Supporting Information

Total syntheses of $S_{p}-(+)$ - and $R_{p}-(-)$-spiniferin- 1 , a pair of unusual natural products with planar chirality

Yun-Shan Sun, Kai Ding and Wei-Sheng Tian*
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Insitute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China. E-mail: wstian@mail.sioc.ac.cn

Experimental Section

General experimental information

Unless otherwise noted, all reactions in exclusively organic solvents were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware. Dichloromethane, DMSO, DMF, ${ }^{\mathrm{i} P r O H}$ and $\mathrm{Et}_{3} \mathrm{~N}$ was distilled from calcium hydride. Tetrahydrofuran was distilled from a blue solution of sodium benzophenone ketyl. 1,4-Dioxane was distilled from LiAlH_{4}. Analytical thin layer chromatography (TLC) was performed using silica gel F254 plates. The developed chromatogram was analyzed by UV lamp (254 nm). Liquid chromatography was performed using a forced flow (flash chromatography) of the indicated solvent system on Silica Gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, unless otherwise noted, on a Varian 300 MHz spectrometer. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) on the δ scale referenced to the residual peak of CHCl_{3} at $\delta 7.26 \mathrm{ppm}$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant in hertz (Hz), and integration. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm referenced to the central peak of CDCl_{3} (77.16 ppm) on the δ scale. IR spectra were measured on a BIO-RAD-FTS-185 instrument. Optical rotations were measured on a PERKIN ELMER Polarimeter 341. Melting points were recorded on a SGW X-4 type microscope and not corrected. Chiral HPLC analyses were performed on Waters Millennium station with a tunable UV detector at wavelength $\lambda=254 \mathrm{~nm}$. The single-crystal X-ray diffraction data for compound $\mathbf{5}$ were collected on a Brucker Smart Apex diffractometer. Data of mass spectra and elemental analysis were provided by Laboratory of Analytical Chemistry at Shanghai Institute of Organic Chemistry. Compound 6, 7, 11a and 11b were prepared according to the previous procedures. ${ }^{2}$

Compound 4 and $\mathbf{4}^{\prime}$

To a stirred solution of compound $2(0.634 \mathrm{~g}, 2.68 \mathrm{mmol})$ in dry THF $(12 \mathrm{~mL})$ at room temperature was added $\mathrm{LiAlH}_{4}(0.405 \mathrm{~g}, 10.72 \mathrm{mmol})$ in portions. After the addition the mixture was stirred at room temperature for 4 hrs, then quenched carefully by the addition of wet $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography to give alcohol-2 ($0.53 \mathrm{~g}, 94 \%$) as a white solid.

Alcohol-2: m.p. $107-108^{\circ} \mathrm{C}$; IR (KBr) v 3313, $1666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: \delta=5.92(\mathrm{dd}, \mathrm{J}=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.05$ (dd, J = 4.2, $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}-\mathrm{C}=$), $3.95(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CHH}-), 3.37$ ($\mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CHH}-$), 2.62 (broad, $2 \mathrm{H}, 2 \mathrm{OH}$), $2.15(\mathrm{dt}, \mathrm{J}=5.4 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.82(\mathrm{~m}, 7 \mathrm{H}), 1.15-1.23(\mathrm{~m}, 1 \mathrm{H})$, 0.88 (s, 3H, CH_{3}), 0.82 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); EIMS: $210(\mathrm{M}), 162\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right), 147\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}, 100\right)$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 74.24; H, 10.54. Found: C, 74.31; H, 10.56.

To a stirred solution of $(\mathrm{COCl})_{2}(1.14 \mathrm{~mL}, 13.06 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DMSO $(1.82 \mathrm{~mL}, 25.67 \mathrm{mmol})$ dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for half an hour a solution of alcohol-2 $(1.14 \mathrm{~g}, 5.42$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for another 40 mins, then $\mathrm{Et}_{3} \mathrm{~N}(7.52 \mathrm{~mL}, 54.20 \mathrm{mmol})$ was added slowly. The reaction became a clear solution and the solution was allowed to stir at room temperature for 1.5 hours. To the reaction solution was added saturated NaHCO_{3} aqueous solution $(50 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 40 \mathrm{~mL})$ and the combined organic phases were washed with water $(30 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 8:1) to yield aldehyde-2 ($1.01 \mathrm{~g}, 91 \%$) as a colorless oil. Aldehyde-2: $\mathrm{R}_{\mathrm{f}}=0.5$ (silica gel, Petroleum: EtOAc 3:1); IR (neat) v 1716, 1676, $1618 \mathrm{~cm}^{-1} ;{ }^{1}$ HNMR: $\delta=9.90$ (s, $1 \mathrm{H},-\mathrm{CHO}$), $6.00(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 1.42-2.73(\mathrm{~m}, 10 \mathrm{H}), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH} 3$); EIMS: 206 (M, 42.65), 191 ($\mathrm{M}_{\left.-\mathrm{CH}_{3}, ~ 10.87\right) ; ~ A n a l . ~ C a l c d . ~ f o r ~} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 75.69; H, 8.80. Found: C, 75.38; H, 9.00.

Aldehyde-2 ($1.66 \mathrm{~g}, 8.1 \mathrm{mmol}$) was dissolved in a mixture of ${ }^{\mathrm{C}} \mathrm{BuOH}(70 \mathrm{~mL})$ and distilled water (42 mL). At $0^{\circ} \mathrm{C} \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.79 \mathrm{~g}, 30.71 \mathrm{mmol})$, DMSO ($8.55 \mathrm{~mL}, 0.12 \mathrm{~mol}$) and $\mathrm{NaClO}_{2}(1.82 \mathrm{~g}, 16.18 \mathrm{mmol}, 80 \%$ purity) were added in turn. The reaction was done after 18 mins by TLC. To the reaction solution was added EtOAc $(100 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 3:1, several drops of HCOOH added) to yield acid-2 ($1.34 \mathrm{~g}, 75 \%$) as a white solid.

Acid-2: m.p.: $120-122{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2$ (silica gel, Petroleum: EtOAc 3:1); IR (KBr) $v_{\max } 2970,1712,1628,1600 \mathrm{~cm}$ ${ }^{1} ;{ }^{1} \mathrm{HNMR}: ~ \delta=5.97(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.91-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.54(\mathrm{~m}, 4 \mathrm{H}), 1.92-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; EIMS: 222 (M, 28.97), 207 (M$\mathrm{CH}_{3}, 23.38$); Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 70.24; $\mathrm{H}, 8.16$. Found: $\mathrm{C}, 70.15 ; \mathrm{H}, 8.19$.

To a stirred solution of DMF $(0.48 \mathrm{~mL}, 6.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(0.22$ $\mathrm{mL}, 2.52 \mathrm{mmol}$) dropwise. After stirring at $-20^{\circ} \mathrm{C}$ for 20 mins a solution of acid-2 $(0.46 \mathrm{~g}, 2.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added dropwise at $-20^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for another 20 min , then (S) - α-methylbenzylamine ($1.15 \mathrm{~mL}, 8.92 \mathrm{mmol}$) was added slowly. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 10 mins then at room temperature for 15 min . To the reaction solution was added EtOAc $(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ and the solution was acidified by $5 \% \mathrm{HCl}$ solution. The organic phase was separated and the aqueous phase was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with 5% NaHCO_{3} solution $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc $5: 1)$ to $\mathbf{4}(0.26 \mathrm{~g}, 39 \%)$ and $\mathbf{4}^{\prime}(0.28 \mathrm{~g}, 41 \%)$.
4: as a white solid. m.p.: $149-156{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18$ (silica gel, Petroleum: EtOAc 5:1); $[\alpha]_{\mathrm{D}}{ }^{28}=-236.6$ (c 0.63, CHCl_{3}); IR (KBr) $v_{\max } 3383,1648,1611 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: \delta=7.25-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}_{5}\right), 6.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 5.89(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-), 5.13(\mathrm{dt}, \mathrm{J}=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 2.81-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.55(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.88(\mathrm{~m}$,
$3 \mathrm{H}), 1.49\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.28-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH})$; EIMS: $325(\mathrm{M}$, 18.38); Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.41; H, 8.32; N, 4.09.
4^{\prime} : as a white solid. m.p.: $108-113{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.22$ (silica gel, Petroleum: EtOAc 5:1); $[\alpha]_{\mathrm{D}}{ }^{28}=+163.1(\mathrm{c} 0.82$, CHCl_{3}); IR (KBr) $v_{\max } 3371,1647,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: \delta=7.25-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}_{5}\right), 6.00(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, CH=), $5.87(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-), 5.16(\mathrm{dt}, \mathrm{J}=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 2.78-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.47(\mathrm{~m}, 5 \mathrm{H})$, $1.63-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.49\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.28-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; EIMS: 325 (M, 20.10); Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.90; H, 8.65; N, 3.95.

Compound 5

5
To a stirred solution of compound $4(0.327 \mathrm{~g}, 1 \mathrm{mmol})$ in dry ${ }^{\mathrm{i}} \mathrm{PrOH}(32 \mathrm{~mL})$ at room temperature was added orthoformic acid triisopropyl ester ($0.27 \mathrm{~mL}, 2.58 \mathrm{mmol}$) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ in turn. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 3 hrs . To the reaction solution was added EtOAc (70 mL) and water (20 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic phases were washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 3:1) to yield $5(0.299 \mathrm{~g}, 87 \%)$ as a white solid. Crystals suitable for X-ray crystallographic analysis were grown in a mixture of EtOAc and hexane.
5: as a white solid. m.p.: $211-218^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{26}=-142.39\left(\mathrm{c}, 0.36, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3344,3240,3060,1685$, $1633 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}: ~ \delta=8.73(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{NH}-), 7.17-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathbf{H}_{5}\right), 6.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=), 5.12(\mathrm{~s}, 1 \mathrm{H}$, $-\mathrm{OH}), 5.06(\mathrm{dt}, \mathrm{J}=6.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}), 4.34(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{O}-), 2.48(\mathrm{dt}, \mathrm{J}=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.12(\mathrm{dt}, \mathrm{J}=13.8,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dt}, \mathrm{J}=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, \mathrm{J}=10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dt}, \mathrm{J}=10.8$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{N}\right), 1.24(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}): \delta=200.2,169.7,160.1,143.7,133.1,128.7(2 \mathrm{C}), 127.3,126.0(2 \mathrm{C}), 70.9,56.4,50.2,36.1$, 35.9, 32.4, 29.8, 28.6, 27.2, 25.4, 22.4; ESIMS: $342\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS: $364.1899\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Table 1. Crystal data and structure refinement for 5

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$
Formula weight	341.44
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=11.4805(10) \AA \alpha=90^{\circ}$
	$\mathrm{b}=11.8426(10) \AA \beta=90^{\circ}$
	$\mathrm{c}=14.1986(12) \AA \gamma=90^{\circ}$
Volume	$1930.4(3) \AA^{3}$
Z, calculated density	$4,1.171 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.078 \mathrm{~mm} \mathrm{~m}^{-1}$
F (000)	732
Theta range for data collection	2.24 to 28.26°
Limiting indices	$-14<=\mathrm{h}<=14,-14<=\mathrm{k}<=15,-16<=1<=18$
Reflections collected/unique	$11865 / 4489[\mathrm{R}(\mathrm{int})==0.0775]$
Completeness to theta $=28.26$	96.0%
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.75955
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	$4489 / 2 / 266$
Goodness-of-fit on F^{2}	0.701
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0454, \mathrm{wR} 2=0.0734$
R indices (all data)	$\mathrm{R} 1=0.1130, \mathrm{wR} 2=0.0856$
Absolute structure parameter	$1.1(15)$
Extinction coefficient	$0.0046(6)$
Largest diff. peak and hole	0.209 and $-0.103 \mathrm{e} . \AA^{\AA-3}$

Compound 8

To a stirred solution of compound $7(4.00 \mathrm{~g}, 15.86 \mathrm{mmol}), O$-tetrahydropyranyl-S-mandelic acid $(4.97 \mathrm{~g}, 21$ mmol) and 4-dimethylaminopyridine ($48 \mathrm{mg}, 0.39 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(76 \mathrm{~mL})$ under ice bath was added N, N 'dicyclohexylcarbodiimide ($4.37 \mathrm{~g}, 21 \mathrm{mmol}$) in one portion, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.7 hrs and then filtered. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 8:1) to yield compound $\mathbf{8}(6.36 \mathrm{~g}, 85 \%)$ as a colorless oil.

8: $\mathrm{R}_{\mathrm{f}}=0.45$ (silica gel, Petroleum: EtOAc 3:1); IR (neat) v 3065, 3033, 2951, 2875, 1739, 1684, 1635, 1496, 1455, 1392, 1370, 766, 726, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: ~ \delta=7.31-7.48\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{C}_{6} \mathbf{H}_{5}\right), 6.05(\mathrm{~s})$ and $6.23(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-)$, 5.47-5.56 (m, 1H, O=C-C=C-CH-), $5.10(\mathrm{~s}), 5.13(\mathrm{~s}), 5.22(\mathrm{~s})$ and $5.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}-\right), 4.53(\mathrm{~s}), 4.60(\mathrm{~s}), 4.83$ (s) and 4.87 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{O}-\mathrm{CH}-\mathrm{O}-$), 3.64-3.69 (m) and 3.86-3.96 (m, 1H, -O-CHH-), 3.44-3.52 (m, 1H, -O-CHH-), $3.42(\mathrm{~s}), 3.56(\mathrm{~s}), 3.71(\mathrm{~s})$ and $3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.52-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.31(\mathrm{~m}, 2 \mathrm{H})$, $1.92-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}), 1.16(\mathrm{~s})$ and $1.20\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.88$ (s) and $0.91\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; EIMS: 251 (M-PhCH(OTHP)CO, 0.27), 235 (M$\mathrm{PhCH}(\mathrm{OTHP}) \mathrm{COO}$ or $\mathrm{PhCH}(\mathrm{OTHP}) \mathrm{COO}, 12.03), 107\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OH}, 100\right), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}, 21.55\right), 85$ (THP, 37.35); ESIMS: $488\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$; HRMS: $493.2196745\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{7}: \mathrm{C}, 68.92 ; \mathrm{H}, 7.28$. Found: C , 68.97; H, 7.44.

Compound 9 and ${ }^{\text {9' }}$

high polarity
9

low polarity
9^{\prime}

To a stirred solution of compound $\mathbf{8}(1.95 \mathrm{~g}, 4.14 \mathrm{mmol})$ in absolute $\mathrm{MeOH}(13 \mathrm{~mL})$ was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($13 \mathrm{mg}, 0.068 \mathrm{mmol}$) in one portion at ambient temperature, and the solution was stirred at ambient temperature for 2.4 hrs . To the reaction solution was added EtOAc $(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phases were washed with water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 5:1) to yield a mixture of compound $\mathbf{9}$ and $\mathbf{9}^{\prime}(1.5 \mathrm{~g})$ as a colorless oil. Column chromatography resolution (silica gel, petroleum:EtOAc $5: 1$ to $4: 1$) gave compound $9(0.58 \mathrm{~g}, 36 \%), 9^{\prime}(0.60 \mathrm{~g}, 38 \%)$ and their mixture ($\left.0.17 \mathrm{~g}, 11 \%\right)$. 9: Slowly solidified as a white solid when standing at room temperature. m.p.: $89-90^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18$ (silica gel, Petroleum: EtOAc 3:1); $[\alpha]_{D}{ }^{24}=+132.4$ (c 0.98, CHCl $_{3}$); de\%: 93.8\%; ee\%: 83.6\%; IR (KBr) $v_{\text {max }} 3474,3034$, 30007, 2967, 1741, 1729, 1682, 1638, 1493, 1459, 767, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: \delta=7.32-7.44\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{C}_{6} \mathbf{H}_{5}\right), 6.27(\mathrm{~s}$ $1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-), 5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{CH}-), 5.09\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}-\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 3.50(\mathrm{~d}$, $\mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 2.62-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.20\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; EIMS: $252(\mathrm{M}+1-\mathrm{PhCH}(\mathrm{OH}) \mathrm{CO}, 0.65), 236$ $(\mathrm{M}+1-\mathrm{PhCH}(\mathrm{OH}) \mathrm{COO}, 17.53), 107\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OH}^{+}, 100\right), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}^{+}, 15.57\right)$; ESIMS: $404\left(\mathrm{M}_{+} \mathrm{NH}_{4}{ }^{+}\right)$; HRMS: $409.1621597\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}: \mathrm{C}, 68.38 ; \mathrm{H}, 6.78$. Found: C, 68.13; H, 6.76.
$9^{\prime}: \mathrm{R}_{\mathrm{f}}=0.22$ (silica gel, Petroleum: EtOAc 3:1); $[\alpha]_{\mathrm{D}}{ }^{24}=-58.0$ (c 1.13, CHCl_{3}); de\%: 98.5\%; ee\%: 95.5\%; IR (neat) $v_{\text {max }} 3488,3064,3033,2955,2877,1734,1683,1604,1496,1455,1394,1372,766,733,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.30-7.43\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{C}_{6} \mathbf{H}_{5}\right), 6.16(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-), 5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{CH}-)$, 5.19 (d, J = $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}-\right), 3.64(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.51\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.29-2.64(\mathrm{~m}, 4 \mathrm{H})$, 1.93-2.09 (m, 2H), 1.80-1.86 (m, 1H), 1.26-1.32 (m, 1H), $1.13\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; ESIMS: 404
$\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$; HRMS: $409.1621597\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}: \mathrm{C}, 68.38 ; \mathrm{H}, 6.78$. Found: C, $68.04 ; \mathrm{H}$, 6.89.

Table 2. Crystal data and structure refinement for 9/9'

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, calculated density
Absorption coefficient
F (000)
Theta range for data collection
Limiting indices
Reflections collected/unique
Completeness to theta $=27.00$
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
386.43

293(2) K
$0.71073 \AA$
Monoclinic, Pn
$\mathrm{a}=10.5615(12) \AA \alpha=90^{\circ}$
$\mathrm{b}=8.3727$ (9) $\AA \beta=108.972(2)^{\circ}$
$\mathrm{c}=11.8537$ (12) $\AA \gamma=90^{\circ}$
$991.26(18) \AA^{3}$
$2,1.295 \mathrm{Mg} / \mathrm{m}^{3}$
$0.094 \mathrm{~mm}^{-1}$
412
2.25 to 27.00°
$-13<=\mathrm{h}<=13,-10<=\mathrm{k}<=8,-11<=1<=15$
$5692 / 2159[\mathrm{R}(\mathrm{int})=0.0680]$
99.4\%

Empirical
1.00000 and 0.76531

Full-matrix least-squares on F^{2}
2159/2/257
0.764
$\mathrm{R} 1=0.0399, \mathrm{wR} 2=0.0516$
$\mathrm{R} 1=0.0790, \mathrm{wR} 2=0.0581$
10 (10)
0.116 and -0.123 e. \AA^{-3}

Compound (+)-10 and (-)-10

(+)-10

$(-)-10$

To a stirred solution of compound $\mathbf{9}^{\prime}(1.76 \mathrm{~g}, 4.57 \mathrm{mmol})$ in dry 1,4-dioxane $(30 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.79 \mathrm{~mL}$, $5.48 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.26 \mathrm{~g}, 0.23 \mathrm{mmol})$ in turn at ambient temperature, and the solution was stirred at $75^{\circ} \mathrm{C}$ for 1.5 hrs . To the reaction solution was added EtOAc $(100 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$ and the combined organic phases were washed with water (20 mL), brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc $8: 1$) to yield compound (-)-10 ($0.84 \mathrm{~g}, 79 \%$) as a pale yellow oil.
$(-)-\mathbf{1 0}:[\alpha]_{\mathrm{D}}{ }^{24}=-213.4\left(c 1.08, \mathrm{CHCl}_{3}\right)$; e.e.: $93.0 \% ;{ }^{1} \mathrm{HNMR}: \delta=6.30(\mathrm{dd}, \mathrm{J}=9.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{CH}=)$, 6.20 (ddd, J = 9.9, 6.0, 2.1Hz, 1H, O=C-C=C-C=CH-), $5.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}=\right.$), $3.68\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 1.9-2.6$ $(\mathrm{m}, 6 \mathrm{H}), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Compound $9(1.48 \mathrm{~g}, 3.83 \mathrm{mmol})$ was converted into compound $(+)-10(0.75 \mathrm{~g}, 84 \%)$ as a pale yellow oil.
$(+)-10:[\alpha]_{\mathrm{D}}{ }^{24}=+183.1\left(c 1.15, \mathrm{CHCl}_{3}\right)$; e.e.: 80.9%. ${ }^{1} \mathrm{H}$ NMR: $\delta=6.27-6.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{CH}=), 6.15-$ $6.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}-), 5.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}=), 3.68\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 1.9-2.6(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

(+)-Spiniferin-1

(+)-spiniferin-1
To a solution of $\mathbf{1 1 a}(1.16 \mathrm{~g}, 3.07 \mathrm{mmol})$ in THF (12 mL) was added TsOH $(58 \mathrm{mg})$. The solution was refluxed for 40 minutes under oxygen-free atmosphere, then $\mathrm{LiAlH}_{4}(408 \mathrm{mg}, 10.75 \mathrm{mmol})$ and additional THF (12 mL) was added directly. After stirring for 1.8 hour at $40^{\circ} \mathrm{C}$, the reaction mixture was quenched with wet $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and washed with THF ($3 \times 8 \mathrm{~mL}$). The filtrate was concentrated in vacuo and the residue was dissolved in THF (12 mL). DBU ($1.5 \mathrm{~mL}, 10.13 \mathrm{mmol}$) was added in one portion at $0^{\circ} \mathrm{C}$ then $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{2} \mathrm{~F}(3.06 \mathrm{~g}$, 10.13 mmol) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After the addition the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, then at room temperature for 10 mins . TLC showed the reaction was complete. The reaction mixture was concentrated in vacuo and silica gel chromatography of the crude mixture ($99: 1$ petrol ether : ethyl acetate) afforded (+)-Spiniferin-1 ($230 \mathrm{mg}, 35 \%$ in 3 steps) as a colorless oil, which solidified as a white solid when standing in the freezer.
(+)-Spiniferin-1: m.p.: $65-75^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}=+375.0\left(c 1.01, \mathrm{CHCl}_{3}\right.$); e.e.: 80.6%; IR (neat) $v_{\max } 3112,3013,1604$, 1467, 1268, 1087, $811746 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{HNMR}: ~ \delta=7.28(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 6.33$ $(\mathrm{s}, 1 \mathrm{H}, 6-\mathrm{H}$ or $9-\mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}$ or $6-\mathrm{H}), 6.22(\mathrm{dd}, \mathrm{J}=3.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 5.32(\mathrm{ddd}, \mathrm{J}=3.9,9.0,12.6 \mathrm{~Hz}$,
$1 \mathrm{H}, 2-\mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 2.77(\mathrm{dt}, \mathrm{J}=16.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.98(\mathrm{dd}, \mathrm{J}=9.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, $1.33(\mathrm{~s}, 3 \mathrm{H}, 15-\mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}): \delta=153.3(\mathrm{~s}, 8-\mathrm{C})$, 141.3 ($\mathrm{s}, 13-\mathrm{C}$), 131.9 ($\mathrm{s}, 10-\mathrm{C}$), 130.4 ($\mathrm{s}, 1-\mathrm{C}$), 127.6 ($\mathrm{s}, 5-\mathrm{C}$), 125.3 ($\mathrm{s}, 2-\mathrm{C}$), 118.8 ($\mathrm{s}, 7-\mathrm{C}$), 112.6 (s, 9-C), 110.1 (s, 12-C), 109.5 ($\mathrm{s}, 6-\mathrm{C}$), 44.4 ($\mathrm{s}, 3-\mathrm{C}$), 39.8 ($\mathrm{s}, 4-\mathrm{C}$), 34.2 (s, 11-C), 30.9 (s, 15-C), 28.4 (s, 14-C); EIMS: 212 (M, 100); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.87$; H, 7.60. Found: C, 85.02; H, 7.77.
(-)-Spiniferin-1:

(-)-spiniferin-1
11b ($0.375 \mathrm{~g}, 1 \mathrm{mmol}$) was converted into (-)-Spiniferin-1 ($0.065 \mathrm{~g}, 31 \%$) as a colorless oil via three steps, which solidified as a white solid when standing in the freezer.
(-)-Spiniferin-1: m.p.: $71-76^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}=-432.0\left(c 1.06, \mathrm{CHCl}_{3}\right)$; e.e.: 90.8%; IR (neat) $v_{\max } 3112,3014,1604$, $1467,1268,1087,811746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}: \delta=7.28(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 6.33$ $(\mathrm{s}, 1 \mathrm{H}, 6-\mathrm{H}$ or $9-\mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{H}$ or $6-\mathrm{H}), 6.23(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 5.32(\mathrm{ddd}, \mathrm{J}=3.9,9.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.56$ $(\mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 2.78(\mathrm{dt}, \mathrm{J}=3.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.97(\mathrm{dd}, \mathrm{J}=9.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}$, $15-\mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}): \delta=153.3(\mathrm{~s}, 8-\mathrm{C}), 141.3(\mathrm{~s}, 13-\mathrm{C})$, 131.9 (s, 10-C), 130.4 (s, 1-C), 127.6 (s, 5-C), 125.3 (s, 2-C), 118.8 (s, 7-C), 112.6 (s, 9-C), 110.1 (s, 12-C), 109.5 (s, 6-C), 44.4 (s, 3-C), 39.8 (s, 4-C), 34.2 (s, 11-C), 30.9 (s, 15-C), 28.4 (s, 14-C); EIMS: 212 (M, 43.14); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.87$; H, 7.60. Found: C, 84.46; H, 7.61.

Chiral HPLC data

1．Compound 9 and 9^{\prime}

HPLC analysis of 9 and $\mathbf{9}^{\prime}$ ：column：Chiral AD；mobile phase：hexane／iso－propanol $=80 / 20$ ；flow rate： 0.80 $\mathrm{mL} / \mathrm{min}$ ；detection：UV 214 nm ；t for 9： $23.5 \mathrm{~min} ; t$ for ent－9： $19.3 \mathrm{~min} ; t$ for $\mathbf{9}^{\prime}: 14.0 \mathrm{~min} ; t$ for ent－9＇： 18.8 min ．

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比（\％）
1	1		4． 377	1143.9	25596.0	0.3257
2	2		4． 877	400.3	8149.0	0． 1037
3	3		5． 877	769.9	13516.5	0． 1720
4	4		6.927	245.0	5714.6	0.0727
5	5		7.677	131.6	2773.8	0.0353
6	6		11．527	60.0	5195.3	0.0661
7	7		13.027	256.7	7125.1	0． 0907
8	8		14.027	5802.5	240101.6	3． 0551
9	9		19.327	66217.8	3841101.2	48．8749
10	10		23.477	52578.4	3709768.7	47． 2038
合计：				127606.0	7859041.8	100.0000

序号 峰号	组份名	保留时间	峰高		峰面积	面积百分比（\％）
1	1		4.377	4625.4	100562.2	0.4148
2	2		5.877	750.0	20394.0	0.0841
3	3		6.277	461.9	9613.9	0.0397
4	4		6.677	427.2	11867.4	0.0489
5	5	9.027	344.8	7214.0	0.0298	
6	6		9.527	711.2	17599.9	0.0726
7	7		10.227	685.3	42992.2	0.1773
8	8		13.077	1553.5	34584.0	0.1426
9	9	13.977.	292710.9	11937763.9	49.2363	
10	10		18.827	220547.3	12063286.6	49.7540
合计：				522817.5	24245878.1	100.0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比（\％）
1	1		4． 377	44783.8	896478.8	2． 3852
2	2		5.827	351.2	5657.7	0.0151
3	3		6． 427	264.3	3710.8	0.0099
4	4		6． 777	521.1	13690.6	0.0364
5	5		8． 677	4955.4	161858.9	0． 4307
6	6		10．327	1929.9	77368.7	0． 2059
7	7		13.977	24374.0	1045274.5	2． 7811
8	8		17.577	168.4	5034.2	0.0134
9	9		19．327	50846.6	2895709.1	7． 7045
10	10		23． 377	454030.6	32479997.9	86.4180
合计：				582225.4	37584781.2	100.0000

The estimated ee of $(+) \mathbf{- 1 0}$ prepared from $\mathbf{9}$ is calculated to be $78.4 \%(0.938 \times 0.836)$ ．

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比（\％）
1	1		4.427	54180.7	1181078.3	1.3081
2	2		5.477	2136.6	88059.9	0.0975
3	3		6.427	1672.8	34889.5	0.0386
4	4		6.877	1102.0	26640.3	0.0295
5	5		7.277	1104.2	23153.8	0.0256
6	6		7.727	1123.1	35386.9	0.0392
7	7		9.027	10227.6	257083.4	0.2847
8	8	9.527	8327.3	293316.9	0.3249	
9	9		11.277	5593.1	198689.4	0.2201
10	10		12.377	6305.6	216186.1	0.2394
11	11		14.027	2016941.7	85200656.6	94.3653
12	12		17.177	1007.4	43438.3	0.0481
13	13	18.927	35931.4	1978879.9	2.1917	
14	14		23.677	8933.9	638273.3	0.7069
15	15		30.677	878.4	72408.7	0.0802
合计：				2155465.7	90288141.3	100.0000

The estimated ee of（－）－10 prepared from $\mathbf{9}^{\prime}$ is calculated to be $94.1 \%(0.985 \times 0.955)$ ．

2．Compound 10

HPLC analysis of 10：column：Chiralpak AD；mobile phase：hexane／iso－propanol $=90 / 10$ ；flow rate： 0.80 mL $/ \mathrm{min}$ ；detection：UV 230 nm ；t for（ - ）－10： $10.6 \mathrm{~min} ; t$ for $(+)-\mathbf{1 0}: 12.1 \mathrm{~min}$ ．

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比（\％）
1	1		5.077	2361.8	52600.2	0.8992
2	2		6.327	268.3	6337.2	0.1083
3	3		10.577	104842.5	2871849.8	49.0925
4	4	12.077	94921.8	2886354.3	49.3404	
5	5	15.677	813.9	32736.3	0.5596	
合计：			203208.2	5849877.9	100.0000	

| 序号 | 峰号 | 组份名 | 保留时间 | 峰高 | 峰面积 |
| ---: | ---: | :---: | ---: | ---: | ---: | 面积百分比（\％）

The ee of $(+) \mathbf{- 1 0}$ and (-)-10 (80.9\% and 93.0% respectively) are nearly consistent with the calculated ee of 78.4%
 elimination reaction.

3. Spiniferin-1

HPLC analysis of Spiniferin-1: column: Nucleocel Delta S; mobile phase: hexane / iso-propanol = $100 / 1$; flow rate: $0.30 \mathrm{~mL} / \mathrm{min}$; detection: UV 254 nm ; t for $\mathrm{p} R$-(-)-enantiomer: 14.1 min ; t for $\mathrm{p} S$-(+)-enantiomer: 15.3 min .

| 序号 | 峰号 | 组份名 | 保留时间 | 峰高 | 峰面积 |
| ---: | ---: | ---: | ---: | ---: | ---: | 面积百分比（\％）

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比（\％）
1	1		10.877	3037.9	87466.1	0.5498
2	2		11.627	1426.2	42180.3	0.2651
3	3		12.477	3988.1	145006.0	0.9114
4	4		13.827	12387.7	358265.7	2.2519
5	5	$\underline{14.527}$	60476.5	1479316.1	$\underline{9.2983}$	
6	6	$\underline{15.827}$	656894.5	13786906.7	$\underline{86.6581}$	
7	7	17.327	382.7	10396.5	0.0653	
合计：			738593.6	15909537.4	100.0000	

The ee of $(+)$－spiniferin－1 and $(-)$－spiniferin－ $1(80.6 \%$ and 90.9% respectively）are nearly consistent with the ee of（＋）－10 and（－）－10（80．9\％and 93．0\％respectively），indicating no racemization in the last four steps to prepare final products．

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

NMR spectra

1. Alcohol-2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
2. Aldehyde-2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
3. Acid-2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

4. Compound 4

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

5. Compound $\mathbf{4}^{\prime}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

6. Compound 5

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

7. Compound 8

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
8. Compound 9

9. Compound $\mathbf{9}^{\prime}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011
10. Compound (+)-10

11. Compound (-)-10

12. (+)-Spiniferin-1

13. (-)-Spiniferin-1

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

CD Spectra of (+)-spiniferin-1 and (-)-spiniferin-1 in methanol
*Spectrometer / Data system JASCO Corp., J-810, Rev. 1.00
Xunits: nanometers; Yunits: $\mathrm{CD}[\mathrm{mdeg}]$

1. W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
2. K. Ding, Y. S. Sun and W. S. Tian, J. Org. Chem., 2011, 76, 1495.
