TBAI-Catalyzed oxidative coupling of aminopyridines with β-keto esters and 1,3-diones—Synthesis of imidazo[1,2-*a*]pyridines

Lijuan Ma, Xianpei Wang, Wei Yu*, Bing Han*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou, P. R. China yuwei@lzu.edu.cn; hanb@lzu.edu.cn

The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-400 MHz spectrometer with TMS as the internal standard in CDCl₃. The EI-MS spectra were measured on an HP 5988A spectrometer by direct inlet at 70 eV. The high resolution mass spectra (HRMS) were measured on a Bruker Daltonics APEX II 47e spectrometer by ESI. Melting points were measured on an XT-4 melting point apparatus and were uncorrected. Flash column chromatography was carried out with silica gel (300-350 mesh).

1. Optimization of the reaction conditions

|--|

Entry	1a/2a	Equiv. of	Oxidant	Acid	Solvent	Reaction	Reaction	Yield (%) ^b
		TBAI		(equiv.)		temp. (°C)	time (hrs)	
1	1:1	0.1	30% H ₂ O ₂	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	50	16	17
2	1:1	0.1	$30\%~H_2O_2$	BF ₃ ·Et ₂ O (0.2)	DMF	50	16	39
3	1:1	0.1	$30\%~H_2O_2$	BF ₃ ·Et ₂ O (0.2)	DCE	50	16	8
4	1:1	0.1	ТВНР	BF ₃ ·Et ₂ O (0.2)	DCE	50	16	5
5	1:1	0.1	ТВНР	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	50	16	17

6	1:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	DMF	50	16	31
7	1:1	0.1	$30\%\mathrm{H_2O_2}$	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	16	47
8	1:1	0.1	30% H ₂ O ₂	$BF_3 \cdot Et_2O$ (0.2)	DMF	80	16	21
9	1:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	16	53
10	1:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	DMF	80	16	42
11	1:1	0.1	ТВНР	BF ₃ ·Et ₂ O (0.2)	EtOAc	80	16	35
12	1:1	0	TBHP	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	16	0
13	1:1.5	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	12	30
14	1.5:1	0.1	ТВНР	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	12	81
15	1.5:1	0.1	ТВНР	none	CH ₃ CN	80	12	48
16	1.5:1	0.1	ТВНР	BF ₃ ·Et ₂ O (1.0)	CH ₃ CN	80	12	44
17	1.5:1	1.0	TBHP	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	16	10
18	1.5:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	DMF	80	12	58
19	1.5:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	EtOAc	80	12	41
20	1.5:1	0.1	TBHP	BF ₃ ·Et ₂ O (0.2)	DCE	80	30	68
21	1.5:1	0.1	30% H ₂ O ₂	BF ₃ ·Et ₂ O (0.2)	CH ₃ CN	80	35	64
22	1.5:1	0.1	30% H ₂ O ₂	BF ₃ ·Et ₂ O (0.2)	DMF	80	12	33
23	1.5:1	0.1	TBHP	CF ₃ OOH (0.2)	CH ₃ CN	80	12	51
24	1.5:1	0.1	TBHP	BiCl ₃ (0.2)	CH ₃ CN	80	12	28
25	1.5:1	0.1	TBHP	$InCl_{3}(0.2)$	CH ₃ CN	80	12	26

^a The reaction was performed with 2 equiv. of oxidant; 5 mL solvent was used. ^b Isolated yield based on the

compound used in fewer amount.

	(N NH ₂ + Ph	$\bigcup_{i=1}^{O} \bigcup_{i=1}^{O} \bigcup_{j=1}^{O} \bigcup_{j=1}^{O} \bigcup_{j=1}^{O} \bigcup_{i=1}^{O} \bigcup_{i$.1 equiv. MI, .2 equiv. BF ₃ : Et ₂ O 2.0 equiv.TBHP	N Ph EtO	
		1a	2a		3a	
Entry	MI	1a/2a	Solvent	Reaction time (hours)	Conversion (%) ^b	Yield of 3a (%) ^b
1	NaI	1.0	CH ₃ CN	16	86	55
2	NaI	1.5	CH ₃ CN	12	100	73
3	NaI	1.5	DMF	12	100	62
4	NaI	1.5	EtOAc	12	62	38
5	KI	1.0	CH ₃ CN	16	95	55
6	KI	1.5	CH ₃ CN	12	96	66
7	KI	1.5	DMF	12	98	46
8	KI	1.5	EtOAc	12	46	23

Table 2 The reaction of 1a and 2a with NaI or KI as the catalyst ^a

^a The reaction was carried out at 80 °C. ^b Based on **2a**.

2. Mechanistic discussions

We have demonstrated that the direct oxidative coupling of 2-aminopyridines (1) with 1,3-dicarbonyl compounds (2) can be effected by using $PhI(OAc)_2$ as oxidant and $BF_3 \cdot Et_2O$ as catalyst. The reaction is believed to proceed following the mechanism depicted in Scheme 1.¹ To see if the current TBAI-catalyzed reaction follows a similar reaction pathway (Scheme 2), control experiments were conducted, and the results are listed in Table 3.

Scheme 1

Entry	Reagent(s) (equiv.)	Equiv. of BF ₃ ·Et ₂ O	Reaction time (hours)	Conversion (%)	Yield of 3a (%) ^b
1	NaIO ₄ (1.0)	0.2	16	87 %	63
2	NaIO ₄ (1.0)	0.2	14	no reaction ^c	
3	NaIO ₄ (0.25)	0.2	14	19	16
4	NaIO ₄ (0.25), TBAI (0.1)	0.2	14	42	32
5	I ₂ (1.0)	0.2	16	25	17
6	I ₂ (1.0), Bu ₄ NOH (2.0)	0.2	16	complex mixtures	3
7	NIS (1.0)	0.2	16	51	28
8	Bu ₄ NBr (0.1), TBHP (2.0)	none	16	no reaction	
9	Bu ₄ NBr (0.1), TBHP (2.0)	0.2	16	20	13

Table 3 The reaction of 1a and 2a under various conditions^a

^a The reaction was performed with 1 mmol of **1a** and **2a** in acetonitrile at 80 °C unless otherwise specified. ^b Isolated yield. ^c The reaction was performed at room temperature.

As shown in Table 3, the reaction took place at 80 °C when NaIO₄ was used as the oxidant (Table 3, entries 1 and 3). The reaction was promoted by TBAI (Table 3, entry 4). These results are consistent with those obtained by Ishihara et al.,² suggesting that iodine species (+1 or +3) possibly act as the active oxidizing species. Based on these results and the works of Ishihara et al.,² a mechanism is proposed as shown in Scheme 2.

Scheme 2

While both path a and b are possible for the formation of **3** from **1** and **2**, further experiments showed that the reaction of **1a** with ethyl 2-iodo-3-oxo-3-phenylpropanoate (**D**) only afforded **3a** in low yield (Eq. 1). Besides, we did not obtain **D** when **2a** was treated with 1.0 equiv. of TBAI, 1.5 equiv. of TBHP and 0.2 equiv. of BF₃·Et₂O. Therefore, Path b shown in Scheme 1 seems less likely the working mechanism.

$$\begin{array}{c|c}
 & & & & & \\
\hline N & & & & \\
N & & & & \\
\hline N & & & & \\
\hline N & & & \\
\hline N & & & \\
\hline OEt & & & \\
\hline CH_3CN, 80 \ ^{\circ}C, 16 \ h & \\
\hline EtO \ \hline O & \\
\hline H & & \\
\hline OEt \ \hline O & \\
\hline H & & \\
\hline H & & \\
\hline OEt \ \hline O & \\
\hline H & & \\
\hline H$$

3a was also generated when 1.0 equiv. of I_2 or NIS was used (Table 3, entries 5 and 7). But the yield was much lower than that of using TBAI/TBHP. We believe that the function of NIS or I_2 in the reaction is to react with **2a** to generate *in situ* compound **D**, which then react with **1** to afford **E** (Scheme 2, path b). This assumption is supported by the control experiment (Eq. 2). Another alternative mechanism, which involves firstly the condensation between **1** and **2**, and then the oxidation of thus formed enamine ester, can be ruled out because the condensation of **1a** and **2a** can not take place in refluxing acetonitrile (Scheme 3)

Scheme 3

Recently, Nagano et al reported that bromide ion could catalyze the α -acetoxylation of ketones.³ As a comparison, we examined the catalytic behavior of tetrabutyl ammonium iodide (TBAB) in the present reaction. Our results (Table 3, entries 8 and 9) show that the performance of TBAB is poor compared with TBAI.

General procedure for the synthesis of substituted imidazo[1,2-*a*]pyridines (3) from 2-aminopyridines (1) and β -keto esters and acetylacetone (2)

A mixture of 1.0 mmol of **2**, 1.5 mmol of **1**, 0.1 mmol of TBAI, 2.0 mmol of TBHP (70% in water) and 26 μ L of BF₃·Et₂O (0.2 mmol) in 5 mL of CH₃CN was stirred in a 15 mL Pyrex screw-cap pressure tube at 80 °C for the indicated period of time shown in Table 2 of the manuscript. After the reaction finished as indicated by TLC, the reaction mixture was cooled to the room temperature, and then poured into 15 mL saturated Na₂SO₃ solution. The product was extracted with EtOAc (20 mL×3). The combined organic layer was washed with brine and dried with anhydrous Na₂SO₄. After filtration, the solvent was removed under reduced pressure, and the residual was treated with silica gel chromatography to give product **3**. For the synthesis of **3x** and **3y**, 1.0 mmol of **1** and 1.1 mmol of **2** were used for the convenience of product purification.

Spectroscopic data for the products 3¹

Ethyl 2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3a)

White solid, mp: 66-67 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.21 (t, 3H, J = 7.2 Hz), 4.30 (q, 2H, J = 7.2 Hz), 7.02 (t, 1H, J = 6.8 Hz), 7.40-7.45 (m, 4H), 7.72-7.78 (m, 3H), 9.41 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 60.4, 111.8, 114.0, 117.4, 127.5, 127.8, 128.2, 128.6, 130.1, 134.4, 147.0, 153.5, 161.0; EI-MS *m*/*z* (rel. int., %): 266 (M⁺, 63), 194 (100), 78 (11).

Ethyl 6-methyl-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3b)

White solid, mp: 72-74 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.21 (t, 3H, J = 7.2 Hz), 2.42 (s, 3H), 4.30 (q, 2H, J = 7.2 Hz), 7.29 (dd, 1H, J = 9.2 Hz, J = 1.6 Hz), 7.40-7.45 (m, 3H), 7.64 (d, 1H, J = 8.8 Hz), 7.74-7.76 (m, 2H), 9.24 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 18.5, 60.4, 111.6, 116.6, 124.1, 126.1, 127.5, 128.6, 130.1, 131.0, 134.3, 146.0, 153.2, 161.2; EI-MS *m*/*z* (rel. int., %): 280 (M⁺, 51), 208 (100).

Ethyl 7-methyl-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3c)

White solid, mp: 90-91 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.21 (t, 3H, J = 7.2 Hz), 2.46 (s, 3H), 4.29 (q, 2H, J = 7.2 Hz), 6.86 (dd, 1H, J = 6.8 Hz, J = 1.6 Hz), 7.40-7.44 (m, 3H), 7.48 (s, 1H), 7.75-7.77 (m, 2H), 9.27 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 21.3, 60.2, 111.4, 116.0, 116.5, 127.3, 127.4, 128.5, 130.1, 134.5, 139.2, 147.5, 153.6, 161.1; EI-MS m/z (rel. int., %): 280 (M⁺, 54), 208 (100); HRMS (ESI): calcd for C₁₇ H₁₆ N₂O₂ + H = 281.1285, found: 281.1282.

Ethyl 8-methyl-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3d)

White solid, mp: 113-114 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.19 (t, 3H, J = 7.2 Hz), 2.68 (s, 3H), 4.28 (q,

2H, J = 7.2 Hz), 6.94 (t, 1H, J = 7.0 Hz), 7.22 (dd, 1H, J = 6.8 Hz, J = 1.2 Hz) 7.40-7.45 (m, 3H), 7.74-7.76 (m, 2H), 9.27 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 17.1, 60.3, 112.3, 114.0, 126.0. 126.7, 127.4, 127.5, 128.4, 130.2, 134.9, 147.3, 153.2, 161.2; EI-MS m/z (rel. int., %): 280 (M⁺, 53), 208 (100); HRMS (ESI): calcd for C₁₇H₁₆N₂O₂ + H = 281.1285, found: 281.1286.

Ethyl 6-chloro-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3e)

White solid, mp: 117-119 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.23 (t, 3H, J = 7.2 Hz), 4.32 (q, 2H, J = 7.2 Hz), 7.40-7.46 (m, 4H), 7.68 (d, 1H, J = 9.2 Hz), 7.74-7.76 (m, 2H), 9.52 (d, 1H, J = 1.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 60.7, 112.3, 117.7, 122.4, 126.3, 127.6, 128.9, 129.2, 130.1, 134.0, 145.3, 154.0, 160.9; EI-MS *m*/*z* (rel. int., %): 302 (17), 300 (M⁺, 54), 230 (28), 228 (100), 174 (42), 159 (66), 149 (36).

Ethyl 7-chlorol-2-phenylimidazo[1,2-*a*]pyridine-3-carboxylate (3f)

White solid, mp: 116-118 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.22 (t, 3H, J = 7.2 Hz), 4.31 (q, 2H, J = 7.2 Hz), 7.02 (d, 1H, J = 7.6 Hz), 7.43-7.47 (m, 3H), 7.72-7.76 (m, 3H), 9.36 (d, 1H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 60.6, 112.0, 115.5, 116.4, 127.6, 128.6, 128.9, 130.1, 133.9, 134.5, 146.9, 154.2, 160.8; EI-MS m/z (rel. int., %): 302 (20), 300 (M⁺, 50), 230 (32), 228 (100), 149 (42), 57 (35); HRMS (ESI): calcd for C₁₆ H₁₃ClN₂O₂ + H = 301.0738, found: 301.0736.

CO₂Et (new compound)

Ethyl 2-(4-ethyl-phenyl)imidazo[1,2-*a*]pyridine-3-carboxylate (3g)

White solid, mp: 48-49 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.25 (t, 3H, *J* = 7.2 Hz), 1.28 (t, 3H, *J* = 7.6 Hz), 2.72 (q, 2H, *J* = 7.6 Hz), 4.32 (q, 2H, *J* = 7.2 Hz), 7.01 (t, 1H, *J* = 6.8 Hz), 7.27 (d, 2H, J = 8.0 Hz), 7.41 (ddd, 1H, J = 8.8 Hz, J = 6.8 Hz, J = 0.8 Hz), 7.70-7.73 (m, 3H), 9.40 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 15.5, 28.7, 60.3, 111.8, 113.9, 117.4, 127.0, 127.7, 128.3, 130.1, 131.7, 144.9, 147.0, 153.7, 161.2; EI-MS m/z (rel. int., %): 294 (M⁺, 77), 222 (100), 207 (55); HRMS (ESI): calcd for C_{18} H₁₈N₂O₂ + H = 295.1441, found: 295.1450.

Ethyl 6-methyl-2-(4-ethyl-phenyl)imidazo[1,2-a]pyridine-3-carboxylate (3h)

White solid, mp: 60-62 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.24 (t, 3H, J = 7.2 Hz), 1.27 (t, 3H, J = 7.6 Hz), 2.41 (s, 3H), 2.71 (q, 2H, J = 7.6 Hz), 4.31 (q, 2H, J = 7.2 Hz), 7.26 (d, 3H, J = 8.4 Hz), 7.62 (d, 1H, J = 8.8 Hz), 7.69 (d, 2H, J = 8.0 Hz), 9.22 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 15.5, 18.4, 28.7, 60.2, 111.4, 116.6, 123.7, 126.2, 127.0, 130.1, 130.7, 131.8, 144.7, 146.1, 153.5, 161.3; EI-MS *m*/*z* (rel. int., %) 308 (M⁺, 71), 236 (100), 221 (47); HRMS (ESI): calcd for C₁₉H₂₀N₂O₂ + H = 309.1598, found: 309.1591.

Ethyl 2-(3-methoxyl-phenyl)imidazo[1,2-*a*]pyridine-3-carboxylate (3i)⁴

White solid, mp: 70-71 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.22 (t, 3H, J = 7.2 Hz), 3.85 (s, 3H), 4.30 (q, 2H, J = 7.2 Hz), 6.95-6.98 (m, 1H), 7.01 (t, 1H, J = 6.8 Hz), 7.32-7.35 (m, 3H), 7.41 (dd, 1H, J = 8.6 Hz, J = 7.4 Hz), 7.72 (d, 1H, J = 9.2 Hz), 9.40 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 55.2, 60.3, 111.9, 114.0, 114.6, 115.4, 117.4, 122.7, 127.8, 128.2, 128.4, 135.7, 146.9, 153.3, 158.9, 161.0; EI-MS *m/z* (rel. int., %): 296 (M⁺, 100), 267 (34), 224 (70), 223 (62), 194 (40).

White solid, mp: 93-94 °C

Ethyl 6-methyl-2-(3-methoxyl-phenyl)imidazo[1,2-a]pyridine-3-carboxylate (3j)

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.22 (t, 3H, J = 7.2 Hz), 2.41 (s, 3H), 3.86 (s, 3H), 4.30 (q, 2H, J = 7.2 Hz), 6.95-6.99 (m, 1H), 7.27 (dd, 1H, J = 9.2 Hz, J = 1.6 Hz), 7.31-7.34 (m, 3H), 7.62 (d, 1H, J = 9.2 Hz), 9.22 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 13.9, 18.4, 55.2, 60.2, 111.6, 114.5, 115.3, 116.6, 122.7, 123.9, 126.1, 128.4, 130.7, 135.9, 146.0, 153.1, 158.9, 161.1; EI-MS *m*/*z* (rel. int., %): 310 (M⁺, 100), 281 (33), 238 (85), 237 (70), 208 (40); HRMS (ESI): calcd for C₁₈H₁₈N₂O₃ + H = 311.1390, found: 311.1401.

Methyl 2-(4-chloro-phenyl)imidazo[1,2-*a*]pyridine-3-carboxylate (3k)

White solid, mp: 130-132°C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 3.81 (s, 3H), 7.02 (dt, 1H, J = 6.8 Hz, J = 1.2 Hz), 7.39-7.44 (m, 3H), 7.70 (d, 3H, J = 8.4 Hz), 9.37 (dd, 1H, J = 6.8 Hz, J = 1.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 51.2, 111.6, 114.2, 117.4, 127.8, 128.1, 128.3, 131.3, 132.8, 134.7, 147.1, 152.3, 161.1; EI-MS *m*/*z* (rel. int., %): 288 (37), 286 (M⁺, 100), 273 (17), 271 (60), 242 (18), 240 (42), 230 (23), 228 (73), 149 (59); HRMS (ESI): calcd for C₁₅H₁₁ClN₂O₂ + H = 287.0582, found: 287.0579.

Me N p-CIPh CO₂Me

 $D_2 Me$ (new compound)

White solid, mp: 153-154 °C

Methyl 6-methyl-2-(4-chloro-phenyl)imidazo[1,2-*a*]pyridine-3-carboxylate (3l) ¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.42 (s, 3H), 3.82 (s, 3H), 7.30 (dd, 1H, J = 9.2Hz, J = 1.6 Hz,), 7.39-7.43 (m, 2H), 7.62 (d, 1H, J = 9.2 Hz), 7.68-7.72 (m, 2H), 9.20 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.5, 51.2, 111.4, 116.7, 124.2, 126.2, 127.9, 131.1, 131.4, 133.1, 134.7, 146.2, 152.2, 161.4; EI-MS *m*/*z* (rel. int., %): 302 (35), 300 (M⁺, 100), 287 (17), 285 (40), 244 (23), 242 (79), 179 (37), 57 (32); HRMS (ESI): calcd for C₁₆H₁₃ClN₂O₂ + H = 301.0738, found: 301.0746.

Ethyl 2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (3m)

White solid, mp: 24-26 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.00 (t, 3H, J = 7.2 Hz), 1.42 (t, 3H, J = 7.0 Hz), 1.75-1.84 (m, 2H), 3.06 (t, 2H, J = 7.6 Hz), 4.41 (q, 2H, J = 7.2 Hz), 6.95 (t, 1H, J = 6.8 Hz), 7.35 (t, 1H, J = 8.4 Hz), 7.62 (d, 1H, J = 9.2 Hz), 9.31 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 14.3, 22.9, 32.2, 60.2, 112.2, 113.5, 116.8, 127.4, 128.0, 146.9, 156.9. 161.4; EI-MS m/z (rel. int., %): 232 (M⁺, 21), 204 (67), 132 (100), 78 (20); HRMS (ESI): calcd for C₁₃H₁₆N₂O₂ + H = 233.1285, found: 233.1280.

Ethyl 6-methyl-2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (3n)

Pale yellow solid, mp: 31-33 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.01 (t, 3H, J = 7.2 Hz), 1.44 (t, 3H, J = 7.0 Hz), 1.74-1.84 (m, 2H), 2.38 (s, 3H), 3.05 (t, 2H, J = 7.6 Hz), 4.42 (q, 2H, J = 7.2 Hz), 7.23 (dd, 1H, J = 9.2 Hz, J = 1.6 Hz), 7.54 (d, 1H, J = 9.2 Hz), 9.15 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 14.4, 18.4, 22.9, 32.2, 60.1, 111.9, 116.0, 123.4, 126.0, 130.4, 145.9, 156.6, 161.5; EI-MS m/z (rel. int., %): 246 (M⁺, 20), 218 (61), 146 (100), 92 (14); HRMS (ESI): calcd for C₁₄H₁₈N₂O₂ + H = 247.1441, found: 247.1449.

Ethyl 7-methyl-2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (30)

White solid, mp: 52-54 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 0.94 (t, 3H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz), 1.68-1.77 (m, 2H), 2.34 (s, 3H), 2.98 (t, 2H, J = 7.8 Hz), 4.34 (q, 2H, J = 7.2 Hz), 6.70 (d, 1H, J = 7.2 Hz), 7.30 (s, 1H), 9.09 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.0, 14.2, 21.1, 22.8, 32.0, 59.9, 111.6, 115.3, 115.8, 127.0, 138.6, 147.2, 156.8, 161.2; EI-MS m/z (rel. int., %): 246 (M⁺, 21), 218 (61), 146 (100), 92 (16); HRMS (ESI): calcd for C₁₄H₁₈N₂O₂ + H = 247.1441, found: 247.1436.

Ethyl 8-methyl-2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (3p)

White solid, mp: 60-62 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.03 (t, 3H, J = 7.2 Hz), 1.44 (t, 3H, J = 7.2 Hz), 1.74-1.83 (m, 2H), 2.64 (s, 3H), 3.09 (t, 2H, J = 7.8 Hz), 4.42 (q, 2H, J = 7.2 Hz), 6.88 (t, 1H, J = 6.8 Hz), 7.17 (d, 1H, J = 6.8 Hz), 9.20 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.2, 14.4, 17.1, 23.5, 32.4, 60.1, 112.5, 113.5, 125.8, 126.5, 126.6, 147.2, 156.5, 161.6; EI-MS *m*/*z* (rel. int., %): 246 (M⁺, 19), 218 (60), 146 (100), 92 (15); HRMS (ESI): calcd for C₁₄H₁₈N₂O₂ + H = 247.1441, found: 247.1446.

Ethyl 6-chloro-2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (3q)

Orange solid, mp: 91-93 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.00 (t, 3H, J = 7.2 Hz), 1.44 (t, 3H, J = 7.2 Hz), 1.76-1.81 (m, 2H), 3.05 (t, 2H, J = 7.8 Hz), 4.43 (q, 2H, J = 7.2 Hz), 7.33 (dd, 1H, J =9.2 Hz, J = 2.0 Hz), 7.56 (dd, 1H, J = 9.2 Hz, J = 2.4 Hz), 9.41 (d, 1H, J = 2.0 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 14.3, 22.8, 32.1, 60.5, 112.7, 117.0, 121.8, 126.0, 128.7, 145.2, 157.3, 161.2; EI-MS m/z (rel. int., %): 268 (6), 266 (M⁺, 17), 240 (21), 238 (72), 168 (32), 166 (100); HRMS (ESI): calcd for C₁₃H₁₅ClN₂O₂ + H = 267.0895, found: 267.0900.

Ethyl 7-chloro-2-propylimidazo[1,2-*a*]pyridine-3-carboxylate (3r)

White solid, mp: 61-63 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 1.00 (t, 3H, J = 7.2 Hz), 1.43 (t, 3H, J = 7.0 Hz), 1.73-1.82 (m, 2H), 3.04 (t, 2H, J = 7.8 Hz), 4.41 (q, 2H, J = 7.2 Hz), 6.94 (dd, 1H, J = 7.2 Hz, J = 2.0 Hz), 7.60 (d, 1H, J = 2.0 Hz), 9.25 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 14.1, 14.3, 22.8, 32.1, 60.4, 112.4, 114.9, 115.8, 128.2, 134.1, 146.8, 157.6, 161.2; EI-MS *m*/*z* (rel. int., %): 268 (6), 266 (M⁺, 19), 240 (22), 238 (69), 168(33), 166 (100); HRMS (ESI): calcd for C₁₃H₁₅ClN₂O₂ + H = 267.0895, found: 267.0893.

Methyl 2-methylimidazo[1,2-*a*]pyridine-3-carboxylate (3s)

Pale yellow solid, mp: 103-105 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.72 (s, 3H), 3.97 (s, 3H), 6.99 (t, 1H, J = 6.8 Hz), 7.39 (t, 1H, J = 7.2 Hz), 7.63 (d, 1H, J = 9.2 Hz), 9.31 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 16.5, 51.3, 112.4, 113.7, 116.6, 127.7, 127.9, 146.9, 152.8, 161.8; EI-MS m/z (rel. int., %): 190 (M⁺, 100), 159 (83), 132 (68), 131 (24), 90 (28); HRMS (ESI): calcd for C₁₀H₁₀N₂O₂ + H = 191.0815, found: 191.0817.

Methyl 2,6-dimethylimidazo[1,2-*a*]pyridine-3-carboxylate (3t)

Pale yellow solid, mp: 47-49 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.37 (s, 3H), 2.67 (s, 3H), 3.94 (s, 3H), 7.21 (d, 1H, J = 8.8 Hz), 7.49 (d, 1H, J = 8.8 Hz), 9.09 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 16.6, 18.3, 51.2, 112.1, 115.8, 123.4, 125.9, 130.5, 145.9, 152.6, 161.9; EI-MS m/z (rel. int., %): 204 (M⁺, 100), 173 (73), 146 (68), 145 (21), 104 (13); HRMS (ESI): calcd for C₁₁H₁₂N₂O₂ + H = 205.0972, found: 205.0974.

Methyl 2,7-dimethylimidazo[1,2-*a*]pyridine-3-carboxylate (3u)

White solid, mp: 36-38 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.40 (s, 3H), 2.65 (s, 3H), 3.92 (s, 3H), 6.77 (dd, 1H, J = 6.8 Hz, J = 1.2 Hz), 7.32 (s, 1H), 9.11 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 16.5, 21.3, 51.1, 111.9, 115.3, 116.0, 127.0, 139.0, 147.3, 152.9, 161.8; EI-MS *m*/*z* (rel. int., %): 204 (M⁺, 100), 173 (71), 146 (76), 145 (33), 104 (13); HRMS (ESI): calcd for $C_{11}H_{12}N_2O_2 + H = 205.0972$, found: 205.0979.

Methyl 2,8-dimethylimidazo[1,2-*a*]pyridine-3-carboxylate (3v)

White solid, mp: 99-100 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.62 (s, 3H), 2.72 (s, 3H), 3.95 (s, 3H), 6.87 (t, 1H, J = 7.0 Hz), 7.16 (d, 1H, J = 6.8 Hz), 9.15 (d, 1H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 16.5, 17.0, 51.2, 112.8, 113.6, 125.7, 126.4, 126.8, 147.0, 152.1, 161.9; EI-MS m/z (rel. int., %): 204 (M⁺, 100), 173 (65), 146 (65), 145 (20); HRMS (ESI): calcd for C₁₁H₁₂N₂O₂ + H = 205.0972, found: 205.0976.

1-(2-Methyl*H*-imidazo[1,2-*a*]pyridin-3-yl)ethanone (3w)

White solid, mp: 105-106 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.55 (s, 3H), 2.72 (s, 3H), 6.94 (t, 1H, J = 7.2 Hz), 7.38 (t, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 8.0 Hz), 9.65 (dd, 1H, J = 7.2 Hz, J = 0.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.2, 30.1, 114.3. 116.2, 121.6, 128.8, 128.9, 146.7, 152.6, 187.4; EI-MS *m*/*z* (rel. int., %): 174 (M⁺, 69), 159 (100), 131 (17), 90 (33).

1-(2,6-Dimethyl*H*-imidazo[1,2-*a*]pyridin-3-yl)ethanone (3x)

Pale yellow solid, mp: 101-103 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.40 (s, 3H), 2.61 (s, 3H), 2.78 (s, 3H), 7.31 (d, 1H, J = 9.2 Hz), 7.53 (d, 1H, J = 9.2 Hz), 9.55 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.3, 30.2, 115.5, 121.6, 124.3, 127.0, 131.8, 145.7, 152.5, 187.5; EI-MS m/z (rel. int., %): 188 (M⁺, 55), 173 (100), 104 (14); HRMS (ESI): calcd for C₁₁H₁₂N₂O₁ + H = 189.1022, found: 189.1026.

1-(2,7-Dimethyl*H*-imidazo[1,2-*a*]pyridin-3-yl)ethanone (3y)

White solid, mp: 137-138 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.43 (s, 3H), 2.57 (s, 3H), 2.74 (s, 3H), 6.82 (dd, 1H, J = 6.8 Hz, J = 1.2 Hz), 7.36 (s, 1H), 9.56 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 18.3, 21.4, 30.0, 115.1, 116.8, 121.5, 128.2, 140.6, 147.2, 152.9, 187.2; EI-MS m/z (rel. int., %): 188 (M⁺, 67), 173 (100), 145 (17); HRMS (ESI): calcd for C₁₁H₁₂N₂O₁ + H = 189.1022, found: 189.1026.

1-(2,8-Dimethyl*H*-imidazo[1,2-*a*]pyridin-3-yl)ethanone (3z)

White solid, mp: 156-157 °C

¹H NMR (CDCl₃, 400 MHz, δ ppm): 2.60 (s, 3H), 2.62 (s, 3H), 2.79 (s, 3H), 6.90 (t, 1H, J = 7.2 Hz), 7.23 (d, 1H, J = 7.2 Hz), 9.58 (d, 1H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 16.9, 18.4, 30.3, 114.4, 122.1, 126.1, 126.8, 128.1, 146.9, 152.1, 187.6; EI-MS *m*/*z* (rel. int., %): 188 (M⁺, 63), 173 (100), 104 (13); HRMS (ESI): calcd for C₁₁H₁₂N₂O₁ + H = 189.1022, found: 189.1024.

References

- 1. X. Wang, L. Ma and W. Yu, Synthesis, 2011, 2445.
- (a) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara, Science, 2010, 328, 1376;
 (b) M. Uyanik and K. Ishihara, Chimica Oggi./Chemistry Today, 2011, 29, 18; (c)
 M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew. Chem. Int. Ed., 2011, 50, 5331.
- 3. T. Nagano, Z. Jia, X. Li, M. Yan, G. Lu, A. S. C. Chan and T. Hayashi, Chem. Lett., 2010, 929.
- Chavignon, J. C. Teulade, D. Roche, M. Madesclaire, Y. Blache, M. Gueiffier, J. L. Chabard and G. Dauphin, J. Org. Chem. 1994, 59, 6413.

