Supporting Information

Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as sulfur source

Qian Wu, Dongbing Zhao, Xurong Qin, Jingbo Lan and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical
School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Table of contents

I. General remarks	.S1
II. Optimization of the cross-coupling of methyl indolizine-1-carboxylate w	vith
<i>p</i> -tolylsulfonyl chloride	S 1
III. General procedure for the sulfenylation of (hetero)arenes with arylsulfo	onyl
chlorides	.S3
IV. Experimental data for the described substances	.S3
V. ICP-MS and AAS analysis for the contents of transition metals in the samplesS	15
VI. Controlled experiments for the mechanistic investigationS	\$16
VII. References	517
VIII. Copies of ¹ H and ¹³ C NMR spectra	518

I. General remarks

NMR spectra were obtained on a Bruker AMX-400 or a Bruker AMX-600. The ¹H NMR (400 MHz) chemical shifts were measured relative to tetramethylsilane or CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). The ¹³C NMR (100 MHz or 150 MHz) chemical shifts were given using CDCl₃ or DMSO-*d*₆ as the internal standard (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). Low-resolution mass spectra (MS) were obtained by ESI or AP-MS. High resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). X-Ray single-crystal diffraction data were collected on a Bruker SMART 1000 CCD areadetector diffractometer. Melting points were determined with XRC-1 and are uncorrected. ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) analysis was conducted on VG PQ-ExCell. AAS (Atomic Absorption Spectrometry) analysis was conducted on SpectrAA-200FS using germanium and indium as internal standard elements.

Unless otherwise noted, all reagents were obtained from commercial supplier and used without further purification. Indolizine derivatives,¹ indole derivatives,² diphenyl disulfide,³ and benzenesulfenyl chloride⁴ were prepared according to the literature procedure. Solvents were dried by refluxing for at least 24 h over CaH₂ (DMF or DMSO) or sodium (1, 4-dioxane or toluene), and distilled freshly prior to use. Toluene was washed with conc. H_2SO_4 and water before drying. All synthesis and manipulations were carried out under N₂ atmosphere.

II. Optimization of the cross-coupling of methyl indolizine-1-carboxylate with *p*-tolylsulfonyl chloride

A sealed tube with a magnetic stirring bar was charged with methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), *p*-tolylsulfonyl chloride **2a** (0.75 mmol), additive (0.75 mmol) and solvent (1.5 mL). The system was evacuated twice and backfilled with N_2 . The mixture was stirred for 10 min at room temperature, and then heated at indicated temperature for 24 h. After being cooled to ambient

temperature, the reaction mixture was diluted with 15-20 mL of CH_2Cl_2 , and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product.

COOMe		COOMe		OMe
	+SO2CI	additive solvent	N	
1a	2a		3a	
Entry	Additive (equiv)	Temp. (°C)	Solvent	Yield $(\%)^b$
1	NMM (3.0)	120	toluene	50
2	<i>i</i> -Pr ₂ NEt (3.0)	120	toluene	64
3	Ph ₃ N (3.0)	120	toluene	29
4	<i>n</i> -Pr ₃ N (3.0)	120	toluene	61
5	DBU (3.0)	120	toluene	58
6	NMI (3.0)	120	toluene	65
7	Me ₃ SiCl (3.0)	120	toluene	58
8	HP(OPh) ₂ (3.0)	120	toluene	n.r
9	P(OEt) ₃ (3.0)	120	toluene	24
10	PPh ₃ (3.0)	120	toluene	60
11	PPh ₃ (3.0)	120	DMF	48
12	PPh ₃ (3.0)	120	DMSO	n.r
13	PPh ₃ (3.0)	120	1,4-dioxane	26
14	PPh ₃ (3.0)	100	toluene	53
15	PPh ₃ (3.0)	130	toluene	88
16	PPh ₃ (3.0)	140	toluene	88
17	PPh ₃ (3.0)	150	toluene	76
18	PPh ₃ (1.0)	130	toluene	46
19 ^c	PPh ₃ (3.0)	130	toluene	54
20^d	$PPh_{3}(3.0)$	130	toluene	54

Table S1 Optimization of the coupling of indolizine 1a with *p*-tolylsulfonyl chloride $2a^{a}$

^{*a*} Reactions were carried out using **1a** (0.25 mmol), **2a** (0.75 mmol), and additive (0.75 mmol) in 1.5 mL of solvent at indicated temperature for 24 h. ^{*b*} Isolated yield based

on **1a**. ^{*c*} 12 h. ^{*d*} *p*-tolylsulfonyl chloride **2a** (0.5 mmol). NMM = *N*-methylmorpholine, *i*-Pr₂NEt = ethyldiisopropylamine, Ph₃N = triphenylamine, *n*-Pr₃N = tri-*n*-propyl amine, DBU = 1,8-diazabicyclo[5,4,0]undec-7-ene, NMI = *N*-methylimidazole, Me₃SiCl = chlorotrimethylsilane, HP(OPh)₂ = diphenyl phosphonite, P(OEt)₃ = triethylphosphite, DMF = *N*, *N*-dimethylformamide, DMSO = dimethylsulfoxide, n.r = no reaction.

III. General procedure for the sulfenylation of (hetero)arenes with arylsulfonyl chlorides

A sealed tube with a magnetic stirring bar was charged with (hetero)arene (0.25 mmol), arylsulfonyl chloride (0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL). The system was evacuated twice and backfilled with N_2 . The mixture was stirred for 10 min at room temperature, and then heated at indicated temperature for 24 h. After being cooled to ambient temperature, the reaction mixture was diluted with 15-20 mL of CH₂Cl₂, and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to provide the desired product.

IV. Experimental data for the described substances

Methyl 3-(p-tolylthio)indolizine-1-carboxylate (3a)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column (CH₂Cl₂/petroleum ether = 1.5/1, v/v) afforded **3a** as a white solid (88% yield). M.p.: 97-100 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.25$ (s, 3H), 3.92 (s, 3H), 6.77 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.66 (s, 1H), 8.26 (s, 1H), 8.27 (d, J = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃):

 δ = 21.0, 51.2, 104.4, 111.4, 113.3, 119.9, 124.1, 124.7, 126.4, 126.6, 130.1, 132.0, 136.2, 138.5, 164.9 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆NO₂S [M+H]⁺ 298.0902, found 298.0899.

Methyl 3-(4-fluorophenylthio)indolizine-1-carboxylate (3b)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), 4-fluorobenzenesulfonyl chloride (146.0 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1.5/1, v/v) afforded **3b** as a white solid (86% yield). M.p.: 138-140 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 3H), 6.80 (t, *J* = 6.8 Hz, 1H), 6.88 (t, *J* = 8.4 Hz, 2H), 6.96-6.99 (m, 2H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 8.25-8.30 (m, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 51.2, 104.6, 111.0, 113.5, 116.4, 116.6, 120.0, 124.3, 124.5, 126.6, 128.27, 138.32, 130.58, 130.60, 138.5, 160.8, 162.5, 164.8 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃FNO₂S [M+H]⁺ 302.0651, found 302.0654.

Methyl 3-(4-chlorophenyl)thioindolizine-1-carboxylate (3c)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), 4-chlorobenzenesulfonyl chloride (158.3 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1.5/1, v/v) afforded **3c** as a white solid (81% yield). M.p.: 84-86 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 3H), 6.80

(t, J = 6.8 Hz, 1H), 6.87 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.19 (t, J = 7.6 Hz, 1H), 7.68 (s, 1H), 8.21 (d, J = 6.8 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 51.1$, 104.6, 109.9, 113.5, 119.9, 124.2, 124.4, 126.7, 127.2, 129.4, 132.0, 134.2, 138.5, 164.7 ppm. MS (ESI⁺) m/z: 318 [M+H]⁺.

Methyl 3-(4-bromophenylthio)indolizine-1-carboxylate (3d)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), 4-bromobenzenesulfonyl chloride (191.6 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1.5/1, v/v) afforded **3d** as a pale yellow solid (76% yield). M.p.: 117-120 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.92$ (s, 3H), 6.80-6.82 (m, 3H), 7.19 (t, J = 8.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.67 (s, 1H), 8.20 (d, J = 7.6 Hz, 1H) 8.28 (d, J = 8.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 51.2$, 104.7, 109.8, 113.6, 119.9, 120.0, 124.4, 124.5, 126.9, 127.6, 132.4, 135.1, 138.7, 164.7 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃BrNO₂S [M+H]⁺ 361.9850, found 361.9845.

Methyl 3-(2-(trifluoromethyl)phenylthio)indolizine-1-carboxylate (3e)

Methyl indolizine-1-carboxylate **1**a (43.8)0.25 mmol), mg, 2-trifluoromethylbenzenesulfonyl chloride (115.7)0.75 μL, mmol). triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/diethyl ether = 4/1, v/v) afforded **3e** as a pale yellow solid (85% yield). M.p.: 109-112 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.93 (s, 3H), 6.59 (t, *J* = 4.0 Hz, 1H), 6.81 (t, *J* = 6.8 Hz, 1H), 7.19-7.23 (m, 3H), 7.65 (t, *J* = 4.0 Hz, 1H), 7.74 (s, 1H), 8.20 (d, *J* = 7.2 Hz, 1H), 8.30 (d, *J* = 9.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.2, 105.0, 113.8, 120.0, 124.5, 124.6, 125.9, 127.05, 127.09, 127.17, 127.2, 127.3, 127.8, 132.4, 135.7, 138.9, 164.7 ppm. MS (ESI) m/z: 374 [M+Na]⁺.

Methyl 3-(3-nitrophenylthio)indolizine-1-carboxylate (3f)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), 3-nitrobenzenesulfonyl chloride (166.2 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **3f** as a yellow solid (43% yield). M.p.: 142-145 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 3H), 6.83 (t, *J* = 6.8 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.72 (s, 1H), 7.86 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 6.8 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 51.3, 105.2, 108.2, 113.9, 120.2, 120.6, 121.0, 124.2, 124.7, 127.5, 130.1, 131.3, 138.9, 139.2, 148.9, 164.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃N₂O₄S [M+H]⁺ 329.0596, found 329.0594.

Methyl 3-(phenylthio)indolizine-1-carboxylate (3g)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), benzenesulfonyl chloride (96 μ L, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL)

at 140 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **3g** as yellow oil (88% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 3H), 6.78 (t, *J* = 6.8 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.18-7.19 (m, 3H), 7.69 (s, 1H), 8.26-8.30 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.2, 104.6, 110.7, 113.4, 119.9, 124.1, 124.7, 126.2, 126.7, 129.4, 135.8, 138.6, 164.8 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄NO₂S [M+H]⁺ 284.0745, found 284.0748.

Methyl 3-(naphthalen-1-ylthio)indolizine-1-carboxylate (3h)

Methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), naphthalenesulfonyl chloride (170 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/Et₂O = 10/1, v/v) afforded **3h** as an off-white solid (73% yield). M.p.: 72-74 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.94 (s, 3H), 6.61 (d, *J* = 7.2 Hz, 1H), 6.73 (t, *J* = 6.4 Hz, 1H), 7.15-7.20 (m, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.62-7.63 (m, 2H), 7.78 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 8.18 (d, *J* = 6.8 Hz, 1H), 8.31 (d, *J* = 9.2 Hz, 1H), 8.40 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 51.2, 104.7, 109.6, 113.4, 119.9, 123.2, 123.7, 124.2, 124.8, 125.9, 126.55, 126.58, 126.59, 127.1, 128.8, 130.9, 132.5, 134.1, 138.8, 164.9 ppm. HRMS (ESI⁺): calcd for C₂₀H₁₆NO₂S [M+H]⁺ 334.0902, found 334.0892.

Methyl 7-methyl-3-(p-tolylthio)indolizine-1-carboxylate (4a)

Methyl 7-methylindolizine-1-carboxylate (47.2 mg, 0.25 mmol), p-tosylsulfonyl

chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 140 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 3/1, v/v) afforded **4a** as a yellow solid (63% yield). M.p.: 80-82 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 2.40 (s, 3H), 3.91 (s, 3H), 6.61 (dd, *J* = 7.2 Hz, *J* = 2.0 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 7.60 (s, 1H), 8.06 (s, 1H), 8.13 (d, *J* = 6.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 21.3, 51.0, 102.9, 110.3, 115.8, 118.3, 124.0, 126.3, 130.0, 132.2, 135.3, 135.9, 138.9, 164.9 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₈NO₂S [M+H]⁺ 312.1058, found 312.1066.

Methly 7-cyano-3-(p-tolylthio)indolizine-1-carboxylate (4b)

Methyl 7-cyanolindolizine-1-carboxylate (50.0 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 4/1, v/v) afforded **4b** as a yellow solid (62% yield). M.p.: 165-167 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.27 (s, 3H), 3.95 (s, 3H), 6.86 (d, *J* = 6.8 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 7.76 (s, 1H), 8.29 (d, *J* = 7.2 Hz, 1H), 8.66 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 51.7, 106.3, 108.7, 112.9, 116.0, 118.0, 125.1, 126.4, 127.4, 127.5, 130.2, 130.4, 135.3, 137.1, 163.9 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₅N₂O₂S [M+H]⁺ 323.0854, found 323.0847.

Methyl 3-(*p*-tolylthio)pyrrolo[2, 1-*a*]isoquinoline-1-carboxylate (4c)

Methyl 3-(*p*-tolylthio)pyrrolo[2, 1-*a*]isoquinoline-1-carboxylate (56.3 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 140 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂ = 3/2, v/v) afforded **4c** as an off-white solid (77% yield). M.p.: 68-72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 3.96 (s, 3H), 6.91 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 3H), 7.54 (t, *J* = 6.8 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 2H), 7.72 (s, 1H), 8.18 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.0, 51.7, 109.1, 113.3, 114.3, 122.2, 125.6, 126.5, 126.9, 127.0, 127.5, 127.8, 128.4, 129.5, 130.1, 132.5, 135.3, 136.2, 165.4 ppm. MS (ESI⁺) m/z: 348 [M+H]⁺.

12-(*p*-Tolylthio)-6*H*-chromeno[3, 4-*a*]indolizin-6-one (4d)

6*H*-Chromeno[3, 4-*a*]indolizin-6-one (58.8 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 140 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/acetone = 6/1, v/v) afforded **4d** as an off-white solid (73% yield). M.p.: 185-187 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 6.8 Hz, 1H), 7.25 (t, *J* = 6.8 Hz, 1H), 7.40-7.48 (m, 3H), 8.45 (d, *J* = 8.8 Hz, 1H), 8.60 (d, *J* = 6.8 Hz, 1H), 8.89 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 98.2, 104.6, 115.5, 116.2, 117.7, 119.6, 124.0, 124.5, 124.6, 125.8, 126.2, 129.8, 130.3, 130.8, 131.2, 136.5, 137.0, 152.9, 158.4 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆NO₂S [M+H]⁺ 358.0902, found 358.0901.

Methyl 1, 3-bis(p-tolylthio)indolizine-2-carboxylate (4e)

Methyl indolizine-2-carboxylate (43.8 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4e** as a yellow solid (44% yield). M.p.: 123-126 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.26 (s, 3H), 2.27 (s, 3H), 3.84 (s, 3H), 6.74 (t, *J* = 6.8 Hz, 1H), 6.96-7.00 (m, 9H), 7.70 (d, *J* = 9.2 Hz, 1H), 8.33 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 21.03, 21.07, 52.2, 100.8, 113.1, 114.0, 118.9, 122.4, 124.5, 126.8, 127.2, 129.6, 130.2, 130.3, 131.7, 135.0, 135.7, 136.3, 138.6, 164.7 ppm. MS (ESI⁺) m/z: 420 [M+H]⁺.

Methyl 1, 3-bis((3-nitrophenyl)thio)indolizine-2-carboxylate (4f)

Methyl indolizine-2-carboxylate (43.8 mg, 0.25 mmol), 3-nitrobenzenesulfonyl chloride (166.2 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4f** as a yellow solid (42% yield). M.p.: 148-152 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 3H), 6.90 (t, *J* = 6.8 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.39-7.40 (m, 3H), 7.75 (d. *J* = 8.8 Hz, 1H), 7.84 (s, 1H), 7.92-7.94 (m, 2H), 7.99 (d, *J* = 7.6 Hz, 1H), 8.42 (d, *J* = 6.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.3, 98.6,

111.3, 115.0, 118.6, 120.0, 120.3, 121.0, 121.2, 124.0, 124.4, 129.5, 130.3, 131.0, 131.4, 131.8, 138.3, 139.4, 142.3, 148.6, 148.8, 163.7 ppm. HRMS (ESI⁺): calcd for $C_{22}H_{16}N_3O_6S_2 [M+H]^+$ 482.0481, found 482.0477.

1-Cyano-3-(p-tolylthio)indolizine (4g)

1-Cyano-indolizine (33.5 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (124.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 140 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4g** as an off-white solid (83% yield). M.p.: 82-85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.27 (s, 3H), 6.82 (t, *J* = 6.8 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.44 (s, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 8.28 (d, *J* = 6.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.0, 82.8, 112.5, 113.8, 116.2, 118.0, 124.2, 125.1, 126.5, 126.9, 130.3, 131.1, 136.7, 140.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₃N₂S [M+H]⁺ 265.0799, found 265.0801.

1-Cyano-3-(p-chlorophenylthio)indolizine (4h)

1-Cyano-indolizine (33.5 mg, 0.25 mmol), 4-chlorobenzenesulfonyl chloride (158.3 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4h** as an off-white solid (87% yield). M.p.: 140 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.86-6.90 (m, 3H), 7.17

(d, J = 5.6 Hz, 2H), 7.22 (t, J = 5.2 Hz, 1H), 7.46 (s, 1H), 7.73 (d, J = 5.6 Hz, 1H), 8.23 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 83.2$, 111.1, 114.1, 115.9, 118.2, 124.5, 124.9, 127.0, 127.6, 129.6, 132.6, 133.4, 140.4 ppm. HRMS (ESI⁺): Calcd for C₁₅H₁₀ClN₂S [M+H]⁺ 285.0253, found 285.0258.

1-Cyano-3-(p-bromophenylthio)indolizine (4i)

1-Cyano-indolizine (33.5 mg, 0.25 mmol), 4-bromobenzenesulfonyl chloride (191.6 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4i** as an off-white solid (96% yield). M.p.: 168-170 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.81 (d, *J* = 8.0 Hz, 2H), 6.86 (t, *J* = 6.8 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.46 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 83.2, 111.0, 114.1, 115.9, 118.2, 120.4, 124.5, 124.9, 127.1, 127.9, 132.6, 134.1, 140.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₀BrN₂S [M+H]⁺ 328.9748, found 328.9749.

1-Cyano-3-(*m*-nitrophenylthio)indolizine (4j)

1-Cyano-indolizine (33.5 mg, 0.25 mmol), 3-nitrobenzenesulfonyl chloride (166.2 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 3/1, v/v) afforded **4j** as a yellow solid (91% yield). M.p.:

128-132 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.90$ (t, J = 6.8 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.4 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.87 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 83.7$, 109.3, 114.4, 115.6, 118.3, 120.8, 121.3, 124.6, 124.8, 127.6, 130.3, 131.4, 138.1, 140.6, 148.9 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₀N₃O₂S [M+H]⁺ 296.0494, found 296.0492.

2-Methyl-3-(p-tolylthio)-1H-indole (4k)

2-Methylindole (32.8 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (124.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1.5, v/v) afforded **4k** as a yellow solid (69% yield). M.p.: 78-81 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.26 (s, 3H), 2.52 (s, 3H), 6.98-7.00 (m, 4H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 8.19 (s, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 12.3, 21.0, 99.9, 110.7, 119.1, 120.8, 122.2, 125.9, 129.6, 130.4, 134.4, 135.5, 135.8, 141.1 ppm. MS (ESI') m/z: 252 [M-H]⁺.

2-Methyl-3-(*m*-nitrophenylthio)-1*H*-indole (4l)

Method A: *N*-pivaloyl-2-methylindole (53.8 mg, 0.25 mmol), 3-nitrobenzenesulfonyl chloride (166.2 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4I** as a yellow

solid (71% yield).

Method B: 2-Methylindole (32.8 mg, 0.25 mmol), 3-nitrobenzenesulfonyl chloride (166.2 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (CH₂Cl₂/petroleum ether = 1/1, v/v) afforded **4l** as a yellow solid (46% yield).

M.p.: 134-138 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.54$ (s, 3H), 7.13 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.29-7.30 (m, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.86-7.89 (m, 2H), 8.41 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 12.3$, 97.6, 111.1, 118.7, 119.6, 120.0, 121.2, 122.8, 129.5, 129.8, 131.1, 135.7, 141.8, 142.8, 148.8 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃N₂O₂S [M+H]⁺ 285.0698, found 285.0705.

5-Nitro-3-(p-tolylthio)-1H-indole (4m)

5-Nitroindole (40.5 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (124.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (diethyl ether/petroleum ether = 1.5/1, v/v) afforded **4m** as a yellow solid (51% yield). M.p.:189-193 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.19 (s, 3H), 6.98 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 9.2 Hz, 1H), 8.06-8.07 (m, 2H), 8.24 (s, 1H), 12.38 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 20.4, 103.4, 113.1, 114.1, 114.8, 117.5, 126.2, 128.1, 129.7, 134.8, 136.2, 140.0, 141.5 ppm. HRMS (ESI): calcd for C₁₅H₁₃N₂O₂S [M+H]⁺ 285.0698, found 285.0701.

p-Tolyl 2, 4, 6-trimethoxyphenyl thioether (4n)⁵

Method A: 1, 3, 5-Trimethoxybenzene (42.0 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol) and toluene (1.5 mL) at 130 °C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/EtOAc = 4/1, v/v) afforded **4n** as an off-white solid (51% yield).

Method B: 1, 3, 5-Trimethoxybenzene (42.0 mg, 0.25 mmol), *p*-tosylsulfonyl chloride (142.9 mg, 0.75 mmol), triphenylphosphine (196.7 mg, 0.75 mmol), FeCl₃ (8.1 mg, 0.05 mmol) and toluene (1.5 mL) at 130°C for 24 h under N₂ atmosphere. Purification via silica gel column chromatography (petroleum ether/EtOAc = 4/1, v/v) afforded **4n** as an off-white solid (67% yield).

M.p.: 90-94 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 3.81 (s, 6H), 3.87 (s, 3H), 6.21 (s, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H) ppm. HRMS (ESI): calcd for C₁₆H₁₉O₃S [M+H]⁺291.1055, found 291.1049.

V. ICP-MS and AAS analysis for the contents of transition metals in the samples

Preparation of samples: Methyl indolizine-1-carboxylate (0.0938 g), *p*-tosylsulfonyl chloride (0.2003 g), and triphenylphosphine (0.2009 g) were respectively dissolved in 4 mL of concentrated nitric acid, and heated until the nitric acid was gone. Then 10 mL of pure water was added to the digested samples, followed by filtration. The filtrate (2.50 mL) was transferred to 25 mL of volumetric flask, and then diluted with pure water.

Analysis A: ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) of samples: analysis was conducted on VG PQ-ExCell. The contents of elements (Pd and Cu) were found to be less than detection limit (1.0 ppb).

Analysis B: AAS (Atomic Absorption Spectrometry) of samples: analysis was conducted on SpectrAA-200FS using germanium and indium as internal standard elements. The contents of Fe were found to be less than 30 ppb.

Table S2 ICP-MS and AAS Analysis on the contents of metal elements in samples

Content of metal Methyl indolizine-1-carboxylate p-Tosylsulfonyl chloride Triphenylphosphine

Pd (ppb)	< 1.0	< 1.0	< 1.0
Cu (ppb)	< 1.0	< 1.0	< 1.0
Fe (ppb)	22	20	30

VI. Controlled experiments for the mechanistic investigation

Part A: Sulfenylation of methyl indolizine-1-carboxylate **1a** with various sulfenylating agents

A sealed tube with a magnetic stirring bar was charged with methyl indolizine-1-carboxylate **1a** (43.8 mg, 0.25 mmol), sulfenylting agent (0.75 mmol), and toluene (1.5 mL). The system was evacuated twice and backfilled with N_2 . The mixture was stirred for 10 min at room temperature, and then heated at 130 °C for 24 h. Purification was via silica gel column chromatography.

Table S3	Sulfenylation	of methyl indoliz	ine-1-carboxylate 1	a with various	sulfenylating agents
----------	---------------	-------------------	---------------------	-----------------------	----------------------

Entry	Sulfenylating agent	Additive	Yield (%)
1	PhSCl	-	82
2	PhS-SPh	-	n.r
3	PhSH	-	n.r

Part B: Reduction of *p*-tosylsulfonyl chloride to 1, 2-di-*p*-tolyl disulfide⁶

A sealed tube with a magnetic stirring bar was charged with *p*-tolylsulfonyl chloride (57.2 mg, 0.3 mmol), PPh₃ (78.7 mg, 0.3 mmol) and toluene (1.5 mL). The system was evacuated twice and backfilled with N₂, stirred for 10 min at room temperature, and then heated at 130 °C for 24 h. Purification via silica gel column chromatography (petroleum ether) afforded 1, 2-di-*p*-tolyl disulfide as a white solid (89% yield). ¹H

NMR (400 MHz, CDCl₃): δ = 2.31 (s, 6H), 7.09 (d, *J* = 7.6 Hz, 4H), 7.37 (d, *J* = 7.6 Hz, 4H) ppm. MS (AP) m/z: 245 [M-H]⁺.

Part C: Homocoupling of benzenesulfenyl chloride⁷

A sealed tube with a magnetic stirring bar was charged with benzenesulfenyl chloride (28.2 μ L, 0.3 mmol) and toluene (1.5 mL). The system was evacuated twice and backfilled with N₂, stirred for 10 min at room temperature, and then heated at 130 °C for 24 h. Purification via silica gel column chromatography (petroleum ether) afforded diphenyl disulfie as a white solid (85% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.21-7.26 (m, 2H), 7.28 (t, *J* = 7.6 Hz, 4H), 7.49 (d, *J* = 7.6 Hz, 4H) ppm.

VII. References

1. L. Zhang, F. Liang, L. Sun, Y. Hu and H. Hua, Synthesis, 2000, 12, 1733.

2. I. Buder, G. Schwitzgebel, S. Samsoniya, E. Gogritchiani and I. Chikvaidze, *Chemistry of Heterocyclic Compounds*, 2005, **41**, 1121.

3. G. W. Kabalka, M. S. Reddy and M.-L. Yao, Tetrahedron Lett., 2009, 50, 7340.

4. A. G. M. Barrett, D. Dhanak, G. G. Graboski and S. J. Taylor, *Org. Synth. Coll. Vol.* 1993, **8**, 550; 1990, **68**, 8.

5. P. Anbarasan, H. Neumann and M. Beller, Chem. Commun., 2011, 47, 3233.

6. Y. Liu and Y. Zhang, Tetrahedron Lett., 2003, 44, 4291.

7. S. C. Banfield, A. T. Omori, H. Leisch and T. Hudlicky, J. Org. Chem., 2007, 72, 4989.

VIII. Copies of ¹H and ¹³C NMR spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 f1(ppm)

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1(ppm)

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 f1(ppm)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

