Supporting Information

Total syntheses of S_p -(+)- and R_p -(-)-spiniferin-1,

a pair of unusual natural products with planar chirality

Yun-Shan Sun, Kai Ding and Wei-Sheng Tian*

Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Insitute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China. E-mail: wstian@mail.sioc.ac.cn

Experimental Section

General experimental information

Unless otherwise noted, all reactions in exclusively organic solvents were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware. Dichloromethane, DMSO, DMF, ⁱPrOH and Et₃N was distilled from calcium hydride. Tetrahydrofuran was distilled from a blue solution of sodium benzophenone ketyl. 1,4-Dioxane was distilled from LiAlH₄. Analytical thin layer chromatography (TLC) was performed using silica gel F254 plates. The developed chromatogram was analyzed by UV lamp (254 nm). Liquid chromatography was performed using a forced flow (flash chromatography) of the indicated solvent system on Silica Gel (200-300 mesh).¹¹H and ¹³C NMR spectra were recorded in CDCl₃, unless otherwise noted, on a Varian 300 MHz spectrometer. Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm) on the δ scale referenced to the residual peak of CHCl₃ at δ 7.26 ppm. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz), and integration. Chemical shifts of ¹³C NMR spectra are reported in ppm referenced to the central peak of CDCl₃ (77.16 ppm) on the δ scale. IR spectra were measured on a BIO-RAD-FTS-185 instrument. Optical rotations were measured on a PERKIN ELMER Polarimeter 341. Melting points were recorded on a SGW X-4 type microscope and not corrected. Chiral HPLC analyses were performed on Waters Millennium station with a tunable UV detector at wavelength $\lambda = 254$ nm. The single-crystal X-ray diffraction data for compound 5 were collected on a Brucker Smart Apex diffractometer. Data of mass spectra and elemental analysis were provided by Laboratory of Analytical Chemistry at Shanghai Institute of Organic Chemistry. Compound 6, 7, 11a and 11b were prepared according to the previous procedures.²

Compound 4 and 4'

To a stirred solution of compound **2** (0.634 g, 2.68 mmol) in dry THF (12 mL) at room temperature was added LiAlH₄ (0.405 g, 10.72 mmol) in portions. After the addition the mixture was stirred at room temperature for 4 hrs, then quenched carefully by the addition of wet Na₂SO₄. The reaction mixture was filtered and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography to give **alcohol-2** (0.53 g, 94%) as a white solid.

Alcohol-2: m.p. 107-108 °C; IR (KBr) v 3313, 1666 cm⁻¹; ¹HNMR: δ = 5.92 (dd, J = 1.8, 4.8Hz, 1H, CH=), 4.05 (dd, J = 4.2, 8.7 Hz, 1H, O-CH-C=), 3.95 (d, J = 9.9 Hz, 1H, O-CHH-), 3.37 (d, J = 10.2Hz, 1H, O-CHH-), 2.62 (broad, 2H, 2OH), 2.15 (dt, J = 5.4Hz, 13.2Hz, 1H), 2.01-2.07 (m, 1H), 1.48-1.82 (m, 7H), 1.15-1.23 (m, 1H), 0.88 (s, 3H, CH₃), 0.82 (s, 3H, CH₃); EIMS: 210 (M), 162 (M-CH₂OH-H₂O), 147 (M-CH₂OH-H₂O-CH₃, 100); Anal. Calcd. for C₁₃H₂₂O₂: C, 74.24; H, 10.54. Found: C, 74.31; H, 10.56.

To a stirred solution of $(COCl)_2$ (1.14 mL, 13.06 mmol) in dry CH_2Cl_2 (100 mL) at -78°C was added DMSO (1.82 mL, 25.67 mmol) dropwise. After stirring at -78°C for half an hour a solution of **alcohol-2** (1.14 g, 5.42 mmol) in CH_2Cl_2 (10 mL) was added dropwise at -78°C. The mixture was stirred at this temperature for another 40 mins, then Et_3N (7.52 mL, 54.20 mmol) was added slowly. The reaction became a clear solution and the solution was allowed to stir at room temperature for 1.5 hours. To the reaction solution was added saturated NaHCO₃ aqueous solution (50mL) and the organic phase was separated. The aqueous phase was extracted with CH_2Cl_2 (1 × 40mL) and the combined organic phases were washed with water (30mL), brine (30mL), dried over anhydrous MgSO₄ and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 8:1) to yield **aldehyde-2** (1.01 g, 91%) as a colorless oil. Aldehyde-**2**: $R_f = 0.5$ (silica gel, Petroleum: EtOAc 3:1); IR (neat) v 1716, 1676, 1618 cm⁻¹; ¹HNMR: $\delta = 9.90$ (s, 1H, -CHO), 6.00 (d, J = 1.5 Hz, 1H, CH=), 1.42-2.73 (m, 10H), 1.09 (s, 3H, CH₃), 0.94 (s, 3H, CH₃); EIMS: 206

(M, 42.65), 191 (M-CH₃, 10.87); Anal. Calcd. for C₁₃H₁₈O₂: C, 75.69; H, 8.80. Found: C, 75.38; H, 9.00.

Aldehyde-2 (1.66 g, 8.1 mmol) was dissolved in a mixture of ^tBuOH (70 mL) and distilled water (42 mL). At 0°C NaH₂PO₄•2H₂O (4.79 g, 30.71 mmol), DMSO (8.55 mL, 0.12 mol) and NaClO₂ (1.82 g, 16.18 mmol, 80% purity) were added in turn. The reaction was done after 18 mins by TLC. To the reaction solution was added EtOAc (100 mL) and water (20 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (3×50 mL) and the combined organic phases were washed with water (20 mL), brine (20 mL), dried over anhydrous MgSO₄ and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 3:1, several drops of HCOOH added) to yield **acid-2** (1.34 g, 75%) as a white solid.

Acid-2: m.p.: 120-122 °C; $R_f = 0.2$ (silica gel, Petroleum: EtOAc 3:1); IR (KBr) v_{max} 2970, 1712, 1628, 1600 cm⁻¹; ¹HNMR: $\delta = 5.97$ (d, J = 2.1 Hz, 1H, =CH), 2.91-3.05 (m, 1H), 2.36-2.54 (m, 4H), 1.92-2.07 (m, 2H), 1.63-1.75 (m, 2H), 1.37 (d, J = 13.5Hz, 1H), 1.07 (s, 3H, CH₃), 0.97 (s, 3H, CH₃); EIMS: 222 (M, 28.97), 207 (M-CH₃, 23.38); Anal. Calcd. for C₁₃H₁₈O₃: C, 70.24; H, 8.16. Found: C,70.15; H, 8.19.

To a stirred solution of DMF (0.48 mL, 6.26 mmol) in dry CH_2Cl_2 (9 mL) at -20 °C was added (COCl)₂ (0.22 mL, 2.52 mmol) dropwise. After stirring at -20 °C for 20 mins a solution of **acid-2** (0.46 g, 2.09 mmol) in CH_2Cl_2 (9 mL) was added dropwise at -20 °C. The mixture was stirred at this temperature for another 20 min, then (*S*)- α -methylbenzylamine (1.15 mL, 8.92 mmol) was added slowly. The reaction mixture was stirred at -20 °C for 10 mins then at room temperature for 15 min. To the reaction solution was added EtOAc (50mL) and water (10mL) and the solution was acidified by 5% HCl solution. The organic phase was separated and the aqueous phase was extracted with EtOAc (2 × 30mL). The combined organic phases were washed with 5% NaHCO₃ solution (10mL), water (10 mL), brine (10mL), dried over anhydrous MgSO₄ and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 5:1) to 4 (0.26 g, 39%) and 4' (0.28 g, 41%).

4: as a white solid. m.p.: 149-156 °C; $R_f = 0.18$ (silica gel, Petroleum: EtOAc 5:1); $[\alpha]_D^{-28} = -236.6(c \ 0.63, CHCl_3)$; IR (KBr) v_{max} 3383, 1648, 1611 cm⁻¹; ¹HNMR: $\delta = 7.25-7.40$ (m, 5H, C_6H_5), 6.01 (s, 1H, CH=), 5. 89 (d, J = 7.8Hz, 1H, -NH-), 5.13 (dt, J = 6.9, 6.9Hz, 1H, PhCH), 2.81-2.96 (m, 1H), 2.02-2.55 (m, 5H), 1.65-1.88 (m, m, m)

3H), 1.49(d, J = 7.2Hz, 3H, N-C-CH₃), 1.28-1.34 (m, 1H), 1.08 (s, 3H, CH₃), 0.91 (s, 3H, CH₃); EIMS: 325 (M, 18.38); Anal. Calcd. for C₂₁H₂₇NO₂: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.41; H, 8.32; N, 4.09.

4': as a white solid. m.p.: 108-113 °C; $R_f = 0.22$ (silica gel, Petroleum: EtOAc 5:1); $[\alpha]_D^{28} = +163.1(c \ 0.82, CHCl_3)$; IR (KBr) ν_{max} 3371, 1647, 1602 cm⁻¹; ¹HNMR: $\delta = 7.25-7.40$ (m, 5H, C₆**H**₅), 6.00(d, J = 1.8Hz, 1H, C**H**=), 5.87(d, J = 7.2Hz, 1H, -N**H**-), 5.16(dt, J = 6.9, 6.9Hz, 1H, PhC**H**), 2.78-2.93 (m, 1H), 2.04-2.47 (m, 5H), 1.63-1.88 (m, 3H), 1.49(d, J = 7.2Hz, 3H, N-C-C**H**_3), 1.28-1.37 (m, 1H), 1.16(s, 3H, C**H**_3), 0.94(s, 3H, C**H**_3); EIMS: 325 (M, 20.10); Anal. Calcd. for C₂₁H₂₇NO₂: C, 77.50; H, 8.36; N, 4.30. Found: C, 77.90; H, 8.65; N, 3.95.

Compound 5

To a stirred solution of compound 4 (0.327 g, 1 mmol) in dry ⁱPrOH (32 mL) at room temperature was added orthoformic acid triisopropyl ester (0.27 mL, 2.58 mmol) and *p*-TsOH•H₂O (38 mg, 0.2 mmol) in turn. The mixture was stirred at 40 °C for 3 hrs. To the reaction solution was added EtOAc (70 mL) and water (20 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic phases were washed with brine (20 mL), dried over anhydrous Na₂SO₄ and filtered. The filtrate was evaporated *in vacuo* and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 3:1) to yield **5** (0.299 g, 87%) as a white solid. Crystals suitable for X-ray crystallographic analysis were grown in a mixture of EtOAc and hexane.

5: as a white solid. m.p.: 211-218 °C; $[\alpha]_D^{26} = -142.39$ (c, 0.36, CHCl₃); IR (KBr) v_{max} 3344, 3240, 3060, 1685, 1633 cm⁻¹; ¹HNMR: $\delta = 8.73$ (d, J = 6.6Hz, 1H, -NH-), 7.17-7.27 (m, 5H, C₆H₅), 6.03 (s, 1H, CH=), 5.12 (s, 1H, -OH), 5.06 (dt, J = 6.9, 7.2Hz, 1H, PhCH), 4.34 (s, 1H, -CH-O-), 2.48 (dt, J = 13.2, 3.3Hz, 1H), 2.28-2.33 (m, 2H), 2.12 (dt, J = 13.8, 3Hz, 1H), 2.00 (dt, J = 12.6, 4.2Hz, 1H), 1.91 (dt, J = 10.4, 3.3Hz, 1H), 1.82 (dt, J = 10.8, 2.1Hz, 1H), 1.45 (d, J = 7.2Hz, 3H, CH₃-C-N), 1.24 (d, J = 12.9Hz, 1H), 0.98 (s, 3H, CH₃), 0.89 (s, 3H, CH₃); ¹³CNMR (75 MHz): $\delta = 200.2$, 169.7, 160.1, 143.7, 133.1, 128.7(2C), 127.3, 126.0(2C), 70.9, 56.4, 50.2, 36.1, 35.9, 32.4, 29.8, 28.6, 27.2, 25.4, 22.4; ESIMS: 342 (M+H⁺); HRMS: 364.1899 (M+Na⁺).

Table 1. Crystal data and structure refinement	for 5
--	-------

Empirical formula	$C_{21}H_{27}NO_3$
Formula weight	341.44
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	$a = 11.4805 (10) \text{ Å} \alpha = 90 \circ$
	b = 11.8426 (10) Å β = 90 °
	$c = 14.1986 (12) \text{ Å} \gamma = 90 \circ$
Volume	1930.4 (3) Å ³
Z, calculated density	4, 1.171 Mg/m ³
Absorption coefficient	0.078 mm ⁻¹
F (000)	732
Theta range for data collection	2.24 to 28.26 °
Limiting indices	-14<=h<=14, -14<=k<=15, -16<=l<=18
Reflections collected/unique	11865 / 4489 [R(int) = = 0.0775]
Completeness to theta $= 28.26$	96.0%
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.75955
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4489/ 2 /266
Goodness-of-fit on F ²	0.701
Final R indices [I>2sigma(I)]	R1 = 0.0454, wR2 = 0.0734
R indices (all data)	R1 = 0.1130, $wR2 = 0.0856$
Absolute structure parameter	1.1 (15)
Extinction coefficient	0.0046 (6)
Largest diff. peak and hole	0.209 and -0.103 e. Å ⁻³

Compound 8

To a stirred solution of compound 7 (4.00 g, 15.86 mmol), *O*-tetrahydropyranyl-*S*-mandelic acid (4.97 g, 21 mmol) and 4-dimethylaminopyridine (48 mg, 0.39 mmol) in dry CH_2Cl_2 (76 mL) under ice bath was added *N*,*N*²-dicyclohexylcarbodiimide (4.37 g, 21 mmol) in one portion, and the mixture was stirred at 0°C for 2.7 hrs and then filtered. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 8:1) to yield compound **8** (6.36 g, 85%) as a colorless oil.

8: $R_f = 0.45$ (silica gel, Petroleum: EtOAc 3:1); IR (neat) v 3065, 3033, 2951, 2875, 1739, 1684, 1635, 1496, 1455, 1392, 1370, 766, 726, 702 cm⁻¹; ¹HNMR: $\delta = 7.31-7.48$ (m, 5H, $-C_6H_3$), 6.05 (s) and 6.23 (s, 1H, $-CH=C_-$), 5.47-5.56 (m, 1H, O=C-C=C-CH-), 5.10 (s), 5.13 (s), 5.22 (s) and 5.27 (s, 1H, C_6H_5 -CH-), 4.53 (s), 4.60 (s), 4.83 (s) and 4.87 (s, 1H, -O-CH-O-), 3.64-3.69 (m) and 3.86-3.96 (m, 1H, -O-CHH-), 3.44-3.52 (m, 1H, -O-CHH-), 3.42 (s), 3.56 (s), 3.71 (s) and 3.74 (s, 3H, $-COOCH_3$), 2.52-2.79 (m, 1H), 2.34-2.47 (m, 1H), 2.12-2.31 (m, 2H), 1.92-2.06 (m, 1H), 1.73-1.92 (m, 3H), 1.66-1.73 (m, 1H), 1.42-1.59 (m, 3H), 1.24-1.32 (m, 2H), 1.13 (s), 1.16 (s) and 1.20 (s, 3H, $-CH_3$), 0.88 (s) and 0.91 (s, 3H, $-CH_3$); EIMS: 251 (M-PhCH(OTHP)CO, 0.27), 235 (M-PhCH(OTHP)COO or PhCH(OTHP)COO, 12.03), 107 (C_7H_7OH , 100), 91 (C_7H_7 , 21.55), 85 (THP, 37.35); ESIMS: 488 (M+NH₄⁺); HRMS: 493.2196745 (M+Na⁺); Anal. Calcd. for $C_{27}H_{34}O_7$: C, 68.92; H, 7.28. Found: C, 68.97; H, 7.44.

Compound 9 and 9'

To a stirred solution of compound 8 (1.95 g, 4.14 mmol) in absolute MeOH (13 mL) was added p-TsOH•H₂O (13 mg, 0.068 mmol) in one portion at ambient temperature, and the solution was stirred at ambient temperature for 2.4 hrs. To the reaction solution was added EtOAc (50 mL) and water (20 mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (3×30 mL) and the combined organic phases were washed with water (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 5:1) to yield a mixture of compound 9 and 9' (1.5 g) as a colorless oil. Column chromatography resolution (silica gel, petroleum:EtOAc 5:1 to 4:1) gave compound 9 (0.58 g, 36%), 9' (0.60 g, 38%) and their mixture (0.17 g, 11%). 9: Slowly solidified as a white solid when standing at room temperature. m.p.: 89-90 °C; $R_f = 0.18$ (silica gel, Petroleum: EtOAc 3:1); $[\alpha]_{D}^{24} = +132.4$ (c 0.98, CHCl₃); de%: 93.8%; ee%: 83.6%; IR (KBr) v_{max} 3474, 3034, 30007, 2967, 1741, 1729, 1682, 1638, 1493, 1459, 767, 747 cm⁻¹; ¹HNMR: $\delta = 7.32-7.44$ (m, 5H, -C₆H₅), 6.27 (s 1H, -CH=C-), 5.46 (s, 1H, O=C-C=C-CH-), 5.09 (d, J = 6.0Hz, 1H, C₆H₅-CH-), 3.72 (s, 3H, -COOCH₃), 3.50 (d, J = 6.0Hz, 1H, C₆H₅-CH-), 3.50 (d, J = 6.0Hz, 1H, C_6H₅-CH-), 3.50 (d, J = 6.0Hz, 1H, C_6H₅-CH-), 3.50 (d, J = 6.0Hz, 1H, C_6H₅-CH-), 3.50 (d, J = 6.0Hz, 1H, C_6H_5), 3.50 (d, J = 6.0Hz, 1H, C_6H_5), 3.50 (d, J = 6.0Hz, 1H, C_6H_5), 3.50 (d, J = 6.0Hz, 1H, C_ J = 5.7Hz, 1H, -OH), 2.62-2.73 (m, 1H), 2.40-2.47 (m, 1H), 2.08-2.33 (m, 3H), 1.82-1.96 (m, 1H), 1.54-1.60 (m, 1H), 1.26-1.42 (m, 1H), 1.20 (s, 3H, -CH₃), 0.91 (s, 3H, -CH₃); EIMS: 252 (M+1-PhCH(OH)CO, 0.65), 236 (M+1-PhCH(OH)COO, 17.53), 107 (C₇H₇OH⁺, 100), 91 (C₇H₇⁺, 15.57); ESIMS: 404 (M+NH₄⁺); HRMS: 409.1621597 (M+Na⁺); Anal. Calcd. for C₂₂H₂₆O₆: C, 68.38; H, 6.78. Found: C, 68.13; H, 6.76. **9'**: $R_f = 0.22$ (silica gel, Petroleum: EtOAc 3:1); $[\alpha]_D^{24} = -58.0$ (c 1.13, CHCl₃); de%: 98.5%; ee%: 95.5%; IR

9": $R_f = 0.22$ (sinca gel, Petroleum: EtOAc 3:1); $[\alpha]_D^{-1} = -58.0$ (*c* 1.13, CHCl₃); de%: 98.5%; ee%: 95.5%; IR (neat) v_{max} 3488, 3064, 3033, 2955, 2877, 1734, 1683, 1604, 1496, 1455, 1394, 1372, 766, 733, 699 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) $\delta = 7.30$ -7.43 (m, 5H, -C₆H₅), 6.16 (s, 1H, -CH=C-), 5.58 (s, 1H, O=C-C=C-CH-), 5.19 (d, J = 6.0 Hz, 1H, C₆H₅-CH-), 3.64 (d, J = 6.3 Hz, 1H, -OH), 3.51 (s, 3H, -COOCH₃), 2.29-2.64 (m, 4H), 1.93-2.09 (m, 2H), 1.80-1.86 (m, 1H), 1.26-1.32 (m, 1H), 1.13 (s, 3H, -CH₃), 0.94 (s, 3H, -CH₃); ESIMS: 404

 $(M+NH_4^+)$; HRMS: 409.1621597 $(M+Na^+)$; Anal. Calcd. for $C_{22}H_{26}O_6$: C, 68.38; H, 6.78. Found: C, 68.04; H, 6.89.

 Table 2. Crystal data and structure refinement for 9/9'

 Empirical formula

Empirical formula	$C_{22}H_{26}O_{6}$
Formula weight	386.43
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, Pn
Unit cell dimensions	$a = 10.5615 (12) \text{ Å} \alpha = 90 \circ$
	b = 8.3727 (9) Å β = 108.972 (2) °
	$c = 11.8537 (12) \text{ Å} \gamma = 90 \circ$
Volume	991.26 (18) Å ³
Z, calculated density	2, 1.295 Mg/m ³
Absorption coefficient	0.094 mm ⁻¹
F (000)	412
Theta range for data collection	2.25 to 27.00 °
Limiting indices	-13<=h<=13, -10<=k<=8, -11<=l<=15
Reflections collected/unique	5692 / 2159 [R(int) = 0.0680]
Completeness to theta $= 27.00$	99.4%
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.76531
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	2159/ 2 /257
Goodness-of-fit on F ²	0.764
Final R indices [I>2sigma(I)]	R1 = 0.0399, $wR2 = 0.0516$
R indices (all data)	R1 = 0.0790, wR2 = 0.0581
Absolute structure parameter	10 (10)
Largest diff. peak and hole	0.116 and -0.123 e. Å ⁻³

Compound (+)-10 and (-)-10

To a stirred solution of compound **9'** (1.76 g, 4.57 mmol) in dry 1,4-dioxane (30 mL) was added Et₃N (0.79 mL, 5.48 mmol) and Pd(PPh₃)₄ (0.26 g, 0.23 mmol) in turn at ambient temperature, and the solution was stirred at 75°C for 1.5 hrs. To the reaction solution was added EtOAc (100mL) and water (30mL) and the organic phase was separated. The aqueous phase was extracted with EtOAc (3×50 mL) and the combined organic phases were washed with water (20mL), brine (20mL), dried over anhydrous Na₂SO₄ and filtered. The filtrate was evaporated in vacuo and the residue was purified by column chromatography (silica gel, petroleum:EtOAc 8:1) to yield compound (-)-10 (0.84 g, 79%) as a pale yellow oil.

(-)-10: $[\alpha]_D^{24} = -213.4$ (*c* 1.08, CHCl₃); e.e.: 93.0%; ¹HNMR: $\delta = 6.30$ (dd, J = 9.9, 2.4Hz, 1H, O=C-C=C-CH=), 6.20 (ddd, J = 9.9, 6.0, 2.1Hz, 1H, O=C-C=C-C=CH-), 5.86 (s, 1H, O=C-CH=), 3.68 (s, 3H, -COOCH₃), 1.9-2.6 (m, 6H), 1.07 (s, 3H, CH₃), 0.96 (s, 3H, CH₃).

Compound **9** (1.48 g, 3.83 mmol) was converted into compound (+)-10 (0.75 g, 84%) as a pale yellow oil. (+)-10: $[\alpha]_D^{24} = +183.1$ (*c* 1.15, CHCl₃); e.e.: 80.9%. ¹H NMR: $\delta = 6.27-6.34$ (m, 1H, O=C-C=C-CH=), 6.15-6.23 (m, 1H, O=C-C=C-C=CH-), 5.86 (s, 1H, O=C-CH=), 3.68 (s, 3H, -COOCH₃), 1.9-2.6 (m, 6H), 1.07 (s, 3H, CH₃), 0.96 (s, 3H, CH₃).

(+)-Spiniferin-1

(+)-spiniferin-1

To a solution of **11a** (1.16 g, 3.07 mmol) in THF (12 mL) was added TsOH (58 mg). The solution was refluxed for 40 minutes under oxygen-free atmosphere, then LiAlH₄ (408 mg, 10.75 mmol) and additional THF (12 mL) was added directly. After stirring for 1.8 hour at 40°C, the reaction mixture was quenched with wet Na₂SO₄, filtered and washed with THF (3 x 8 mL). The filtrate was concentrated *in vacuo* and the residue was dissolved in THF (12 mL). DBU (1.5 mL, 10.13 mmol) was added in one portion at 0 °C then $CF_3CF_2CF_2CF_2SO_2F$ (3.06 g, 10.13 mmol) was added dropwise at 0 °C. After the addition the reaction mixture was stirred at 0 °C for 5 minutes, then at room temperature for 10 mins. TLC showed the reaction was complete. The reaction mixture was concentrated *in vacuo* and silica gel chromatography of the crude mixture (99:1 petrol ether : ethyl acetate) afforded **(+)-Spiniferin-1** (230 mg, 35% in 3 steps) as a colorless oil, which solidified as a white solid when standing in the freezer.

 1H, 2-H), 3.56 (d, J = 10.8Hz, 1H, 11-H), 2.77 (dt, J = 16.2, 3.3Hz, 1H, 3-H), 1.98 (dd, J = 9.0, 16.5Hz, 1H, 3-H), 1.33 (s, 3H, 15-H), 0.72 (s, 3H, 14-H), 0.68 (d, J = 11.1Hz, 1H, 11-H); ¹³CNMR (75MHz): δ = 153.3 (s, 8-C), 141.3 (s, 13-C), 131.9 (s, 10-C), 130.4 (s, 1-C), 127.6 (s, 5-C), 125.3 (s, 2-C), 118.8 (s, 7-C), 112.6 (s, 9-C), 110.1 (s, 12-C), 109.5 (s, 6-C), 44.4 (s, 3-C), 39.8 (s, 4-C), 34.2 (s, 11-C), 30.9 (s, 15-C), 28.4 (s, 14-C); EIMS: 212 (M, 100); Anal. Calcd. for C₁₅H₁₆O: C, 84.87; H, 7.60. Found: C, 85.02; H, 7.77.

(-)-Spiniferin-1:

11b (0.375 g, 1 mmol) was converted into (-)-**Spiniferin-1** (0.065 g, 31%) as a colorless oil via three steps, which solidified as a white solid when standing in the freezer.

(-)-Spiniferin-1: m.p.: 71-76 °C; $[\alpha]_D^{28} = -432.0$ (*c* 1.06, CHCl₃); e.e.: 90.8%; IR (neat) v_{max} 3112, 3014, 1604, 1467, 1268, 1087, 811 746 cm⁻¹; ¹HNMR: $\delta = 7.28$ (d, J = 2.1Hz, 1H, 13-H), 6.52 (d, J = 2.1Hz, 1H, 12-H), 6.33 (s, 1H, 6-H or 9-H), 6.30 (s, 1H, 9-H or 6-H), 6.23 (m, 1H, 1-H), 5.32 (ddd, J = 3.9, 9.0, 12.3Hz, 1H, 2-H), 3.56 (d, J = 10.5Hz, 1H, 11-H), 2.78 (dt, J = 3.6, 16.5Hz, 1H, 3-H), 1.97 (dd, J = 9.0, 16.8Hz, 1H, 3-H), 1.34 (s, 3H, 15-H), 0.73 (s, 3H, 14-H), 0.68 (d, J = 10.5Hz, 1H, 11-H); ¹³CNMR (75MHz): $\delta = 153.3$ (s, 8-C), 141.3 (s, 13-C), 131.9 (s, 10-C), 130.4 (s, 1-C), 127.6 (s, 5-C), 125.3 (s, 2-C), 118.8 (s, 7-C), 112.6 (s, 9-C), 110.1 (s, 12-C), 109.5 (s, 6-C), 44.4 (s, 3-C), 39.8 (s, 4-C), 34.2 (s, 11-C), 30.9 (s, 15-C), 28.4 (s, 14-C); EIMS: 212 (M, 43.14); Anal. Calcd. for C₁₅H₁₆O: C, 84.87; H, 7.60. Found: C, 84.46; H, 7.61.

Chiral HPLC data

1.Compound 9 and 9'

HPLC analysis of 9 and 9': column: Chiral AD; mobile phase: hexane / *iso*-propanol = 80 / 20; flow rate: 0.80 mL / min; detection: UV 214 nm; *t* for 9: 23.5 min; *t* for *ent*-9: 19.3 min; *t* for 9': 14.0 min; *t* for *ent*-9': 18.8 min.

The estimated ee of (+)-10 prepared from 9 is calculated to be 78.4% (0.938×0.836).

The estimated ee of (-)-10 prepared from 9' is calculated to be 94.1% (0.985×0.955).

35931.4

2155465.7

8933.9

878.4

18.927

23.677

30.677

13 13

14 14

15 15

合计:

1978879.9

638273.3

72408.7

90288141.3

2.1917

0.7069

0.0802

100.0000

2. Compound 10

HPLC analysis of 10: column: Chiralpak AD; mobile phase: hexane / *iso*-propanol = 90 / 10; flow rate: 0.80 mL / min; detection: UV 230 nm; *t* for (-)-**10**: 10.6 min; *t* for (+)-**10**: 12.1 min.

The ee of (+)-10 and (-)-10 (80.9% and 93.0% respectively) are nearly consistent with the calculated ee of 78.4% and 94.1% based on the optical purity of **9** and **9'**, indicating no further racemization in Pd(PPh₃)₄-catalyzed β -H elimination reaction.

3. Spiniferin-1

HPLC analysis of Spiniferin-1: column: Nucleocel Delta S; mobile phase: hexane / *iso*-propanol = 100 / 1; flow rate: 0.30 mL / min; detection: UV 254 nm; *t* for *pR*-(-)-enantiomer: 14.1 min; *t* for *pS*-(+)-enantiomer: 15.3 min.

The ee of (+)-spiniferin-1 and (-)-spiniferin-1 (80.6% and 90.9% respectively) are nearly consistent with the ee of (+)-10 and (-)-10 (80.9% and 93.0% respectively), indicating no racemization in the last four steps to prepare final products.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

NMR spectra

2. Aldehyde-2

3. Acid-2

5. Compound 4' 300 200 100 400 0 0.0 2£9.0 -⊐- 2.89 1.0 1.154 ⊐- 2.78 <u>- 1.31</u> 874.1 109.1 -⊐- 3.00 - 2.21 - 1.35 2.0 - 1.26 - 1.34 - 3.16]- 1.22 Ś 3.0 4.0 5.0 091.8 -_ 1.05 <u>8</u>8.8 5.88 گ ⊡– 0.92 ⊐– 0.87 166.ð 4 6.0 766.3 7.0 7.260 - 4.64 925.7 -ppm (f1)

7. Compound 8

25.0 20.0 15.0 10.0 5.0 0.0 0.0 688.0 ¢16'0 ⊐- 3.50 351.1 1.0 271.1 3.24 1.204 - 3.40 1.12 3.04 3-2.0 1.23 2.58 1.12 1.11 3.0 3.419 3.559 - 2.35 517.E _ 2.20 3.743 - 0.51 4.0 - 0.47 **_**− 0.55 5.0 ⊡– 0.46 ⊡– 0.56 - 1.01 6.0 OTHP 950.9 ⊐- 0.42 6.235 ⊐- 0.53 8 MeOOC 7.0 7.260 955.7 - 5.00 100 8.0 ppm (f1) 8. Compound 9

200 600 500 400 300 100 0 0.0 906.0 — ⊐- 3.49 1.0 261.1 ------⊇- 3.44]- 0.89 2.0 - 3.47 _ - 1.19 - 1.19 10 3.0 164.6 -⊐- 1.01 018.6 -- 3.724 ⊐- 3.00 4.0 770.ð 5.0 ⊡- 1.05 860.3 -⊐– 1.10 - £.462 6.0 992.9 ⊐- 1.03 HO റ 7.0 092.7 -1e00C - 5.00 -404.7 -8.0 9.0 ppm (f1)

9. Compound 9'

12. (+)-Spiniferin-1

100 300 200 400 0 0.0 859.0 -769.0 <u>-</u> 3.90 0.720 1.0 ⊐- 3.00 725.1 -1.924 £26.1 2.0 - 1.10 870.f 2.008 2.741 - 1.09 2.796 572 3.0 3.540 _ ___ 978.6 -4.0 472.8 -5.286 5.303 5.0 5.312 5.323 0.95 5.341 5.352 (+)-spiniferin-1 6.193 6.203 6.0 6.230 - 0.91 - 1.58 6.240 6.289 125.3 \$13.9 7.0 023.9 7.267 − 0.67 £72.7 8.0 ppm (f1)

CD Spectra of (+)-spiniferin-1 and (-)-spiniferin-1 in methanol

*Spectrometer / Data system JASCO Corp., J-810, Rev. 1.00 Xunits: nanometers; Yunits: CD[mdeg]

1. W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.

2. K. Ding, Y. S. Sun and W. S. Tian, J. Org. Chem., 2011, 76, 1495.