Supporting Information

Dinitrogen binding at vanadium in a tris(alkoxide) ligand environment

Stanislav Groysman, Dino Villagrán, Danna E. Freedman, and Daniel G. Nocera*

Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307

nocera@mit.edu

Index	Page
General methods	S2
X-ray crystallographic details	S2
Computational methods	S3
Synthesis and characterization of compounds	S4-S5
IR Spectra	S6-S13
Cyclic voltammogram of 1	S14
NMR spectra of 5	S15
X-ray structure of 5	S16
MO plot for the BS wave function model of 3	S17
Cartesian coordinates for the DFT optimized geometry for the models of 3	S18-S23

General methods

All reactions involving air-sensitive materials were executed in a nitrogen-filled glovebox, or using Schlenk techniques. Solvents were purified using SG Water Glass Contour Solvent System and stored over 4-Å molecular sieves. Compounds were routinely characterized by IR, NMR, and elemental analyses. IR spectra of powdered samples were recorded on a PerkinElmer Spectrum 400 FT-IR/FT-FIR Spectrometer outfitted with a Pike Technologies GladiATR attenuated total reflectance accessory with a monolithic diamond crystal stage and pressure clamp. Samples were protected by Paratone-N oil; Paratone-N oil was collected as a background. NMR spectrum of **2** and **5** were recorded at the MIT Department of Chemistry Instrumentation Facility on a Varian Mercury 300 NMR Spectrometer in C_6D_6 at room temperature. Magnetic moment for **2** was determined in C_6D_6 at room temperature on a Varian Mercury 300 NMR Spectrometer using Evans method. Pascal constants were used to estimate diamagnetic correction. Elemental analyses were performed by Midwest Microlab LLC. Methyl Lithium (1.6 M in ether), 2,2,4,4-tetramethyl-3-pentanone, VCl₃THF₃, *t*butylisocyanide, and tetrabutyl-ammonium azide were purchased from Aldrich. *t*Bu₂MeCOLi (Liditox hereafter) were prepared according to literature procedures.¹

X-ray crystallographic details

Structures of **3** and **5** were confirmed by X-ray analysis. The crystals were mounted on a Bruker three circle goniometer platform equipped with an APEX detector. A graphic monochromator was employed for wavelength selection of the Mo K α radiation ($\lambda = 0.71073$ Å). The data were processed and refined using the program SAINT supplied by Siemens Industrial Automation. Structures were solved by direct methods in SHELXS and refined by standard difference Fourier techniques in the SHELXTL program suite (6.10 v., Sheldrick G. M., and Siemens Industrial Automation, 2000). Hydrogen atoms were placed in calculated positions using the standard riding model and refined isotropically; all other atoms were refined anisotropically. In the structure of **3**, one of the ditox ligands, and several 'Bu groups are disordered over two positions; the disorder was modeled adequately. Crystals of **5** diffracted poorly, leading to the overall low quality of the high-angle data. In addition, one of the two tetrabutylammonium counterions is disordered over two positions. According to PLATON, the space group of **5** is $P2_12_12$; however, out attempts to refine the structure in this space group were not successful. The structure was solved and refined in the $P2_1$ space group.

^{1.} E. Napolitano, E. Giovani, N. Ceccarelli, P. J. Pelosi, Agric. Food Chem. 1996, 44, 2806.

Computational details

Density functional theory (DFT) calculations were performed with the hybrid functional Becke-3 parameter exchange functional ² and the Lee–Yang–Parr nonlocal correlation functional (B3LYP)³ as implemented in the Gaussian 03, Revision B.05, software package.⁴ An effective core potential (ECP) representing the 1s2s2p core was used for vanadium (LANL2DZ).⁵ The double- ζ quality correlation-consistent polarized cc-pvdz basis set by Dunning and coworkers⁶ was used on all oxygen and nitrogen atoms, while double- ζ quality basis sets (D95) were used on carbon, and hydrogen.⁷ The calculations were performed on simplified model of V(ditox)₃, where ¹Bu groups are replaced by methyl groups. All geometries were confirmed as local minima structures by calculating the Hessian matrices and checking that no negative eigenvalues were present.

We also used two other different functionals, the hybrid MPW91PW91 modified by Truhlar⁸, which strongly favors higher spin states due to its large exchange energy contribution, and the pure DFT functional BP86 (which favors lower spin states). Using MPW91PW91 the quintet state is further stabilized compared to the singlet state by 38 kcal/mol, and 24 kcal/mol when compared to the triplet state. Conversely, BP86 shows the opposite trend where the single state is more stable than the quintet state by 38 kcal/mol, and more stable than the triplet by 26 kcal/mol.

6. T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007.

^{2. (}a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098. (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372. (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.

^{3.} Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785.

^{4.} Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

 ⁽a) W. R. Wadt, P. J. Hay, J. Chem. Phys., 1985, 82, 284. (b) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

^{7. (}a) T. H. Dunning, P. J. Hay, P. J. In *Modern Theoretical Chemistry. 3. Methods of Electronic Structure Theory*; H. F. Schaefer III, Ed.; Plenum Press, New York, 1977, p 1. (b) D. E. Woon, T. H. Dunning, *J. Chem. Phys.*, 1993, **98**, 1358.

^{8.} Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.

Syntheses and characterization of compounds

Alternative synthesis of 3. LiDitox (320 mg, 1.949 mmol, 3 equiv) were dissolved in ether (2 mL) and added in one portion to the stirred pink suspension of VCl₃THF₃ (241 mg, 0.650 mmol) in THF/ether (1/2 mL). The mixture turned blue, and white precipitate formed. The reaction was stirred for 1 h, after which it was filtered and evaporated. The resulting blue solid was extracted with toluene (2 mL), and dried under vacuum. Extraction/drying sequence had been repeated for 3 more times, until the color of the solution was black. Black solid was dissolved in pentane (1 mL), and left at -40 °C for 1 day. (ditox)₃V(μ -N₂)V(ditox)₃ (3) was obtained as dark brown crystals in 49% yield (173 mg, 0.322 mmol).

Reaction of 2 with CO. CO was admitted to the headspace of the flask (atmospheric pressure, RT) containing hexane solution of **2**. Dark green color developed within several minutes. After 15 min, the volatiles were removed under vacuum, forming a dark brown-green residue, that was analyzed by IR that displayed disappearance of the 775 cm⁻¹ resonance, and was nearly identical to the IR spectrum of $Cr(ditox)_3$ (**2**, see preparation below, and Figure S2). The residue was dissolved in hexane and left at -40 °C to crystallize. Dark brown-black crystals were obtained; IR spectrum (SI) was identical to the spectrum of **3**.

Synthesis of 2 from 3. 3 (42 mg, 0.039 mmol) was dissolved in pentane (2 mL) and concentrated, forming dark brown-green solid (38 mg, 0.073 mmol, 94% yield). 2 has been characterized by spectroscopic methods and magnetism (Evans method); its apparent instability has precluded attainment of analytical data (see below) or a crystal structure. μ_{eff} = 2.1 μ B (C₆D₆). IR (cm⁻¹): 1478 (m), 1388 (m), 1367 (m), 1101 (s), 1079 (vs), 999 (vs), 943 (s), 922 (vs), 717 (s), 599 (m), 544 (w), 535 (w). ¹H NMR (C₆D₆) δ 4.4 (br s). Repeated elemental analyses consistently yield low C (62 % instead of 69%) and H. However, 0% N is observed in all samples.

Reaction of 2 with KC₈. Toluene or hexane solutions of **2** were reacted with 2, or 6 equiv of KC₈. The reactions were allowed to stir for 2 h, or 2 d. No color change was observed. Work-up followed by recrystallization has led to formations of crystalline **3** (verified by XRD).

Preparation of 4. Solution of CN*t*Bu (60 mg, 0.72 mmol, 4 equiv) in ether (2 mL) was added to the stirred blue solution of **1** (110 mg, 0.18 mmol) in ether (2 mL). The color of reaction mixture remained blue. After 30 min, volatiles were removed under vacuum, yielding blue crystalline solid (95 mg, 0.18 mmol, 87%). Anal. Calcd (Found) for $C_{40}H_{78}NO_3V$: C, 69.38 (68.90); H, 11.98 (11.90); N, 2.31 (2.18). ¹H NMR (C₆D₆, 300 MHz) δ 5.80 (br s, ditoxMe, 3), 2.63 (br s, ditox^{*t*}Bu, 18). IR (cm⁻¹): 2170 (sh), 2148 (m), 1474 (w), 1390 (sh), 1385 (w), 1363 (m), 1207

(m), 1100 (s), 1085 (s), 1003 (s), 938 (s), 922 (s), 860 (w), 797 (w), 705 (s), 683 (m), 594 (m), 546 (w), 530 (w), 520 (w).

Preparation of 5. A suspension of tetrabutylammonium azide (37 mg, 0.13 mmol) in ether (2 mL) was added to a stirring blue solution of **1** (77 mg, 0.13 mmol) in ether (2 mL). The reaction mixture turned brown, accompanied by vigorous gas evolution. After 10 min, the reaction mixture was filtered, volatiles were removed in vacuo, the resulting brown solid was washed with pentane (2 mL), and extracted with ether (1 mL), and stored at –40 °C overnight, leading to the formation of colorless crystals **5** in 86% yield (87 mg, 0.11 mmol). Anal. Calcd (Found) for C₄₀H₇₈NO₃V: C, 70.90 (70.52); H, 12.81 (12.67); N, 3.60 (3.83). IR data (cm⁻¹): 1486 (w), 1472 (sh), 1383 (w), 1357 (w), 1122 (w), 1102 (w), 1073 (s), 1051 (m), 1011 (s), 991 (vs), 978 (sh), 873 (w), 844 (m), 819 (m), 735 (w), 653 (s), 688 (m), 582 (m), 525 (w). ¹H NMR (C₆D₆, 300 MHz) δ 2.24 (br s, NCH₂CH₂CH₂CH₃, 8H), 1.61 (s, *t*Bu, 54H), 1.07 (br s, NCH₂CH₂CH₂CH₃, 8H), ca. 0.8 (m, NCH₂CH₂CH₂CH₃ and NCH₂CH₂CH₂CH₃, 20H).

Figure S1. IR spectrum of V(ditox)₃THF (1)

Figure S2. IR spectrum of Cr(ditox)₃

Figure S3. IR spectrum of $V(ditox)_3(\mu_2-N_2)V(ditox)_3$ (3).

Figure S4. IR spectrum of 2.

Figure S5. Overlay of the IR spectra of Cr(ditox)₃, 3, and 2 (V(ditox)₃)

Figure S6. IR spectrum of the complex 2 dissolved in hexane (middle), compared with the IR spectra of 2 in solid state (bottom), and crystalline 3 (top).

Figure S7. IR spectrum of V(ditox)₃CN*t*Bu (4) The resonance at 2148 cm⁻¹ signifies CN stretch.

Figure S8. IR of [V(ditox)₃N](NBu₄) (**5**).

Figure S9. CV of 1 in THF (0.1 M NBu_4PF_6 , scan rate = 50 mV/sec).

Figure S10. ¹H NMR spectrum of 5.

Figure S11. X-ray structure of **5**, ellipsoids at 50% probability. Only one of the two independent amions of **5** in the asymmetric unit is shown. Second molecule of **5** presents V–N bond of 1.609(7) Å. Cations (tetrabutyl ammonium) and hydrogens are omitted for clarity.

Figure S12. Molecular orbital plots at the 0.04 isodensity value of the broken-symmetry wave function. Note the localization of the electron density between the alpha and beta orbitals.

Atom Label	Atomic No.	Atom	Coordinates (Å)			
			X	у	Z	
1	6	С	2.777711	-3.170608	0.386281	
2	6	С	-2.800024	-1.236097	2.688569	
3	6	С	2.658090	1.958911	2.377650	
4	6	С	-2.686833	-2.012332	-2.331179	
5	6	С	2.746038	1.275534	-2.692515	
6	6	С	-2.686481	3.186598	-0.431153	
7	7	Ν	0.577580	-0.021056	0.018099	
8	7	Ν	-0.596090	-0.006100	0.024593	
9	8	0	2.961180	-1.782970	-0.000169	
10	8	0	2.820576	0.757186	1.577808	
11	8	0	-3.124257	-0.701297	1.376534	
12	8	0	3.063348	0.770257	-1.367321	
13	8	0	-2.817427	-0.784046	-1.568581	
14	8	0	-2.939910	1.802385	-0.074661	
15	23	V	2.431439	-0.093176	0.062170	
16	23	V	-2.445530	0.100717	-0.068964	
17	6	С	-4.028531	-2.764651	-2.194843	
18	1	Н	-4.849061	-2.140289	-2.567552	
19	1	Н	-4.012399	-3.702703	-2.765669	
20	1	Н	-4.225744	-2.996115	-1.141077	
21	6	С	-2.427987	-1.599391	-3.796111	
22	1	Н	-2.351349	-2.482553	-4.444253	
23	1	Н	-3.246839	-0.967251	-4.159393	
24	1	Н	-1.493784	-1.029071	-3.870463	
25	6	С	-3.927176	3.672945	-1.211015	
26	1	Н	-4.825080	3.571793	-0.590115	
27	1	Н	-3.817816	4.725630	-1.503866	
28	1	Н	-4.065613	3.068193	-2.115312	
29	6	С	-2.515325	3.975468	0.884452	
30	1	Н	-2.368510	5.045081	0.683793	
31	1	Н	-3.406104	3.854760	1.512091	
32	1	Н	-1.647393	3.602987	1.442371	
33	6	С	-1.416264	3.268002	-1.303183	
34	1	Η	-0.550801	2.877258	-0.755944	
35	1	Н	-1.545339	2.677228	-2.218708	
36	1	Н	-1.208107	4.308084	-1.586562	
37	6	С	1.454392	0.615515	-3.221887	
38	1	Η	1.563052	-0.476631	-3.228096	
39	1	Н	0.594569	0.878407	-2.595610	
40	1	Н	1.246666	0.947974	-4.247415	

Table S1. Cartesian coordinates of the triplet model of 3'(Total E = 1650.75425016 hartrees)

41	6	С	2.586253	2.808102	-2.590872
42	1	Н	3.500434	3.255265	-2.182169
43	1	Н	2.393215	3.248105	-3.578397
44	1	Н	1.749597	3.062628	-1.928947
45	6	С	3.953054	0.908311	-3.583625
46	1	Н	3.813688	1.277693	-4.608337
47	1	Н	4.869713	1.347220	-3.172410
48	1	Н	4.080646	-0.180499	-3.615296
49	6	С	4.052195	2.617429	2.466192
50	1	Н	4.016754	3.529857	3.076138
51	1	Н	4.769473	1.921067	2.916411
52	1	Н	4.410767	2.878070	1.463163
53	6	С	1.641371	2.905292	1.705694
54	1	Н	1.986246	3.179731	0.701680
55	1	Н	0.663060	2,418202	1.617546
56	1	Н	1.520631	3.823176	2.295823
57	6	С	2.167677	1.512180	3.771633
58	1	Н	2.880353	0.804778	4.212073
59	1	Н	2.067592	2.374120	4.444569
60	1	Н	1.192943	1.015422	3.693335
61	6	C	1.525081	-3.296086	1.277767
62	1	H	1.634945	-2.679331	2,178550
63	1	Н	0.634327	-2.962595	0.733488
64	1	Н	1.373763	-4.338842	1.586081
65	6	C	2.622947	-3.988773	-0.913486
66	1	H	3.495948	-3.835826	-1.558828
67	1	Н	2.532286	-5.060683	-0.692755
68	1	Н	1.728354	-3.668949	-1.461860
69	6	C	-1.658172	-0.411454	3.321835
70	1	H	-0.738216	-0.505296	2.732946
71	1	Н	-1.939072	0.648251	3.366543
72	1	Н	-1.449303	-0.758902	4.342291
73	6	C	-2 394631	-2 716684	2 525093
74	1	Ĥ	-3204422	-3278074	2 043207
75	1	Н	-1.495303	-2.800018	1.903446
76	1	Н	-2 184817	-3 175446	3 500583
77	6	C	-4 093620	-1.110312	3 522343
78	1	Ĥ	-4 907424	-1 662266	3 037226
79	1	Н	-3 950976	-1510151	4 535250
80	1	H	-4 392579	-0.057890	3 596906
81	6	C	4 050744	-3 586846	1 154510
82	1	н	3 993250	-4 638009	1 466820
83	1	H	4 933731	-3 456854	0 517808
84	1	H	4 175560	-2 960536	2 046015
85	6	C II	-1 519035	-2.858142	_1 781108
86	1	н	_0 576591	-2.000142	_1 843890
00	1	11	0.5/05/1	2.501575	1.070000

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

87	1	Н	-1.699337	-3.122117	-0.732019
88	1	Н	-1.412846	-3.785657	-2.358915

Atom Label	Atomic No.	Atom	Coordinates (Å)		
			Х	у	Z
1	6	С	-2.611973	-1.655324	-2.593176
2	6	С	2.632616	1.409638	-2.722951
3	6	С	-2.600419	3.084864	-0.148632
4	6	С	2.605745	-3.082219	0.146356
5	6	С	-2.633078	-1.414070	2.720498
6	6	С	2.607053	1.655910	2.597394
7	7	Ν	-0.622244	0.002374	-0.001301
8	7	Ν	0.622276	-0.002478	0.001065
9	8	0	-2.921753	-0.804630	-1.454486
10	8	0	-2.917781	1.674169	0.006016
11	8	0	2.933698	0.832245	-1.422564
12	8	0	-2.934402	-0.830766	1.422872
13	8	0	2.921171	-1.670363	-0.000617
14	8	0	2.919100	0.811959	1.454344
15	23	V	-2.323179	0.009866	-0.005994
16	23	V	2.323253	-0.007189	0.007380
17	6	С	3.785906	-3.842483	-0.495719
18	1	Н	4.722937	-3.579758	0.009104
19	1	Н	3.637619	-4.927947	-0.422137
20	1	Н	3.879248	-3.570688	-1.553981
21	6	С	2.505529	-3.390920	1.655666
22	1	Н	2.343279	-4.464054	1.823419
23	1	Н	3.431045	-3.092115	2.161775
24	1	Н	1.671629	-2.838377	2.104242
25	6	С	3.759425	1.441597	3.601875
26	1	Н	4.716011	1.715696	3.141924
27	1	Н	3.612173	2.053477	4.501642
28	1	Н	3.811398	0.387064	3.898056
29	6	С	2.565903	3.120348	2.109097
30	1	Н	2.403684	3.806355	2.951241
31	1	Н	3.512956	3.380164	1.621720
32	1	Н	1.754597	3.260894	1.385116
33	6	С	1.255482	1.227217	3.202224
34	1	Н	0.453674	1.331881	2.463516
35	1	Н	1.297804	0.178980	3.522543
36	1	Н	1.010556	1.847730	4.074594
37	6	С	-1.311578	-2.204123	2.639279
38	1	Н	-1.391801	-3.006638	1.895633
39	1	Н	-0.487601	-1.543559	2.349181
40	1	Н	-1.072881	-2.654763	3.611829

Table S2. Cartesian coordinates of the singlet model of **3**' (Total E = -1650.77131440 hartrees)

41	6	С	-2.538207	-0.263477	3.745035
42	1	Н	-3.460968	0.328382	3.730944
43	1	Н	-2.387912	-0.656827	4.759197
44	1	Н	-1.698676	0.397221	3.499335
45	6	С	-3.819418	-2.347379	3.044130
46	1	Н	-3.682381	-2.829106	4.021307
47	1	Н	-4.754753	-1.775725	3.061061
48	1	Н	-3.908310	-3.126061	2.277110
49	6	С	-3.776385	3.850012	0.495430
50	1	Н	-3 626296	4 934886	0 416955
51	1	Н	-4.716068	3.587156	-0.004379
52	1	Н	-3 865794	3 582579	1 555142
53	6	C	-1273478	3 398840	0.570618
54	1	H	-1.352402	3 154327	1 636946
55	1	Н	-0.453522	2.813581	0 139910
56	1	Н	-1.028963	4 465184	0 475919
57	6	C	-2.506408	3 386614	-1 659713
58	1	н	-3 434334	3 086362	-2.160509
59 59	1	Н	-2 343809	4 458802	-1.832979
60	1	Н	-1 674936	2.831182	-2.109336
61	6	C	-1 261293	-1230419	-3202747
62	1	Н	-1.303850	-0.183994	_3 528919
63	1	Н	-0.458212	-1 331244	-2 464867
64	1	Н	-1.018080	-1 855924	-4 072025
65	6	C	-2 570587	-3 117163	-2.097138
66	1	н	-3516622	-3 373811	-1.606110
67	1	Н	-2410884	-3 807718	-2 936032
68	1	Н	-1.757540	-3 254492	-1374437
69	6	C	1 311335	2 200398	-2 645252
70	1	H	0.487092	1.541452	-2.352230
71	1	Н	1 391939	3 006150	-1 905194
72	1	Н	1 072815	2 646814	-3 619792
73	6	C	2 537834	0 254785	-3742836
74	1	н	3 460462	-0.337222	-3725861
75 75	1	Н	1 698007	-0.404830	-3495208
76	1	Н	2 388160	0.644016	-4 758693
77	6	C	3 819170	2 341286	-3.050441
78	1	н	4 754328	1 769294	-3 065344
79 79	1	Н	3 682046	2 819259	-4 029430
80	1	Н	3 908342	3 122842	-2.286413
81	6	C	-3765999	-1 446036	-3 596827
82	1	н	-3.620830	-2.063227	-4 493297
83	1	H	-4 721922	-1.716809	_3 133528
84	1	Н	-3 817797	-0 393205	-3 899034
85	6	C	1.282538	-3.395250	-0.580132
86	1	н	0.460080	-2.812340	-0.150958
~ ~	-				

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

87	1	Н	1.366038	-3.146704	-1.645199
88	1	Н	1.038760	-4.462204	-0.490431