436, 1277, 1227, 1183, 1161, 1111; **LRMS (APCI)** *m/z* (relative intensity) 274.9 [M+H]⁺ (100), 256.9 (2), 243.9 (16), 148.5 (3).

Preparation of ¹³C-labelled compounds.

3-phenylprop-2-yn-1-ol-2-¹³**C:** Prepared according to general procedure for formation of propargylic alcohols from alkynes in 92 % yield, purified by column chromatography (petroleum ether/ethyl acetate 8:2), colourless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.46-7.41 (m, 2H, Ar), 7.34-7.28 (m, 3H, Ar), 4.50 (d, J = 7.5 Hz, 2H, OCH₂), 1.95 (bs, 1H, OH); ¹³**C NMR** (125 MHz, CDCl₃) δ 131.6 (d, J = 2.5 Hz), 128.4, 128.3, 122.5 (d, J = 12.4 Hz), 87.2 (¹³C), 86.4 (d, J = 83.1 Hz), 51.6 (d, J = 73.7 Hz).

(*E*)-Methyl 3-(3-phenylprop-2-ynyloxy)acrylate-2'-¹³C: Prepared according to general procedure for the addition of propargylic alcohols to methyl propiolate in 99 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellowish oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.65 (d, J = 12.6 Hz, 1H, H3), 7.47-7.43 (m, 2H, Ar), 7.37-7.29 (m, 3H, Ar), 5.39 (d, J = 12.6 Hz, 1H, H2), 4.75 (d, J = 7.9 Hz, 2H, OCH₂), 3.72 (s, 3H, OCH₃); ¹³**C NMR** (125 MHz, CDCl₃) δ 167.7, 160.9 (d, J = 2.5 Hz), 131.8 (d, J = 2.6 Hz), 129.0, 128.3, 121.7 (d, J = 12.8 Hz), 98.0, 82.1 (d, J = 92.9 Hz), 81.8 (¹³C), 59.1 (d, J = 79.2 Hz), 51.2.

Methyl 3,6-dihydro-2-methoxy-4-phenyl-2*H*-pyran-3-carboxylate-5-¹³C:

Prepared according to general procedure for gold(I)-catalyzed cyclisation to dihydropyrans in 80 % yield (58 % *trans*, 22 % *cis*), purified by column chromatography (petroleum ether/ethyl acetate 95:5), white amorphous solid.

trans isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.22 (m, 5H, Ar), 6.21 (dt, *J* = 157.9 Hz, *J* = 2.8 Hz, 1H, H5), 5.15 (d, *J* = 2.2 Hz, 1H, H2), 4.38 (dt, *J* = 5.2 Hz, *J* = 2.2 Hz, 2H, H6), 3.72-3.69 (m, 1H, H3), 3.63 (s, 3H, COOCH₃), 3.51 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.9 (d, *J* = 2.9 Hz), 139.1, 130.1 (d, *J* = 74.2 Hz), 128.4, 127.5, 125.2 (d, *J* = 3.8 Hz), 123.7 (¹³C), 98.6 (d, *J* = 4.5 Hz), 60.7 (d, *J* = 42.6 Hz), 55.8, 52.3, 48.0.

cis isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.22 (m, 5H, Ar), 6.23 (d, *J* = 158.1 Hz, 1H, H5), 4.99 (d, *J* = 4.2 Hz, 1H, H2), 4.55 (ddt, *J* = 17.0 Hz, *J* = 5.4 Hz, *J* = 2.6 Hz, 1H, H6), 4.32 (ddt, *J* = 17.0 Hz, *J* = 5.4 Hz, *J* = 2.6 Hz, 1H, H6), 4.01-3.97 (m, 1H, H3), 3.60 (s, 3H,

COOCH₃), 3.53 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.0 (d, J = 2.7 Hz), 139.1, 131.2 (d, J = 74.0 Hz), 128.5, 127.5, 124.8 (d, J = 3.8 Hz), 124.2 (¹³C), 98.5 (d, J = 4.8 Hz), 62.0 (d, J = 42.9 Hz), 56.4, 52.2, 47.5.

Methyl 3-oxo-2-phenylcyclopent-1-enecarboxylate-3-¹³**C:** Prepared according to general procedure for the rearrangement of dihydropyrans to cyclopentenones in 69 % yield, purified by column chromatography (petroleum ether/ethyl acetate 95:5), yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.44-7.27 (m, 5H, Ar), 3.74 (s, 3H, OCH₃), 2.96-2.91 (m, 2H, H5), 2.68-2.63 (m, 2H, H4); ¹³**C NMR** (125 MHz, CDCl₃) δ 207.2 (¹³C), 166.2 (d, J = 8.0 Hz), 156.4 (d, J = 12.0 Hz), 146.2 (d, J = 46.9 Hz), 130.1 (d, J = 2.0 Hz), 128.9, 128.8, 127.9, 52.2, 34.5 (d, J = 39.6 Hz), 27.0 (d, J = 3.3 Hz).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Sup This journal is	© The Ro	y Material yal Sogiety 25 −	(ESI) for of Chem 9 9 1	Chemical C istry 2011	Communic	ations			97.63			—	59.08	51.13					
4.18-90/1041/1 ⁰ 101/1444/144	l Indugu Makayaka (Indugu Makayaka)	4,0004,1010,004,004,004,004,004,004,004,	Ingtal & Analysian of the	al Jamie (Polye) at 1 jenesk	VII/Jaluational International	nt/injalvejbaliktion.Wr	Y/16###18/04/144###Y#	N/Margan (K/MA) (cr. (mak./M		high faith in the state of the	Myntefentrauisyyr		Nhjevia/volat uzvolavji	Volveder Frailigere	19442201/49444147		104 ven den fragensker frakker		utions/14/6/11
190	180	170	160	150	140	130	120	110	100 f1 (ppm	90	80	70	60	50	40	30	20	10	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

handhaidhannadan	ninalia (hinana) hi	Hyvylyniu, and Vysalynyn	/which we are a second s	the state of the s	piling and a second state of the	144411114141414444	Nunio III (Internetional)	ladariya karakara karakara karakara karakara karakara	han kalenda kal	iyiliyayiyotaliyota	WWWWWWWW	hudin huluniu	(luguily)¶uguilyug M	IN AND A REAL INF	annadar gan	alluluu aadaa dhaybahaa	where we	n de la constant de l La constant de la cons	UNIVERSITE STATE
 190	180	170	160	150	140	130	120	110	100	90	80	70	60	5	0 40	30	20	10	·

-----59.04

----51.14

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

58 52 63 50 50 5 58 50 63 50 50 50	
10,27,26,27,26,27,26,1	

--51.21

		I	
	6		

_																	
100	100	170	160	150	140	120	120	110	100	· · ·	00	70	60		40	20	20
190	180	170	100	150	140	150	120	f1 ((ppm)	90	80	70	00	50	40	50	20

Electronic Supplementary Material This journal is © The Royal Society	(ESI) fo	or Chemical Communications	.77 .51	02.	g	5 4	Ξ	٥
S →	—167,		130 129 -125		5.76			

Electronic This journ	c Supplem nal is © Th	nentary M ne Royal S	aterial (ES Society of 'Society of 'Society of 'Society of 'Society of 'Society of 'Society of 'Societ	SI) for Che Chemistr G	emical Con y 2011	nmunication K:s E H	su 128.56 127.83 126.77		08.72		75.21	58.93	51.16		25.06			
ىرىنىڭ ئۇلغانىرى مەربىلىلىدۇن ئۇلغانىرى	sichi dasa minimika fikan	a Jüütikki kiin maa Launa	مسابه منازا الأو مساور	att alk-blasterin	visi, sozi álterer findessellti	holikuli ve faliteka si ka olikari	ita nika nik	alife fina a dina - na dina dina dina dina dina dina dina d	edan efteren halen hal de skal de skal	Additulinantal Lata induite	dn. cha	ebbasi.visionada a maist di bati met	a i La	al adjusts follows was to add		sika) da finadi ki ki	undet and the latest second	ndað á þí samaði frá star de
1) 114 14 14 	1900 - 19	180		ייזאייייזעריייזעריייזעריי 160		140	130	120 110	100 f1 (ppm)	90	80 70	60			30 	""""""""""""""""""""""""""""""""""""""	, 10	0

Electronic Su This journal is	pplementary s © The Roya	Material (E I Society c I Society c C CH ₃	ESI) for Ch f Chemist 91 91 4	emical Com ry 2011	munications	— 133.41	7 113.95	113.68					7_59.28	51.18			
()\$17 4444444444	ujan _t a _n anananan	lipoyr.witt.com	une and a state of the state of	tolyd ⁴⁴ #9444j4t11fger7fd947fd	1419(11)10-10 ⁻¹⁰ 10-10 ⁻¹⁰ 10/10/10-10 ⁻¹⁰	I Woodustaneer	1144/1141/148 8- 24-41/44/1146		nd-control-control field		, 1446 (August gir (1), 1497 V	Papagar 100%++14,10+14,184	Lashquill contained, Frailleadul	uppowerfull private deputers	Ι ητής/οπογγητικού/ηθ ^η τηζου ^{τη} τηγου	elydaydd ylyner ywnaegellaw yw	bf-Platantipart-by-construct
190	180	170	160	150	140	130	120	110 f1 (j	100 opm)	90	80	70	60	50	40	30	20

 CH_3 0 °℃^{CH}3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 GH_3 GH_3

~21.74

-13.39

1 1			'	' '	· I	· I	· I	· I	· · ·	' 1	' 1	' '	· I	'	'	· ·	· ·	· ·		· ·	'	
210	200	190	180	170	160	150	140	130	120	110 f1	100 (ppm)	90	80	70	60	50	40	30	20	10	0	

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 f1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Co	mmunicatio	ons	
This journal is © The Royal Society of Chemistry 2011	08	51 51 51 51	

	<pre>130.06128.40127.51125.21125.21125.21</pre>
1	11777

cis isomer

169.

-138.72 -138.72 -130.89 -128.18 -121.19 -124.46 -123.89

-61.70 56.03 -51.83 747.12

cis isomer

200	190	180 1	.70 160	150 140	130	120	110 100 f1 (ppm	90	80	70	60	50) 4	40 10	30	20	10	0
Jan Kasan Kata Kata Kata Kata Kata Kata Kata Ka	gant als July 1 (1257) - Anger (1258)	na, Mazya, Lafrada, Jan J, Jan Jjan	ĸſĴġŧĸſŧĸĸŦŷĸŗĸſĸĬſĸĸĨĸŧŔĸIJţſĸĸĬ	ĸŔġŊſŔĸŦĨĸġĸĔĸĸĸſŗĿĿŦĸĔſĸſĿŢĸŢŔŢſĿŢĸŢŔŢŔĹĬĸĿĸŖŦĿŔĹ	nea maril succession of	104,WHM Phylerolyn	นุกุลบงจะจะปู <i>กป</i> ุกยังเธอรูญกระเศไล	(ayulin Tarid yadaliya dayina (), ke	Manu Artoni da Ma	ngong integra of Mail Societion (Type)		PWW.46Beat Survey	hiduinga sa ta sa	United States	I	1 1	Mary Mark (Val) - Land (Val)	AL THE SECTOR OF THE THE THE
This journa Cl	al is © The Ro	ýal Society O ^{- CH} 3 CH3 mer	of Ćhemistry 20	911			— 				60.86	~ 55.83 ~ 52.13 ~ 49.15		35.15		20.45 22.44	—13.97	
Electronic S	Supplemental	ry Material	(ESI) for Chemic	cal Communications	•	10												

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 $CH_3 O I CH_3 $		— 121.66		60.55	~ 55.77 ~ 52.09 ~ 50.22	
<i>trans</i> isomer						
190 180 170 160 150 140 13	0	120 110 1 f1	00 90 80 70 (ppm)	60	50 40 30	20 10 0

cis : trans (4 : 1)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 $\begin{array}{c} CH_3 & 0 \\ \hline \\$			- 56.10 - 56.10 - 49.54	21.32
210 200 190 180 170 160 150 140	130 120 11 f1	.0 100 90 80 (ppm)	70 60 50 40	30 20 10 0

--60.55 --55.89 --51.97 --50.42

cis isomer

0 `0^{-℃H}3 `0^{_℃H}3 O

trans isomer

f1 (ppm)

0 `0^{-℃H}3 `0^{_℃H}3 0

cis isomer

Electronic Supplementary Material (ES	SI) for Chemical Communications							
This journal is © The Royal Society of	Chemistry 2011	29	88 87 87 87 87 87 887 887 887 887 887 8	N	9		4	80
S		[40.	125.	8.9	53.0	56.5	52.3	6.7t
I à Î		ī	17777		Ĩ	Ĩ	Ĩ	Ì
Y 0				а.				
L L CH								
~ ~ °0-0-13								
└ CH ₃								
0 0								

cis isomer

 CH_2 0 `0^{-℃H}3 `o^{∠CH}3 O

trans isomer

				2 22	15 //12	21 22	16						4			
C 1	, 1	· 1	, 1	· · · ·	, î	4 J	1		3 1		2 (, 1	<u>, (</u>	2 J	a r	T T
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20
							f1	(ppm)								

_

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3 CH_3	 	 	 61.03	 51.97	

	langad annahanyan nanahanya s				

1944					50 S.C.				121				10 0.00			51 to 12	
00 U		- 1 I	, ,	<u>с</u> Г	v 1	<u>к</u> 1	, 1	<u>с</u> 1	· 1	- <u>1</u>	·	· .		<u> </u>	· 1		\sim
190	180	170	160	150	140	130	120	110 f1 (ppm	100)	90	80	70	60	50	40	30	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011	 	60.99	60.93	56,14	 47.51	41.54
∽o∽∽o- ^{CH} 3						

cis : *trans* (3 : 1)

 150 140 130 120 110 f1 (ppm)	100 90 80	70 60 50	40 30

trans isomer

180 170 160 150	140 130 120	110 100 90 f1 (ppm)	80 70 60	 30 20

-55.77 -52.18

<72.04 <71.74 Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

`ó^{CH}₃

`0^{-℃H}3

-97.89

 $<_{71.88}^{72.21}$

---60.61 ---56.12 ---51.97 ---45.92

cis isomer

0

0

Electronic Supplementary Material (ESI) for Chemical Communication This journal is © The Royal Society of Chemistry 2011	~131.50 S									
CH_3 CIS isomer										
		-		1						
					1			1	.]	ł
		mathem	,		**************************************	Statement and a statement of the statement		www.		
180 175 170 165 160 155 150 145 140 135	130	12!	5 120	115 1 f	110 105 100 95 f1 (ppm)	90 85 8	0 75 70	65 60	55 50) 45 40 35

trans isomer

cis isomer

Electronic Supplementary Material (ESI) for Chemical Communic This journal is © The Royad Society of Chemistry 2011 CH_3 $\downarrow \downarrow \downarrow \downarrow \bigcirc CH_3$ $\downarrow \downarrow \bigcirc CH_3$ cis isomer	Cations 27.121 			61.42	-56.07 51.90 48.19			
190 180 170 160 150 140	130	120 110 1	00 90 80 70 f1 (ppm)	60	50 4	0 30	20 10	0

Electronic Supplementary Material (ESI) for This journal is © The Royal Society of Chem H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 H_3C CH_3 H_3C CH_3 CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C H_3C CH_3 H_3C H_3C CH_3 H_3C H_3C CH_3 H_3C CH_3 H_3C H_3	Chemical Communications histry 2011	134.08 130.65 130.43 126.32 123.12 117.69	— 107.43 — 98.75			—28.15
1/2011/14/9/1/2012/1/2012/1/2012/1/2012/1/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/201	ήσταν τίων τηψή σφαλασιγμαγορίται μα το		18444-18444 18444-18444 18444-18444 18444-18444 18444-18444 18444-18444 18444-18444 18444-18444 18444-18444 184444 18444 18444 18444 184444 18444 184444 184444 184444 1844444 184444 184444 184444 184444 1			
200 190 180 170	160 150 140	130 120	110 100 f1 (ppm)	90 80 70	60 50 40	30 20

200

Electronic Supplementary Markov This journal is © The Royal S	aterial (ESI) for Che Society of Chemistry	emical Communi / 20성1 약 	cations 75.251 7/125.41 7/125.41	— 118.69		97.78						N0.04		
	Dilaya (Ing)	huddadau maraachaanaa aanaa aanaa a		1 International Action			Labority and for the formation for the formation of the formation of the formation of the formation of the form	Jackshamed achieves		mentersummer	autophysical sectors		and ywr yn ywr ywr ywr yn	
180 170	160 150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20

trans isomer

55.55 -59.96

trans isomer

170 160 150 140 130	0 120 110 100 90 f1 (ppm)	80 70 60	50 40	30 20

cis isomer

cis isomer

44.97 44.77 44.57 44.37

	aber AMPRess, Sprint (Norma Nova a Nova a		un tradicio de successión d			maharménerus	an a	at on a second state of the second	und al antina su a va deva de la compositiva de la compositiva de la compositiva de la compositiva de la compos		AD BANKSHIN, DA BANKSHIN, DA				http://www.www.autors
180	170	160	150	140	130	120	110 f1	100 (ppm)	90	80	70	60	50	40	30

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

03	00 35 35 35
52.	34. 28. 22. 22.
	11111

-13.93

-52.02

yayasalyorsa yana adalar adalar kana kana kana kana kana kana kana ka	anarayonya ayoo yayoo yayoo	u riani ()(uriqitu)ninuya.hav.bu	wantig wind wind read with	lanninssenaviteren anderer finsen som	Navanan Natradan Not	han the state of the second	un an	hallan pinya nya dalam ya dalam	havan an a	landan managan ang ang ang ang ang ang ang ang a	hanna annananan an	nan an	wayawala	where we want	n hann with a star	inakan nakangan
210 200	190 180	170 160	150	140 130	120	110 f1 (ppr	100 n)	90	80 7	70 60	50	40	30	20	10	0

0.5

Electronic Supplementary Material (I This journal is The Royal Society of R I O O O CH ₃	ESI) for Chemic of Chemistry 20	al Comm 11 9 <u>5</u> 1955	nunications 53, 55 		√128.99 √128.35 √126.31						5	+T'7C		 > 33.96 > 29.63 > 26.63 		
	ſ₩₩₩₩₩₽₽₩₽₩₽₩₽₩₽₩₽₩₩₩₩		.formultufitionification		UTINIDA ADAT VIET AND LINK	unateuropeurologia dateuropetrologia	****	171/JL/94/Jujie/111		YANTATIONNY	Linger-Stational for systems	-			(freezenspecies/schored	Exterio (Mility, Deven / New Yo
220 210 200 190	180 1	70 1	60 150	140	130	120 110 f1 (ppm)	100	90	80	70	60	50	40	30	20	10

trans isomer

 $\begin{array}{c} -139.09 \\ 130.35 \\ 129.76 \\ 128.39 \\ 127.50 \\ 123.66 \\ 123.66 \end{array}$

 $<^{98.61}_{98.57}$

0 110 f1 (ppm)

8.5

Electronic Supplementary Material (ESI) for Chemical C This journal is © The Royal Society of Chemistry 2011	2166.12 umo	<pre>cations 156.32 156.32</pre>	<146.43	130.06 130.04 128.85 128.85 128.78	L127,90			52.16		∠26.99 ∠26.96
		l	<u> </u>				I		l.	
230 220 210 200 190 180 1	170	160	150 14	40 130	120 110 f1 (ppm)	100 90	80 70	60 50	40	30 20 10