Supplementary Information for

Direct Growth of Flexible LiMn₂O₄/CNTs Lithium-Ion Cathodes

Xilai Jia^{a,b,§}, Chunzhu Yan,^{a,c§} Zheng Chen,^a Ranran Wang,^a Qiang Zhang,^b Lin Guo,^{c*} Fei Wei^{b*} and Yunfeng Lu^{a*}

^aDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, Fax: 310-206-410; Tel: 310-794-7238; E-mail: luucla@ucla.edu, ^bBeijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (P.R. China), E-mail: wf-dce@tsinghua.edu.cn, ^cSchool of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China E-mail: guolin@buaa.edu.cn

Experimental section

1. Synthesis

A two-step hydrothermal process was used to systhesize the LiMn₂O₄/CNT nanocomposites. CNTs with length up to 100 micrometers and diameter at ~11 nm were produced from a chemical vapor deposition (CVD) based mass production method.¹ All the other chemicals were analytical grade and were directly used without any further purification. To make the LiMn₂O₄/CNT nanocomposites, the first step is to synthesize MnO₂/CNT nanocomposites. In a typical process, pristine CNTs were purified using a 18 % HCl solution and a 20 % HF solution alternatively to remove redidual catalysts. Purified CNTs were washed using an enough amount of de-ionized water and then transferred into a H₂SO₄/H₂O₂ solution (volume ratio of H₂SO₄/H₂O₂=4:1) to oxidize the surface at 0 °C for 2 hr.² Then, 0.2 g of such weakly oxidized CNTs were transferred into a JJ-2 homogenate fluid shearing machine containing 300 mL of H₂O to shear at around 5000 r min⁻¹ for 2 hr. Hydrothermal synthesis of MnO₂/CNT nanocomposites was conducted according to the reported methodes with some modifications.³⁻⁵ Specifically, 100 mL of 8 % KMnO₄ aqueous

solution was added into the above CNT suspension and stirred for 1 hr. The mixture was then transferred into a beaker and heated to 90 °C under stirring for 4 h for the redox reaction. After reaction, the mixture was filtered and washed by an enough amount of de-ionized water, and then dried under vacuum to obtain MnO₂/CNT nanocomposites. To make the LiMn₂O₄/CNT nanocomposites, 0.38 g of above MnO₂/CNT nanocomposites and 0.5 g of LiOH· H₂O were mixed with 80 mL of H₂O, and homogenized for another 1 h before transferring into a 100 mL teflon-lined autoclave. After a hydrothermal treatment at 180 °C for 4 days, the resulted precipitates were filtered and rinsed with water and acetone for several times and dried under vacuum at 90 °C for 12 h to obtain the flexible LiMn₂O₄/CNT nanocomposites.

To synthesize $LiMn_2O_4$ nanoparticles, we first synthesized birnessite-type MnO_2 by a co-precipitation method using $KMnO_4$ and $MnSO_4$ aqueous solution.⁶ The as-prepared birnessite-type MnO_2 was hydrothermal treated under the same condition as MnO_2/CNT composite.

2. Characterization

X-ray diffraction measurements were conducted on a Panalytical X'Pert Pro x-ray powder diffractometer using Cu-Ka radiation (λ =1.54 Å). Thermalgravimetric analysis (TGA) was conducted on a TGA Q50 instrument at a ramping rate of 10° min⁻¹ under an air flow. Nitrogen sorption isotherms were measured at 77 K with a Micromeritics ASAP 2020 analyzer. The specific surface areas were calculated by the Brunauer–Emmett–Teller (BET) method using a desorption branch in a relative pressure (P/P_0) range from 0.04 to 0.25. Scanning electron microscopy (SEM) experiments were conducted on a JEOL JSM-6700 instrument. Transmission electron microscopy (TEM) experiments were carried out on a FEI-T12 operated at 120.0 kV.

3. Electrochemical measurement

To test the electrochemical performance of the flexible lithium-ion cathodes, flexible LiMn₂O₄/CNT nanocomposite films were cut into desired sizes. By comparison, to make composite LiMn₂O₄ electrode, 80% of as synthesized LiMn₂O₄ nanoparticles, 10% carbon black, and 10% poly(vinylidene fluoride) (PVDF) dispersed in N-methylpyrrolidinone (NMP) were mixed to form slurries. The homogenous slurries were coated on an Al substrate and dried at 80 °C for 30 min under vacuum. As formed electrodes were then pressed at a pressure of 2 MPa and further dried under vacuum at 100 °C for another 12 h. The mass loading was $\sim 2 \text{ mg cm}^{-2}$ on the current. The flexible LiMn₂O₄/CNT and composite LiMn₂O₄ cathodes were then assembled into 2032-type coin cells, where glass fibers (Whatman) were used as the separators and lithium foils were used as The electrolyte solution was a 1 mol L^{-1} LiClO₄ in both the counter and reference electrodes. propylene carbonate (PC) solution. All the cells were assembled in a argon-filled glovebox. The cyclic voltammetry (CV) measurements were performed on a Bio-Logic VMP3 electrochemical workstation at a scan rate of 0.2 mV s⁻¹ in a voltage range between 2.9 and 4.3 V (vs. Li/Li⁺). Electrochemical impedance spectroscopy (EIS) tests of cells before and after cycling were carried out on a Solartron 1860/1287 Electrochemical Interface. The constant-current charge and discharge measurements were conducted by a LAND CT2000 at different current densities in a voltage range between 3.2 and 4.3 V (vs. Li/Li^+).

Fig. S1 Enlarged XRD patterns of LiMn₂O₄/CNT composite and CNTs at two theta from 20-30°.

Fig. S2 Schemetic of CNT structure before (left) and after (right) hydrothermal reaction.

The stoichiometric reaction of CNT with KMnO₄ can be expressed as:

$$4MnO_{4}^{-} + 3C + H_{2}O \rightarrow$$
$$4MnO_{2}^{2} + CO_{3}^{2} + 2HCO_{3}^{-}$$

In such a reaction, 36 g of carbon consumed in the reaction can produce 476 g of MnO_2 . If we assume a percentage of x involved in our reaction, then we have:

0.2 (CNT) *(1-x) +476/36*(0.2*x) =1.1 (CNT/MnO₂), we get x=0.45. From TEM, we can use R_0 =2.5 nm, R_1 =5.5 nm and R_2 =4.25 nm. Assume a leght of L for a CNT, the volume of carbon that was consumed in the reaction can be expressed by:

 $\Delta V = 2\pi L (R_1^2 - R_0^2) - 2\pi L (R_2^2 - R_0^2) = 2\pi L (R_1^2 - R_2^2)$, therefore, the ratio of the consumed carbon to the original amount of carbon can be expressed by:

 $2\pi L(R_1^2 - R_2^2)/2\pi L(R_1^2 - R_0^2) = (R_1^2 - R_2^2)/(R_1^2 - R_0^2) = (5.5^2 - 4.25^2)/(5.5^2 - 2.5^2) = 0.5$. This value is close to that derived from the mass measurement.

Fig. S3 The size distribution of LiMn₂O₄ nanoparticles in the nanocomposite cathodes.

Fig. S4 (a) Nitrogen absorption isotherms and (b) pore size distribution of $LiMn_2O_4/CNT$ composites.

Fig. S5 Thermogravimetric analysis of the $LiMn_2O_4/CNT$ nanocomposites. Less than 1% weight loss, which is ascribed to the removal of absorbed water, was observed below 200 °C. A substantial weight loss (~10%), due to the combustion of CNTs catalyzed by manganese oxide in air, was observed between 200 and 600 °C. Above 600 °C, no significant weight loss was observed;

the remaining 89 % of the weight is therefore attributed to the $LiMn_2O_4$ within the composite. By comparison, similar nanocomposites prepared from the reaction of KMnO₄ with mesoporous carbons⁷ or porous carbon aerogels⁸ show much lower oxide loading (<50 wt-%). This highlights the effectiveness of using CNTs to make high capacity electrodes.)

Fig. S6 SEM image of LiMn₂O₄/CNT composite electrode after 85 cycles.

References

- 1 Q. Zhang, M. Q. Zhao, J. Q. Huang, J. Q. Nie and F. Wei, Carbon, 202, 48, 1196.
- 2 K. J. Ziegler, Z. Gu, H. Peng, E. L. Flor, R. H. Hauge and R. E. Smalley, *J. Am. Chem. Soc.*, 2005, **127**, 1541.
- 3 X. B. Jin, W. Z. Zhou, S. W. Zhang and Z. C. George, *Small*, 2007, **3**, 1513.
- 4 H. J. Yue, X. K. Huang, D. P. Lv and Y. Yang, *Electrochim. Acta*, 2009, 54, 5363.
- 5 Y. T. Peng, Z. Chen, J. Wen, Q. F. Xiao, D. Weng, S. Y. He, H. B. Geng and Y. F. Lu, *Nano Res.*, 2011, 4, 216.
- 6 T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, *J. Power Source*, 2007, **173**, 633.
- 9 X. P. Dong, W. H. Shen, J. L. Gu, L. M. Xiong, Y. F. Zhu, H. Li and J. L. Shi, *J. Phys. Chem. B*, 2006, **110**, 6015.
- 10 A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud and J. W. Long, *Nano Lett.*, 2007, 7, 281.