Supporting Information

Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5diazafluorene ligands

Alison N. Campbell, Eric B. Meyer and Shannon S. Stahl^{*} Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706

General Considerations

All commercially available compounds were obtained from Sigma Aldrich and used as received except for $Pd(OAc)_2$ and 4,5-diazafluorenone which were donated by Eli Lilly and 6-methoxy-1*H*-indole which was purchased from Matrix Scientific. *N*-pivalyl indole¹ and 9,9'-dimethyl-4,5-diazafluorene (**2**)² were prepared according to literature procedures.

¹H and ¹³C NMR spectra were recorded on a Bruker AC-300 MHz or a Varian Mercury-300 MHz spectrometer. The chemical shifts (δ) are given in parts per million and referenced to residual solvent peaks or a TMS internal standard. Flash column chromatography was performed on an Isco Combiflash system using silica gel 60 (Silicycle) and eluted with ethyl acetate/hexanes or diethyl ether/hexanes. High resolution mass spectra were obtained by the mass spectrometry facility at the University of Wisconsin. Elemental analyses were performed by Robertson Microlit Laboratories. Gas chromatography/mass spectrometry (GC/MS) was performed on a Shimadzu QP2010S using an RTX-5MS column.

CAUTION: The combination of organic solvents and O_2 creates the risk of an explosion. To minimize risks, all reactions carried out at pressures above 1 atm of pressure should utilize a dilute oxygen gas mixture (9% O_2 in N_2) to ensure that the O_2 content remains below the lower explosive limit of O_2 /organic mixtures.³ All reactions should be performed with care and carried out behind a blast shield.

Preparation of phenylsulfonyl protected indoles:

To a solution of indole (3.3 mmol) in THF (20 mL) at 0 °C was added NaH (86.4 mg, 3.6 mmol). The reaction was warmed to RT and stirred for 1 h. Benznesulfonyl chloride (0.46 mL, 3.6 mmol) was added dropwise and the reaction stirred for 1 h at RT. The mixture was poured into dilute NaHCO₃ and extracted with EtOAc (3x). The combined organics were dried over MgSO4, filtered and the solvent removed by rotatory evaporation. The residue was then purified by silica gel column chromatography (EtOAc/hexanes).

¹ D. R. Stuart, E. Villemure, K. Fagnou, J. Am. Chem. Soc. 2007, **129**, 12072.

² H. Ohrui, A. Senoo, K. Tetsuya, U.S. Pat. Appl. 0161574, 2008.

³ (a) In *Perry's Chemical Engineers' Handbook*; 7th ed.; R. H. Perry, D. W. Green, Eds.; McGraw-Hill: 1997, p 51-57. (b) P. B. Laut, D. Johnstone, *Chem. Eng.* 1994, **101**, 96.

Prepared as described above to give the desired material in 89% yield (856 mg, 2.94 mmol) as a white solid. NMR data match previously reported data.⁴ ¹H NMR (300 MHz, CDCl₃): δ 8.03 (s, 1H), 7.91-7.87 (m, 2H), 7.60-7.42 (m, 5H), 7.21 (dd, 1H, *J* = 8.7, 1.8 Hz), 6.63 (d, 1H, *J* = 3.9 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 138.3, 135,4, 134.3, 130.9, 129.6, 129.4, 127.1, 127.0, 124.3, 122.4, 113.9, 109.1. MP = 92-93 °C.

Prepared as described above to give the desired material in 90% yield (865 mg, 2.97 mmol) as a white solid. NMR data match previously reported data.⁴ ¹H NMR (300 MHz, CDCl₃): δ 7.94-7.84 (m, 3H), 7.59-7.42 (m, 5H), 7.27 (dd, 1H, *J* = 2.1, 9.0 Hz), 6.61 (dd, 1H, *J* = 0.90, 3.6 Hz). ¹³C NMR (75 MHz, CDCl₃): δ 138.1,

134.2, 133.4, 132.1, 129.5, 129.4, 127.8, 126.9, 125.1, 121.2, 114.7, 108.8. MP = 65-66 °C.

Prepared as described above to give the desired material in 90% yield (852 mg, 2.97 mmol) as a white solid. NMR data match previously reported data.⁵ ¹H NMR (300 MHz, CDCl₃): δ 7.90-7.83 (m, 3H), 7.52 (m, 2H), 7.41 (m, 2H), 6.97-6.91 (m, 2H), 6.59 (d, 1H, *J* = 3.6 Hz), 3.8 (s, 3H). ¹³C NMR (75 MHz, CDCl₃):

δ 156.7, 138.4, 133.9, 131.9, 129.7, 129.4, 127.3, 126.8, 114.6, 113.9, 109.6, 103.9, 55.8. MP = 98-99 °C.

Prepared as described above to give the desired material in 92% yield (871 mg, 3.04 mmol) as a white solid. NMR data match previously reported data.⁶ ¹H NMR (300 MHz, CDCl₃): δ 7.88-7.84 (m, 2H), 7.53-7.51 (m, 2H), 7.46-7.37 (m, 4H), 6.86 (dd, 1H, *J* = 8.7, 2.4 Hz), 6.58 (dd, 1H, *J* = 3.6, 0.6 Hz). ¹³C NMR (75

MHz, CDCl₃): δ 158.1, 138.4, 136.0, 133.9, 129.4, 126.8, 125.2, 124.6, 121.9, 112.7, 109.3, 98.0, 55.9. MP = 140-141 °C.

General Procedure for Ligand Screening and Catalyst Optimization

To a disposable 10 mm thick-walled culture tube was added Pd (0.0075 mmol), ligand (0.00375-0.015 mmol), indole (0.15 mmol), benzene (9.9 mmol, 0.85 mL) and acid (0.90 mmol). The tubes were placed in a HEL CAT-24 pressure vessel mounted on a custom Glas-Col large capacity mixer. The vessel was sealed and placed under 11 atm of 9% O_2 in N_2 (1 atm O_2 partial pressure) and the system was heated to 120 °C with shaking. After 18-24 h, the reactions were concentrated under vacuum, taken up in CDCl₃ and analyzed by ¹H NMR with tetrachloroethane as an internal standard.

⁴ S. Komoriya, N. Haginoya, S. Kobayashi, T. Nagata, A. Mochizuki, M. Suzuki, T. Yoshino, H. Horino, T. Nagahara, M. Suzuki, Y. Isobe, T. Furugoori, *Bioorg. Med. Chem.* 2005, **13**, 3927.

⁵ S. Mahboobi; A. Uecker; A. Sellmer; C. Cenac; H. Hocher; H. Pongratz; E. Eichhorn; H. Hufsky; A. Trumpler; M. Sicker; F. Heidel; T. Fischer; C. Stocking; S. Elz; F. D. Bohmer; S. Dove, *J. Med. Chem.*, 2006, **49**, 3101.

⁶ G. Dupeyre; G. G. Chabot; S. Thoret; X. Cachet; J. Seguin; D. Guenard; F. Tillequin; D. Scherman; M. Koch; S. Michel, *Bioorg. Med. Chem.*, 2006, **14**, 4410.

Table S1. Results from protecting group screen^a

					C2:C3
Entry	Pd	Ligand	R	Yield ^b	Selectivity ^c
1	Pd(TFA) ₂	2	SO_2Ph	87%	1:5.2
2	Pd(OPiv) ₂	1	SO_2Ph	80%	2:1
3	$Pd(TFA)_2$	2	Piv	69%	1:4.4
4	Pd(OPiv) ₂	1	Piv	58%	4.3:1
5	$Pd(TFA)_2$	2	Ac	52%	1:1.6
6	Pd(OPiv) ₂	1	Ac	62%	1.5:1
7	$Pd(TFA)_2$	2	Benzyl	17%	16:1
8	Pd(OPiv) ₂	1	Benzyl	39%	10:1
9	$Pd(TFA)_2$	2	SEM	0%	-
10	Pd(OPiv) ₂	1	SEM	49%	3.9:1
11	Pd(TFA) ₂	2	Me	0%	-
12	$Pd(TFA)_2$	2	CONEt ₂	40%	1:1.9

 Table S2. Results from acid screen^a

^{*a*} 5% Pd(TFA)₂ ($\overline{2.5}$ mg, 0.0075 mmol), 5% **2** (1.5 mg, 0.0075 mmol), indole (38.6 mg, 0.15 mmol), 6 equiv acid (0.90 mmol), benzene (0.85 mL, 9.9 mmol), 1 atm O₂, 120 °C, 24h. ^{*b*} By 1H NMR with tetrachloroethane as internal standard. ^{*c*} Determined by ¹H NMR. ^{*d*} 12 equiv PivOH (1.8 mmol) ^{*e*} 3 equiv PivOH (0.45 mmol)

Table S3. Results from base additive screen^{*a*}

	10% Cu(OAc) ₂	72%	1:4.5	
^a 5% Pd(TFA) ₂ (2.5	5 mg, 0.0075 mmol), 5% 2 (1.5 mg, 0.007	75 mmol), indole (38	.6 mg, 0.15 mmol), 6
equiv EtCO ₂ H (270	μL, 0.90 mmol), benzene (0.85 mL, 9.9	mmol), 1 atm O ₂ , 12	0 °C, 24h. ^b By 1H
NMR with tetrachle	proethane as internal standar	d. ^c Determi	ned by ¹ H NMR. ^d N	lo EtCO ₂ H was added

58%

58%

1.1:1

1:2.9

100% LiOAc

10% AgOAc

^{*a*} 5% Pd (0.0075 mmol), 5% **1** (1.4 mg, 0.0075 mmol), indole (38.6 mg, 0.15 mmol), 6 equiv EtCO₂H (270 µL, 0.90 mmol), benzene (0.85 mL, 9.9 mmol), 1 atm O₂, 120 °C, 24h. ^{*b*} By ¹H NMR with tetrachloroethane as internal standard. ^{*c*} Determined by ¹H NMR.

Comparison of Ligands with Cu(OAc)₂ as the Oxidant

Table S5. Results from Screen with $Cu(OAc)_2$ as the Oxidant^{*a*}

^{*a*} 10% Pd(TFA)₂ (0.015 mmol), 10% ligand (0.015 mmol), indole (0.15 mmol), 40% CsOPiv (0.06 mmol), 3 equiv Cu(OAc)₂ (0.45 mmol), benzene (0.4 mL), PivOH (0.1 mmol) 110 °C, 24h. ^{*b*} By ¹H NMR with tetrachloroethane as internal standard. ^{*c*} Determined by ¹H NMR.

Procedure was adapted from the literature.⁷ To a 9 mL pressure tube was added $Pd(TFA)_2$ (0.015 mmol, 5.0 mg), ligand (0.015 mmol), *N*-acetylindole (0.15 mmol, 22.9 mg)), CsOPiv (0.06 mmol, 14 mg), Cu(OAc)₂ (0.45 mmol, 82 mg), benzene (0.4 mL) and PivOH (0.1 mL). The tubes were sealed and heated to 110 °C for 24 h with stirring. The reactions were then filtered, concentrated under vacuum, taken up in CDCl3 and analyzed by ¹H NMR with tetrachloroethane as an internal standard. Results are reported in Table S5 as an average of two experiments.

Catalytic Oxidative Cross-Coupling

Oxidative cross-coupling procedure A: A pressure tube fitted with a plunger valve was charged with $Pd(TFA)_2$ (10 mg, 0.030 mmol), **2** (5.9 mg, 0.030 mmol), indole (0.60 mmol), $EtCO_2H$ (270 µL, 3.6 mmol) and arene (39.6 mmol). The tube was evacuated and backfilled with O_2 (3x), sealed and heated to 120 °C for 24h with vigorous stirring. The reaction mixture was then cooled to room temperature, diluted with EtOAc and washed with sat'd. NaHCO₃. The organic layer was separated and the aqueous layer washed with EtOAc (2x). The combined organics were dried over MgSO₄, filtered and concentrated by rotatory evaporation. The crude product was purified by silica gel column chromatography (0-3% Et₂O in hexanes) to yield the product as a mixture of two isomers.

Oxidative cross-coupling procedure B: A pressure tube fitted with a plunger valve was charged with $Pd(OPiv)_2$ (9.3 mg, 0.030 mmol), **1** (5.5 mg, 0.030 mmol), indole (0.60 mmol), $EtCO_2H$ (270 µL, 3.6 mmol) and arene (39.6 mmol). The tube was evacuated and backfilled with O_2 (3x), sealed and heated to 120 °C for 24 h with vigorous stirring. The reaction mixture was then cooled to room temperature, diluted with EtOAc and washed with sat'd. NaHCO₃. The organic layer was separated and the aqueous layer washed with EtOAc (2x). The combined organics were dried over MgSO₄, filtered and concentrated by rotatory evaporation. The crude product was purified by silica gel column chromatography (0-3% Et₂O in hexanes) to yield the product as a mixture of two isomers.

Prepared as described above by both methods A and B except that the regioisomers were separated by column chromatography.

Method A: Following aqueous workup, the ratio of regioisomers was 1:4.4 (C2:C3). Purification by column chromatography yielded the 16 mg of the C2 isomer as a pale yellow oil and 69 mg of the C3 isomer as a white solid, giving a total yield of 52%.

C2 isomer⁸: ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, 1H, J = 7.5 Hz), 7.53 (m, 2H), 7.45-7.35 (m, 4H), 7.25-7.18 (m, 2H), 6.68 (s, 1H), 0.96 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 187.5, 139.6, 137.4, 134.1, 129.2, 128.4, 128.0, 123.6, 121.7, 120.8, 111.4, 104.8, 45.3, 28.1. C3 isomer¹: ¹H NMR (300 MHz, CDCl₃) δ 8.62 (d, 1H, J = 8.4 Hz), 7.81 (m, 2H), 7.67 (m, 2H), 7.54-7.49 (m, 2H), 7.46-7.32 (m, 3H), 1.58 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 137.7, 133.7, 129.1, 128.3, 128.2, 127.6, 125.7, 124.0, 123.3, 122.7, 119.6, 117.8, 41.5, 28.9. MP = 138-139 °C.

Method B: Following aqueous workup, the ratio of regioisomers was 4.8:1 (C2:C3). Purification by column chromatography yielded the 90 mg of the C2 isomer as a pale yellow oil and 20 mg of the C3

⁷ D. R. Stuart, K. Fagnou, *Science*. 2007, **316**, 1172.

⁸ A. Yasuhara; Y. Kanamori; M. Kaneko; A. Numata; Y. Kondo; T. Sakamoto, *J. Chem. Soc. Perkin Trans.* 1, 1999, 529.

isomer as a white solid, giving a total yield of 66%. The 1 H and 13 C NMR spectra and melting point data match those given for the compounds obtained by method A.

Prepared as described above by both methods A and B.

Method A: Following aqueous workup, the ratio of regioisomers was 1:6 (C2:C3). After purification by column chromatography, the product was isolated in 66% yield (131 mg, 0.40 mmol) as a pale yellow solid with a 1:4.9 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, 1H, *J* = 8.4 Hz, C2), 8.06 (d, 1H, *J* = 8.4 Hz,

C3), 7.93 (m, 1H, C3), 7.91 (m, 1H, C3), 7.77 (d, 1H, J = 7.8 Hz, C3), 7.70 (s, 1H, C3), 7.62-7.21 (m, C2 + C3), 6.54 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃): 142.2, 138.4, 138.3, 137.6, 135.7, 134.0, 133.6, 133.1, 132.4, 130.6, 130.5, 130.4, 129.4, 129.0, 128.8, 128.7, 128.0, 127.7, 127.6, 126.9, 126.8, 125.1, 125.0, 124.5, 124.3, 123.8, 123.0, 120.8, 120.6, 116.7, 113.9, 113.8.

Method B: Following aqueous workup the ratio of regioisomers was 2.5:1 (C2:C3). After purification by column chromatography, the product was isolated in 76% yield (152 mg, 0.46 mmol) as a pale yellow solid with a 2.4:1 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, 1H, *J* = 8.4 Hz, C2), 8.06 (d, 1H, *J* = 8.1 Hz, C3), 7.92 (m, 2H, C3), 7.77 (d, 1H, *J* = 8.1 Hz, C3), 7.70 (s, 1H, C3), 7.62-7.24 (m, C2+C3), 6.54 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃): 142.2, 138.4, 138.3, 137.6, 135.7, 134.0, 133.6, 133.1, 132.4, 130.6, 130.5, 130.4, 129.4, 129.0, 128.8, 128.7, 128.0, 127.7, 127.6, 126.9, 126.8, 125.1, 125.0, 124.5, 124.3, 123.8, 123.0, 120.8, 120.6, 116.7, 113.9, 113.8.

These data match that reported for both regioisomers.^{9,10}

Prepared as described above by both methods A and B.

Method A: Following aqueous workup, the ratio of regioisomers was 1:1.3 (C2:C3). After purification by column chromatography, the product was isolated in 71% yield (156 mg, 0.43 mmol) as a pale yellow solid with a 1:1.4 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, 1H, *J* = 8.7 Hz,

C2), 7.99 (d, 1H, J = 8.7 Hz, C3), 7.90 (m, 2H, C3), 7.72 (d, 1H, J = 2.1 Hz, C3), 7.70 (s, 1H, C3), 7.58-7.24 (m, C2+C3), 6.47 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃) 143.6, 138.0, 137.5, 136.7, 134.3, 134.0, 133.9, 132.4, 132.2, 131.8, 130.7, 130.5, 130.3, 129.9, 129.6, 129.2, 128.8, 128.0, 127.9, 127.7, 127.5, 126.9, 126.8, 125.4, 125.1, 124.3, 123.9, 120.5, 120.3, 117.8, 115.0, 112.8. HRMS (ESI) [M + Na⁺]/z calcd. 390.0326, found 390.0333. Anal found: C, 65.25; H, 3.70; N, 3.65. Calc. for C₂₀H₁₄CINO₂S: C, 63.30; H, 3.84; N, 3.81%.

Method B: Following aqueous workup the ratio of regioisomers was 5:1 (C2:C3). After purification by column chromatography, the product was isolated in 68% yield (150 mg, 0.41 mmol) as a white solid with a 4:1 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, 1H, *J* = 9.0 Hz, C2), 7.98 (d, 1H, *J* = 8.7 Hz, C3), 7.89 (d, 2H, *J* = 6.9 Hz, C3), 7.71 (d, 1H, *J* = 1.8 Hz, C3), 7.70 (s, 1H, C3), 7.54-7.2 (m, C2+C3), 6.45 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 138.0, 137.4, 136.7, 134.2, 133.9, 132.4, 131.8, 130.5, 130.4, 130.2, 129.8, 129.5, 129.2, 129.1, 128.9, 128.8, 128.0, 127.9, 127.7, 126.9, 126.8, 126.7, 125.4, 125.1, 124.2, 123.8, 120.4, 120.3, 117.7, 115.0, 112.8. HRMS (ESI) [M +

⁹ Y. Yin; W. Y. Ma; Z. Chai; G. Zhao, J. Org. Chem., 2007, 72, 5731.

¹⁰ T. Sakamoto; Y. Kondo; N. Takazawa; H. Yamanaka, *Tet. Lett.*, 1993, **34**, 5955.

Na⁺]/z calcd. 390.0326, found 390.0316. (Found: C, 65.05; H, 4.08; N, 3.64. Calc. for $C_{20}H_{14}CINO_2S$: C, 63.30; H, 3.84; N, 3.81%.)

Prepared as described above by both methods A and B. Following aqueous workup, method A gave a 1.4:1 ratio of regioisomers (C2:C3). After purification by column chromatography, the product was isolated in 71% yield (156 mg, 0.43 mmol) as a pale yellow solid with a 2:1 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.37 (s, 1H, C2), 8.11 (d, 1H, *J* = 1.8 Hz, C3), 7.94 (m, 2H,

C3), 7.69 (m, 1H, C3), 7.59-7.25 (m, C2+C3), 6.51 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃) δ 142.8, 142.4, 138.7, 138.1, 137.6, 136.0, 134.3, 133.9, 132.6, 131.9, 131.2, 130.8, 130.6, 129.8, 129.6, 129.1, 129.0, 128.9, 128.0, 127.7, 127.5, 126.9, 125.1, 124.5, 124.2, 124.1, 123.4, 121.5, 117.4, 116.8, 114.1, 113.1. HRMS (ESI) [M + Na⁺]/z calcd. 390.0326, found 390.0332. Anal found: C, 65.03; H, 3.85; N, 3.73. Calc. for C₂₀H₁₄ClNO₂S: C, 63.30; H, 3.84; N, 3.81%

Following aqueous workup, method B gave a 3.7:1 ratio of regioisomers (C2:C3). After purification by column chromatography, the product was isolated in 75% yield (165 mg, 0.45 mmol) as a white solid with a 7:1 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) 8.37 (s, 1H, C2), 8.11 (d, 1H, J = 1.8 Hz, C3), 7.94 (m, 2H, C3), 7.69 (m, 1H, C3), 7.59-7.36 (m, C2+C3), 7.32-7.25 (m, C2+C3), 6.51 (s, 1H, C2). ¹³C NMR (75 MHz, CDCl₃) δ 142.8, 142.4, 138.7, 138.1, 137.6, 136.0, 134.3, 133.9, 132.6, 131.9, 131.2, 130.8, 130.6, 129.8, 129.6, 129.1, 129.0, 128.9, 128.0, 127.7, 127.5, 126.9, 125.1, 124.5, 124.2, 124.1, 123.4, 121.5, 117.4, 116.8, 114.1, 113.1. HRMS (ESI) [M + NH₄⁺]/z calcd. 385.0773, found 385.0763. (Found: C, 65.18; H, 3.97; N, 3.72. Calc. for C₂₀H₁₄ClNO₂S: C, 63.30; H, 3.84; N, 3.81%.)

Prepared as described above by both methods A and B. Following aqueous workup, method A gave a 1:3.9 ratio of regioisomers (C2:C3). After purification by column chromatography, the product was isolated in 54% yield (93 mg, 0.32 mmol) as a white solid with a 1:4.4 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 8.21 (d, 1H, *J* = 9.0 Hz, C2), 7.96 (d, 1H, *J* = 9.3

Hz, C3), 7.91 (m, 2H, C3), 7.66 (s, 1H, C3), 7.58-7.19 (m, C2+C3), 6.97 (m, C2+C3), 6.90 (d, 1H, J = 2.7 Hz, C2), 6.49 (s, 1H, C2), 3.82 (s, 3H, C2), 3.80 (s, 3H, C3). ¹³C NMR (75 MHz, CDCl₃) δ 157.3, 157.0, 143.2, 138.3, 137.4, 133.9, 133.6, 133.2, 133.0, 132.4, 132.1, 131.9, 130.5, 130.4, 129.9, 129.4, 129.1, 128.8, 128.7, 128.6, 128.4, 128.0, 127.7, 126.9, 124.4, 123.9, 117.9, 114.9, 114.0, 113.7, 103.4, 103.1, 55.9, 55.7.

Following aqueous workup, method B gave a 2.3:1 ratio of regioisomers (C2:C3). After purification, method B gave 71% yield of product (154 mg, 43 mmol) in a 2.8:1 ratio of isomers (C3:C2) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.19 (d, 1H, *J* = 9.0 Hz, C2), 7.95 (d, 1H, *J* = 9.0 Hz, C3), 7.88 (m, 2H, C3), 7.64 (s, 1H, C3), 7.58-7.19 (m, C2+C3), 6.95 (m, C2+C3), 6.88 (d, 1H, *J* = 2.7 Hz, C2), 6.47 (s, 1H, C2), 3.82 (s, 3H, C2), 3.80 (s, 3H, C3). ¹³C NMR (75 MHz, CDCl₃) δ 157.3, 157.0, 143.2, 138.3, 137.4, 133.9, 133.6, 133.2, 133.0, 132.4, 132.1, 131.9, 130.5, 130.4, 129.9, 129.4, 129.1, 128.8, 128.7, 128.6, 128.4, 128.0, 127.7, 126.9, 124.4, 123.9, 117.9, 114.9, 114.0, 113.7, 103.4, 103.1, 55.9, 55.7.

These data match that reported for both regioisomers.¹¹

Prepared as described above by both methods A and B.

Method A: Following aqueous workup, the ratio of regioisomers was 1:1.3 (C2:C3). After purification by column chromatography, the product was isolated in 70% yield (120 mg, 0.42 mmol) with a 1.2:1 ratio of regioisomers (C3:C2) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.90 (m, C2+C3),

7.62-7.20 (m, C2+C3), 6.93 (m, C2+C3), 6.46 (s, 1H, C2), 3.92 (s, 3H, C2), 3.88 (s, 3H, C3). ¹³C NMR (75 MHz, CDCl₃): 158.3, 158.1, 141.0, 139.6, 138.3, 137.6, 136.8, 134.0, 133.6, 133.2, 130.3, 129.4, 129.0, 128.7, 128.5, 127.9, 127.7, 127.6, 126.9, 126.8, 124.5, 124.3, 123.2, 121.7, 121.3, 121.2, 113.7, 113.6, 112.8, 101.2, 98.3, 56.0, 55.9. HRMS (ESI) [M + Na⁺]/z calcd. 386.0822, found 386.0829. (Found: C, 69.19; H, 4.70; N, 3.65. Calc. for $C_{21}H_{17}NO_3S$: C, 69.40; H, 4.71; N, 3.85%.)

Method B: Following aqueous workup, the ratio of regioisomers was 2.6:1 (C2:C3). After purification by column chromatography, the product was isolated in 65% yield (112 mg, 0.39 mmol) as a pale yellow solid with a 2.3:1 ratio of regioisomers (C3:C2). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (m C2+C3), 7.60-7.56 (m, C2+C3), 7.47-7.21 (m, C2+C3), 6.91-6.87 (m, C2+C3), 6.45 (s, 1H, C2), 3.92 (s, 3H, C2), 3.88 (s, 3H, C3). ¹³C NMR (75 MHz, CDCl₃): δ 158.3, 158.1, 141.0, 139.6, 138.3, 137.6, 136.8, 134.0, 133.6, 133.2, 132.6, 132.2, 130.3, 129.4, 129.0, 128.5, 128.3, 127.9, 127.6, 126.8, 124.5, 124.3, 123.2, 121.7, 121.3, 121.2, 113.7, 113.6, 112.8, 101.2, 98.3, 56.0, 55.9. HRMS (ESI) [M + Na⁺]/z calcd. 386.0822, found 386.0827. (Found: C, 69.15; H, 4.74; N, 3.72. Calc. for C₂₁H₁₇NO₃S: C, 69.40; H, 4.71; N, 3.85%.)

Intermolecular Competition Kinetic Isotope Effect

To a pressure tube fitted with a plunger valve was added Pd (0.0075 mmol), ligand (0.0075 mmol), indole (38.6 mg, 0.15 mmol), benzene (426 μ L, 4.95 mmol), benzene-d₆ (439 μ L, 4.95 mmol) and EtCO₂H (67 μ L, 0.90 mmol).). The tube was evacuated and backfilled with O₂ (3x), sealed and heated to 120 °C for 24 h with vigorous stirring. The reaction mixture was then cooled to room temperature, diluted with EtOAc and filtered through a plug of silica. GC/MS analysis was used to determine the ratio of C₆H₆ and C₆D₆ incorporation into the product. KIE values are the amount of C₆H₆ incorporation/C₆D₆ incorporation.

N_{SO_2Ph} + D_6	5% Pd/Ligand 6 equiv EtCO ₂ H <u>1 atm O₂</u> 120 °C, 24 h	N SO ₂ Ph	₆ /D ₆
Catalyst	Product	KIE	
	C2	3.1	
Pd(1FA)2/2	C3	2.8	
$\mathbf{D}_{\mathbf{d}}(\mathbf{O}\mathbf{D}_{\mathbf{i}\mathbf{v}})2/1$	C2	3.6	
ru(Oriv)2/1	C3	3.8	

Table S6. Intermolecular Competition Kinetic Isotope Effect

¹¹ T. C. Leboho; J. P. Michael; W. A. L. van Otterlo; S. F. van Vuuren; C. B. de Koning, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 4948.

Deuterium Incorporation into Indole and Benzene

To a pressure tube fitted with a plunger valve was added Pd (0.0075 mmol), ligand (0.0075 mmol), indole (38.6 mg, 0.15 mmol), benzene (852 μ L, 9.9 mmol) and acetic acid-d₄ (52 μ L, 0.90 mmol). The tube was evacuated and backfilled with O₂ (3x), sealed and heated to 120 °C for 3 h with vigorous stirring. The reaction mixture was then cooled to room temperature, diluted with EtOAc and filtered through a plug of silica. GC/MS analysis was used to determine the amount of deuterium incorporation into the substrates. A similar control experiment was carried out as described above but omitted the Pd and ligand. No deuterium incorporation was observed into the indole and < 3% of the benzene had deuterium incorporation.

 Table S7. Deuterium Incorporation into Indole and Benzene

N SO ₂ Ph	5% Pd/Ligand 6 equiv AcOD 1 atm O ₂ 120 °C,3 h	$\bigcup_{\substack{N \\ SO_2Ph}}^{D} + \bigcup_{D}$	
Catalyst	Substrate	% D-incorp	
D4(TEA)2/2	Indole	56%	
Pu(1FA)2/2	Benzene	22%	
$\mathbf{D}_{\mathbf{d}}(\mathbf{O}\mathbf{D}_{\mathbf{i}\mathbf{v}})2/1$	Indole	48%	
ru(OFIV)2/1	Benzene	27%	

