Electronic Supplementary Information

Hydrogen Bonding Mediated Enantioselective Organocatalysis in Brine: Significant Rate Acceleration and Enhanced Stereoselectivity in Enantioselective Michael Addition Reactions of 1,3-Dicarbonyls to β -Nitroolefins

Han Yong Bae,^a Surajit Some,^a Joong Suk Oh,^a Yong Seop Lee,^a Choong Eui Song^{ab*}

^a Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea); Fax: (+82) 31-290-7075; E-mail: <u>s1673@skku.edu</u>

^b Department of Energy Science, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi, 440-746 (Korea)

- 1. General
- 2. General Procedure for the Michael Addition in Brine
- 3. Solvent Screening
- 4. Product Characterization
- 5. ¹H NMR, ¹³C NMR and HPLC Spectra for Table 2
- 6. ¹H NMR, ¹³C NMR and HPLC Spectra for Table 3
- 7. Scale-up Experiment
- 8. References

1. General

All chemicals used in this study were obtained from commercial sources and used without further purification. The organocatalysts examined in this study (QN-TU,^{1a} QN-SA,^{1b} QN-SQA,^{1c,1d} CN-SQA^{1c}) were prepared starting from the corresponding 9-*epi*-amino cinchona alkaloids according to the literature procedure. The chromatographic purification of the products was conducted by flash chromatography using Merck silica gel 60 (230–400 mesh). Thin-layer chromatography was conducted on Merck silica gel 60F plates. HPLC analyses were performed on a Varian Pro Star Series instrument equipped with an isostatic pump using a CHIRALCEL Column (250 × 4.6 mm). The ¹H and ¹³C NMR spectra were recorded on Varian 300 spectrometers.

2. General procedure for the Michael Addition

2,4-Pentanedione (2, 103 μ L, 0.5 mmol) was added to a mixture of β -nitrostyrene (1a, 75 mg, 0.5 mmol), QN-SQA (1.6 mg, 0.5 mol%), and brine (1.5 mL of saturated NaCl aqueous solution) in a 5 mL vial. The reaction mixture was stirred vigorously (using five magnetic bars at a stirring speed of 1000 rpm) at room temperature. After completion of the reaction, which was monitored by TLC, an aqueous HCl solution (1 N, 1 mL) was added to quench the reaction then extracted with CH₂Cl₂(3 x 5 mL). The combined organic phase was washed with water and dried over anhydrous Na₂SO₄, and the solvent was concentrated. The obtained crude product was purified by column chromatography on silica gel to afford the Michael addition product **3a**.

3. Solvent Screening

Ph 1	_≫ NO ₂ + a	QN-SQA 2 2.0 equiv.	(0.5 mol%)	NO ₂ S- 3a
entry	solvent	time (h)	conv. $(\%)^a$	$ee (\%)^b$
1	CH ₂ Cl ₂	2	>99	>99
2	DMSO	1	>99	racemic
3	Toluene	2	>99	>99
4	MeOH	96	>99	>99

^a Determined by ¹H NMR. ^b Determined by HPLC analysis using chiral AD-H column.

4. Product Characterization

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3a** as a white solid (98% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.26-7.19 (m, 3H), 7.12-7.10 (m, 2H), 4.58-4.55 (m, 2H), 4.30 (d, 1H, J = 10.5 Hz), 4.21-4.17 (m, 1H), 2.23 (s, 3H), 1.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.7, 201.0, 135.9, 129.3, 128.5, 127.9, 78.1, 70.6, 42.7, 30.4, 29.6; HPLC (AD-H, Hexane : iPrOH = 90 : 10, 1.0. mL/min, 220 nm): t_{major} = 11.0 min, t_{minor} = 14.7 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.²

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3b** as a white solid (92% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.20-6.97(m 4H), 4.54-4.52 (m, 2H), 4.28 (d, *J* = 10.8 Hz, 1H), 4.17-4.11 (m, 1H), 2.22 (s, 3H), 2.19 (s, 3H), 1.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.8, 201.1, 138.2, 132.8, 129.9, 127.7, 78.2, 70.6, 42.4, 30.3, 29.5, 20.9; HPLC (AD-H, Hexane : iPrOH = 90 : 10, 1.0 mL/min, 220 nm): t_{major} = 10.2 min, t_{minor} = 16.6 min; 97% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.^{1c}

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3c** as a white solid (91% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.03 (d, J = 8.7 Hz, 3H), 6.76 (d, 3J = 8.7 Hz, 2H), 4.53-4.51 (m, 2H), 4.23 (d, J = 11.1 Hz, 1H), 4.16-4.08 (m, 1H), 3.69 (s, 3H), 2.19 (s, 3H), 1.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.8, 201.1, 159.4, 129.0, 127.6, 114.6, 78.4, 70.8, 55.1, 42.1, 30.3, 29.5; HPLC (AD-H, Hexane : iPrOH = 90 : 10, 1.0 mL/min, 220 nm): t_{major} = 16.2 min, t_{minor} = 25.7 min; 98% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.³

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3d** as a white solid (89% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.13 - 7.09 (m, 2H), 6.97-6.91 (m, 2H), 4.58-4.49 (m, 2H), 4.27 (d, J = 10.8, 1H), 4.21- 4.13 (m, 1H), 2.20 (s, 3H), 1.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.4, 200.7, 164.0, 160.7, 131.8, 131.7, 129.7, 129.6, 116.3, 116.0, 78.0, 70.4, 42.0, 30.3, 29.6; HPLC (OD-H, Hexane : iPrOH = 85 : 15, 1 mL/min, 220 nm): t_{major} = 16.9 min, t_{minor} = 18.8 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the

retention time of HPLC with the literature data.⁴

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3e** as a white solid (99% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.23 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 4.55 (d, J = 6.3 Hz, 2H), 4.14 (d, J = 10.5 Hz, 1H), 4.20-4.12 (m, 1H), 2.20 (s, 3H), 1.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.3, 200.6, 134.5, 134.3, 129.4, 129.3, 77.8, 70.3, 42.0, 30.4, 29.7; HPLC (AS-H, Hexane : iPrOH = 85 : 15, 1 mL/min, 220 nm): t_{major} = 15.2 min, t_{minor} = 28.5 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.³

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3f** as a white solid (96% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.46 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 4.62 (d, J = 6.3 Hz, 2H), 4.25 (d, J = 6.0 Hz, 1H), 4.26-4.18 (m, 1H), 2.29 (s, 3H), 1.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): 201.3. 200.5. 135.1. 132.4. 129.6. 122.5. 77.7. 70.2, 42.1, 30.4, 29.7; HPLC (OD-H, Hexane : iPrOH = 90 : 10, 0.8 mL/min, 220 nm): t_{major} = 34.2 min, t_{minor} = 37.3 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.^{1c}

Purification by column chromatography (4:1 = Hexane : EtOAc) afforded 3g as a white solid (91% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.28-7.23 (m, 1H), 6.93-6.89 (m, 2H), 4.68-4.66 (m, 2H), 4.58-4.51 (m, 1H), 4.40 (d, J = 9.9 Hz, 1H), 2.29 (s, 3H), 2.07(s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.4, 200.6, 138.4, 127.3, 126.9, 125.6, 78.4, 70.9, 38.2, 30.5, 29.6; HPLC (AS-H, Hexanes : iPrOH = 90 : 10, 0.6 mL/min, 220 nm): t_{major} = 33.2 min, t_{minor} = 41.1 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (R) by comparison of the retention time of HPLC with the literature data.⁵

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **3h** as a white solid (90% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 4.56-4.51 (m, 2H), 4.00 (d, J = 8.4 Hz, 1H), 2.96-2.85 (m, 1H), 2.29 (s, 3H), 2.26 (s, 3H), 1.78-1.64 (m, 1H), 1.42-1.32 (m, 1H), 1.05-0.95 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 202.9, 202.2, 75.6, 69.3, 38.2, 34.7, 31.0, 29.7, 24.8, 23.1, 21.1; HPLC (OD-H, Hexane : iPrOH = 96 : 4, 0.7 mL/min, 210 nm): t_{major} = 17.1 min, t_{minor} = 15.6 min; >99% ee.

Configuration assignment: The absolute stereochemistry was assigned as (R) by comparison of the retention time of HPLC with the literature data.⁵

Purification by column chromatography (5: 1 = Hexane : Acetone) afforded **5a** as a white solid (96% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.32-7.27 (m, 3H), 7.18-7.15 (m, 2H), 4.71-4.60 (m, 2H), 4.35-4.23 (m, 2H), 2.65-2.44 (m, 2H), 2.38-2.25 (m, 1H), 2.20-2.04 (m, 1H), 1.07 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz), 0.78 (t, J = 7.2 Hz), 0.78 (t,

 $J = 7.2 \text{ Hz}, 3\text{H}; {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3, \text{Me}_4\text{Si}): \delta 204.4, 203.8, 136.2, 129.1, 128.3, 127.8, 77.8, 69.0, 42.9, 36.8, 36.4, 7.4, 7.2; \text{HPLC} (AD-H, \text{Hexane} : iPrOH = 90 : 10, 1.0 \text{ mL/min}, 220 \text{ nm}): t_{\text{major}} = 8.2 \text{ min}, t_{\text{minor}} = 11.3 \text{ min}; >99\%$ ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.²

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **5b** as a white solid (92% yield). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.33-7.21 (m, 5H), 4.96-4.83 (m, 2H), 4.24 (td, J = 8.8, 5.7 Hz, 1H), 3.86 (d, J = 9.2 Hz, 1H), 3.76 (s, 3H), 3.56 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 167.7, 167.1, 136.1, 128.9, 128.3, 127.8, 77.4, 54.6, 52.9, 52.7, 42.9; HPLC (AD-H, Hexanes : iPrOH = 90 : 10, 1 mL/min, 220 nm): t_{major} = 26.4 min, t_{minor} = 16.2 min; 97 % ee.

Configuration assignment: The absolute stereochemistry was assigned as (S) by comparison of the retention time of HPLC with the literature data.²

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **5c** as a white solid (95% yield, 1 : 1 mixture of diastereomers). Analytical data was matched with previously reported values. ¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.33-7.25 (m, 3H), 7.21-7.18 (m, 2H), 4.83-4.81 (m, 1 H), 4.78-4.76 (m, 1 H), 4.29-4.17 (m,1 H), 4.12 (d, J = 9.6 Hz, 0.5 H), 4.03 (d, J = 9.6 Hz, 0.5 H), 3.77-3.53 (s, 3H), 2.29-2.05 (s, 3H); dr = 1 : 1 (determined by integration of ¹H NMR); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 200.5, 199.6, 167.4, 166.7, 135.8, 135.6, 128.5, 128.3, 127.7, 127.6, 127.2, 127.2, 76.4, 76.0, 61.2, 60.8, 52.3, 52.1, 42.0, 41.7, 29.7, 29.6; HPLC (AD-H, Hexane : iPrOH = 95 : 5, 1.0 mL/min, 220 nm): First diastereomer: $t_{major} = 15.4 \text{ min}$, $t_{minor} = 23.2 \text{ min}$; >99% ee; Second diastereomer : $t_{major} = 28.6 \text{ min}$, $t_{minor} = 21.7 \text{ min}$; >99 % ee.

Configuration assignment: The absolute stereochemistry of carbon (3) was assigned as (*S*) by comparison of the retention time of HPLC with the literature data.²

Purification by column chromatography (5 : 1 = Hexane : Acetone) afforded **5d** as a white solid. Analytical data was matched with previously reported values (94% yield, 1.5:1 mixture of diastereomers).

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.32-7.27 (m, 3H), 7.22-7.19 (m, 2H), 4.89-4.76 (m, 2H), 4.26-4.18 (m, 2 H), 4.12 (d, J = 9.9 Hz, 0.6H) 4.03 (d, 0.4 H, J = 9.9 Hz), 3.96 (q, 1H, J = 7.2 Hz), 2.30-2.05 (s, 3H), 1.28-1.00 (t, J = 7.2 Hz, 4H); dr = 1.5 : 1 (determined by integration of ¹H NMR); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.4, 200.5, 167.7, 167.1, 136.7, 129.4, 128.6, 128.5, 128.2, 128.1, 78.1, 78.0, 76.8, 65.4, 62.2, 62.2, 61.9, 42.8, 42.5, 30.5, 30.3, 13.9, 13.6; HPLC (AD-H, Hexanes : iPrOH = 95 : 5, 0.8 mL/min, 220 nm): First diastereomer : t_{major} = 15.6 min, t_{minor} = 26.8 min; >99% ee.

Configuration assignment: The absolute stereochemistry of carbon (3) was assigned as (S) by comparison of the retention time of HPLC with the literature data.²

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **5e** as a white solid (94% yield, 4.9 : 1 mixture of diastereomers). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃ Me₄Si): δ 7.34-7.29 (m, 3H), 7.25-7.20 (m, 2H), 4.85-4.82 (m 0.4H), 4.77-4.65 (m, 2H), 4.23-4.10 (m, 1H), 4.03 (d, J = 10.2 Hz, 0.83H), 3.92 (d, J = 10.2 Hz, 0.17H), 2.30-2.06 (s, 3H), 1.47 - 1.11 (s, 9H); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 201.5, 200.9 166.9, 166.1, 136.9, 129.3, 129.0, 128.5, 128.4, 128.4, 128.2, 83.6, 83.1, 78.6, 78.1, 63.3, 62.9, 42.8, 42.6, 30.3, 29.9, 28.0,

27.6; dr = 4.9 : 1 (determined by integration of ¹H NMR); HPLC (AD-H, Hexanes : iPrOH = 95 : 5, 1 mL/min, 220 nm): First (major) diastereomer: $t_{major} = 8.8 \text{ min}$, $t_{minor} = 13.5 \text{ min}$; 98 % ee; Second (minor) diastereomer: $t_{major} = 24.2 \text{ min}$, $t_{minor} = 15.2 \text{ min}$; 98% ee.

Configuration assignment: The absolute stereochemistry of carbon (3) was assigned as (*S*) by comparison of the retention time of HPLC with the literature data.²

$$Ph^{(1)}$$
 H Sf

(major diastereomer)

Purification by column chromatography (4 : 1 = Hexane : EtOAc) afforded **5f** as a white solid (85% yield, 7.3 : 1 mixture of diastereomers). Analytical data was matched with previously reported values. ¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.24-7.34(m, 5H), 5.01(dd, J = 11.1, 13.2 Hz, 0.12H) 4.86(dd, J = 11.4 Hz and J = 13.5 Hz, 0.88H), 4.60-4.51 (dd, J = 3.9 Hz and 13.2 Hz, 1H), 4.39-4.28 (dd, J = 3.9 and J = 11.1 Hz, 1H), 2.61-2.54 (m, 1H), 2.33 (s, 3H), 2.26-2.14(m, 1H), 2.03-1.93 (m, 1H), 1.80-1.65 (m, 3H); dr = 7.3 : 1 (determined by integration of ¹H NMR); ¹³C NMR (75 MHz, CDCl₃, Me₄Si): δ 213.3, 203.0, 134.4, 129.7, 129.1, 128.7, 75.8, 71.4, 46.6, 38.9, 27.5, 26.8, 19.7; HPLC (OD-H, Hexane : iPrOH = 80 : 20, 1 mL/min, 220 nm): First (major) diastereomer: t_{major} = 13.4 min, t_{minor} = 60.9 min; 97% ee; Second (minor) diastereomer: t_{major} = 17.0 min, t_{minor} = 27.1 min; 75% ee.

Configuration assignment: The absolute stereochemistry was assigned as (2R, 3R) by comparison of the retention time of HPLC with the literature data.⁶

Purification by column chromatography (4:1 = Hexane : EtOAc) afforded **5g** as a colorless oil (87% yield, 99:1 mixture of diastereomers). Analytical data was matched with previously reported values. ¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.31-7.23 (m, 5H), 5.17 (dd, J = 4.2 and 13.5 Hz, 1H), 5.01(dd, J = 10.8 Hz and J = 13.5Hz, 1H), 4.08 (dd, J = 3.9 Hz and 10.8 Hz, 1H), 3.75 (s, 3H), 2.40-2.32 (m, 2H), 2.05-1.82 (m, 4H) ; dr >99 : 1 (determined by integration of ¹H NMR); ¹³C NMR (75MHz, CDCl₃, Me₄Si): δ 212.4, 170.0, 135.5, 129.5, 129.1, 128.5, 76.6, 62.7, 53.2, 46.4, 38.1, 31.4, 19.5; HPLC (OD- H, Hexane : iPrOH = 80 : 20, 1 mL/min, 220 nm): First (major) diastereomer: $t_{major} = 16.1 \text{ min}$, $t_{minor} = 26.4 \text{ min}$; >99% ee; Second (minor) diastereomer: $t_{major} = 13.5 \text{ min}$, $t_{minor} = 23.1 \text{ min}$; 84% ee.

Configuration assignment: The absolute stereochemistry was assigned as (2S, 3R) by comparison of the retention time of HPLC with the literature data.^{1c,6}

$$\begin{array}{c} & O \\ & 2 & \cdots & CO_2 Et \\ Ph^{viv} & 3 & NO_2 \\ & H \\ & 5h \end{array}$$

(major diastereomer)

Purification by column chromatography (4:1 = Hexane : EtOAc) afforded **5h** as a colorless oil (98% yield, 99:1 mixture of diastereomers). Analytical data was matched with previously reported values.

¹H NMR (300 MHz, CDCl₃, Me₄Si): δ 7.34-7.27 (m, 5H), 5.18 (dd, J = 3.9 and 13.6 Hz, 1H), 5.01 (dd, J = 10.9 and 13.5Hz, 1H), 4.24-4.17 (m, 1H), 4.08 (dd, J = 3.9 and 10.9Hz, 1H), 2.40-2.32 (m, 2H), 2.07-1.74 (m, 4H), 1.27 (t, J = 7.1Hz, 1H); dr >99 : 1 (determined by integration of ¹H NMR); ¹³C NMR (75MHz, CDCl₃, Me₄Si): δ 212.3, 169.3, 135.3, 129.3, 128.7, 128.2, 76.4, 62.4, 62.1, 46.1, 37.8, 31.1, 19.3, 13.9; HPLC (OD-H, Hexane : iPrOH = 90 : 10, 0.5 mL/min, 215 nm): First (major) diastereomer: t_{major} = 23.0 min, t_{minor} = 33.5 min; >99% ee ; Second (minor) diastereomer: t_{major} = 19.6 min, t_{minor} = 29.2 min; 78% ee.

Configuration assignment: The absolute stereochemistry was assigned as (2S, 3R) by comparison of the retention time of HPLC with the literature data.⁷

5. ¹H NMR, ¹³C NMR and HPLC Spectra for Table 2

3a (Entry 2, Table 2)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		99.5284	11.080	0.000	140049344	0.00	BB	22.5		0
2		0.4716	14.913	0.000	663585	0.00	BB	23.0		0
	Totals	100.0000		0.000	140712928					

3a (using **CN-SQA**:^{1c} 98% ee (*R*); Entry 11, Table 1)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		1.1130	10.821	0.000	4499929	0.00	BB	20.0		0
2		98.8870	14.416	0.000	399819680	0.00	BB	26.1		0
	Totals	100.0000		0.000	404319616					

S15

ppm (t1)

-0.0

0

3d (Entry 8, Table 2)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		50.6397	15.171	0.000	56614508	0.00	BB	210.5		0
2		49.3603	28.500	0.000	55184232	0.00	BB	383.0		0
	Totals	100.0000		0.000	111798736					

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		99.5330	15.125	0.000	217833344	0.00	BB	208.1		0
2		0.4670	28.021	0.000	1022017	0.00	BB	207.9		0
	Totals	100.0000		0.000	218855360					

3f (Entry 12, Table 2)

3g (Entry 14, Table 2)

3h (Entry 16, Table 2)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		50.9359	16.817	0.000	32931208	0.00	BB	16.9		0
2		49.0641	17.378	0.000	31721068	0.00	BB	14.7		0
	Totals	100.0000		0.000	64652276					

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		0.2532	15.576	0.000	681472	0.00	BB	-9.4		0
2		99.7468	17.079	0.000	268452704	0.00	BB	25.7		0
	Totals	100.0000		0.000	269134176					

6. ¹H NMR, ¹³C NMR and HPLC Spectra for Table 3

5a (Entry 2, Table 3)

5b (Entry 4, Table 3)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		5.0450	15.970	0.000	11553186	0.00	BB	30.7		0
2		94.9550	25.729	0.000	217450880	0.00	BB	48.5		0
	Totals	100.0000		0.000	229004064					

5c (Entry 6, Table 3)

5d (Entry 8, Table 3)

S37

5g (Entry 14, Table 3)

200 150 100 50 0 ppm (f1)

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		8.1695	20.309	0.000	300867264	0.00	BB	39.7		0
2		41.5159	24.211	0.000	1528955136	0.00	BB	59.3		0
3		8.1995	30.538	0.000	301974016	0.00	BB	72.2		0
4		42.1150	34.940	0.000	1551018112	0.00	BB	76.5		0
	Totals	99.9999		0.000	3682814464					

Peak No	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Rel Ret Time	Sep. Code	Width 1/2 (sec)	Status Codes	Group
1		0.3494	19.593	0.000	7198742	0.00	BB	39.3		0
2		99.0946	22.980	0.000	2041376768	0.00	BB	64.5		0
3		0.0598	29.227	0.000	1231525	0.00	BB	49.8		0
4		0.4962	33.468	0.000	10220963	0.00	BB	66.7		0
	Totals	100.0000		0.000	2060027904					

7. Scale-up Experiment

2,4-Pentanedione (2, 10.3 mL, 100 mmol) was added to a mixture of β -nitrostyrene (1a, 7.5 g, 50 mmol) and **QN-SQA** (160 mg, 0.5 mol%) in brine (150 mL of saturated NaCl aqueous solution). The reaction mixture was mixed vigorously at 25°C. After completion of the reaction, an aqueous HCl solution (1 N, 20 mL) was added to quench the reaction. The reaction mixture was filtered and washed with water to afford the Michael addition product **3a** (11.9 g; 95 % yield; >99%ee(*S*)).

No			(min)	(min)	(counts)	Ret Time	Code	1/2 (sec)	Codes	
1		99.6378	10.869	0.000	395962688	0.00	BB	21.3		0
2		0.3622	14.513	0.000	1439543	0.00	BB	18.5		0
	Totals	100.0000		0.000	397402240					

8. References

(a) S. H. McCooey and S. J. Connon, *Angew. Chem. Int. Ed.*, 2005, 44, 6367-6370.; (b) S. H. Oh, H.
S. Rho, J. W. Lee, J. E. Lee, S. H. Youk, J. Chin and C. E. Song, *Angew. Chem. Int. Ed.*, 2008, 47, 7872 –7875.; (c) J. P. Malerich, K. Hagihara and V. H. Rawal, *J. Am. Chem. Soc.*, 2008, 130, 14416-14417.; (d) H. Jiang, M. W. Paixa^oo, D. Monge and K. A. Jørgensen, *J. Am. Chem. Soc.*, 2010, 132, 2775-2783.

- 2. D. Evans, S. Mito, and D. Seidel, J. Am. Chem. Soc., 2007, 129, 11583-11592.
- 3. J. Wang, H. Li, W. Duan, L. Zu and W. Wang, Org. Lett., 2005, 7, 4713-4716.
- 4. C. Wang, Z. Zhang, X. Dong and X. Wu, Chem. Commun., 2008, 1431-1433.
- 5. X. Jiang, Y. Zhang, X. Liu, G. Zhang, L. Lai, L. Wu, J. Zhang and R. Wang, *J. Org. Chem.*, 2009, **74**, 5562-5567.
- 6. Z. Zhang, X. Dong, D. Chen and C. Wang, Chem. Eur. J., 2008, 14, 8780-8783.
- 7. J. Luo, L. Xu, R. A. S. Hay and Y. Lu, Org. Lett., 2009, 11, 437-440.