Synthesis of Biarylketones and Phthalides from Organoboronic Acids and Aldehydes Catalyzed by Cobalt Complexes

Jaganathan Karthikeyan, Kanniyappan Parthasarathy and Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

chcheng@mx.nthu.edu.tw

Supporting Information

Table of Contents	Page No
Experimental Section	S-2
Details of Optimization Studies for Ketones	S-3
Details of Optimization Studies for Phthalides	S-5
¹ H and ¹³ C NMR and HRMS Data	S-6
Reference	S-21
¹ H and ¹³ C NMR Spectra	S-22

General. All reactions were conducted under nitrogen atmosphere on a dual-manifold Schlenk line unless otherwise mentioned and in oven-dried glass wares. All solvents were dried according to known methods and distilled prior to use.¹ Starting materials were commercially available and used as purchased.

General procedure for the cobalt-catalyzed synthesis of biarylketones. A seal tube (20 mL) containing CoCl₂ (0.10 mmol, 10 mol%), tmphen (0.015 mmol, 15 mol%) 4-methoxycarbonylbenzaldehyde (1.00 mmol) phenylboronic acid (1.50 mmol) and Cs₂CO₃ (2.00 mmol) were evacuated and purged with nitrogen gas three times. Freshly distilled acetonitrile (3.0 mL) and toluene (1.0 mL) were added and stirred well until the solution became deep blue. Then the reaction mixture was evacuated and filled with oxygen. The reaction mixture was heated with stirring at 80 °C for 14 h and then cooled, diluted with 30% *n*-hexane-ethyl acetate and stirred in air for 10 min. The mixture was filtered through a Celite and silica gel pad and washed with 30% *n*-hexane-ethyl acetate as eluent to afford the desired product **3a**. Similar procedures were employed to prepare compounds **3b-t**. Similar procedures were also used for the preparation of **3u-w**, except that the reactions were carried out under nitrogen atmosphere.

Table 1. Optimization studies for the cobalt-catalyzed addition of organoboronic

acids with aldehydes to give diarylketones.^a

		CHO B(OH) ₂ + CHO add	oCl ₂ , ligand ditive, solvent 30 ℃, 12 h	MeO ₂ C	
	(1a	CO₂Me a 2a tmpho	$en = \underbrace{\bigvee_{N}}_{N} \underbrace{\bigvee_{N}} \underbrace{\bigvee_{N}}_{N} \underbrace{\bigvee_{N}}_{N} \underbrace{\bigvee_{N}} \underbrace{\bigvee_{N}} \underbrace{\bigvee_{N}} \underbrace{\bigvee_{N}}_{N} \underbrace{\bigvee_{N}} \bigvee_{N$	3a	
Entry	Catalyst	Ligand	Additive	Solvent	Yield
					$(\mathbf{\%})^b$
1	CoCl ₂	dppe	Cs_2CO_3	CH ₃ CN:Tol (3:1)	N.R
2	CoCl ₂	1,10-phen	Cs_2CO_3	CH ₃ CN:Tol (3:1)	58
3	CoCl ₂	bipy	Cs_2CO_3	CH ₃ CN:Tol (3:1)	38
4	CoCl ₂	tmeda	Cs_2CO_3	CH ₃ CN:Tol (3:1)	31
5	CoCl ₂	2,9-dm-1,10-phen	Cs_2CO_3	CH ₃ CN:Tol (3:1)	47
6	CoCl ₂	tmphen	Cs_2CO_3	CH ₃ CN:Tol (3:1)	64
7	CoCl ₂	tmphen	Cs_2CO_3	CH ₃ CN	36
8	CoCl ₂	tmphen	Cs_2CO_3	Toluene	17
9	CoCl ₂	tmphen	Cs_2CO_3	1,2-DCE	12
10	CoCl ₂	tmphen	Cs_2CO_3	THF	18
11	CoCl ₂	tmphen	Cs_2CO_3	1,4-dioxane	N.R
12	CoCl ₂	tmphen	K_2CO_3	CH ₃ CN:Tol (1:1)	27
13	CoCl ₂	tmphen	Cs_2CO_3	CH ₃ CN:Tol (2:1)	82
14	CoCl ₂	tmphen	Cs ₂ CO ₃	CH ₃ CN:Tol (3:1)	91
15	$CoCl_2$	tmphen	Cs_2CO_3	CH ₃ CN:Tol (4:1)	85
16	$CoCl_2$	tmphen	Cs_2CO_3	CH ₃ CN:Tol (1:1)	54 ^c

^{*a*} Unless otherwise mentioned, all reactions were carried out using aldehyde **1** (1.00 mmol), arylboronic acid **2** (1.50 mmol), CoCl₂ (0.10 mmol) tmphen (0.15 mmol), Cs₂CO₃ (1.50 mmol) and CH₃CN/toluene (3:1, 4 mL) at 80 °C for 12 h under O₂ (1 atm at room temperature). ^{*b*} Isolated yields. ^{*c*} The reaction was carried out under N₂.

General procedure for the cobalt-catalyzed synthesis of 3-arylphthalides. A seal tube (20 mL) containing CoI₂ (0.050 mmol, 5 mol%), dppe (0.050 mmol, 5 mol%), K_2CO_3 (1.50 mmol) phthalaldehyde (1.00 mmol) and phenylboronic acid (1.50 mmol) was evacuated and purged with nitrogen gas three times. Freshly distilled THF (3.0 mL) was added and the mixture was stirred until the solution became deep brown. The reaction mixture was heated with stirring at 80 °C for 14 h and was then cooled, diluted with 30% *n*-hexane-ethyl acetate and stirred in the air for 10 min. The mixture was filtered through a Celite and silica gel pad and washed with 30% *n*-hexane-ethyl acetate as eluent to afford the desired product **4a**. Similar procedures were employed to prepare compounds **4b- 4k**.

Table 2. Optimization studies for the cobalt-catalyzed addition reaction of organoboronic acids with phthalaldehydes to give 3-arylphthalides.^a

СНО	+ B(OH) ₂	catalyst, ligand additive, solvent 80 °C, 12 h	+ 0 +	
1р	2a		4a	5a

Entry	Catalyst	Ligand	Additive	Solvent	Yield of	Yield of
					4a $(\%)^{b}$	5a $(\%)^b$
1	CoCl ₂	tmphen	Cs ₂ CO ₃	CH ₃ CN:Tol (3:1)	62	28
2	CoCl ₂	1,10-Phen	K_2CO_3	CH ₃ CN	36	65
3	CoI ₂	dppe	K_2CO_3	CH ₃ CN	56	30
4	CoI ₂	dppe	K ₂ CO ₃	THF	89	10
5	CoI ₂	dppe	K_2CO_3	THF	$87^{\rm c}$	$10^{\rm c}$
6	CoI ₂	dppe	K_2CO_3	Toluene	48	41
7	CoI ₂	dppe	K_2CO_3	1,2-DCE	35	60
8	CoI ₂	dppe	K_2CO_3	1,4-Dioxane	-	-
9	CoI ₂	dppe	CsF	THF	67	32
10	CoI ₂	dppe	Cs_2CO_3	THF	78	18
11	CoI ₂	dppe	Na ₂ CO ₃	THF	80	14
12	CoI ₂	dppe	K_3PO_4	THF	82	15

^{*a*} Unless otherwise mentioned, all reactions were carried out using phthalaldehyde **1** (1.00 mmol), arylboronic acid **2** (1.50 mmol), CoI₂ (0.050 mmol), dppe (0.050 mmol), K₂CO₃ (1.50 mmol) and THF (4 mL) at 80 °C for 12 h under N₂. ^{*b*} Isolated yields. ^{*c*} The reaction was carried out under air.

The spectral data and a copy of the ¹H and ¹³C NMR spectra of compounds **3** are listed below.

4-Methoxycarbonylphenyl(phenyl)methanone (3a)

White solid m.p. 65-67 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.13 (d, *J* = 8.0 Hz, 2 H), 7.82 (d, *J* = 8.0 Hz, 2 H), 7.78 (d, *J* = 7.6 Hz, 2 H), 7.60 (t, *J* = 7.2 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 3.94 (s, 3 H). ¹³**C** NMR (100 MHz, CDCl₃): δ 196.0 (CO), 166.3 (*CO*-Ester), 141.3 (C), 136.9 (C), 133.2 (C), 132.9 (*C*H), 130.1 (2 *C*H), 129.7 (2 *C*H), 129.5 (2 *C*H), 128.5 (2 *C*H), 52.4 (*C*H₃); IR (neat) 1720 (v_{CO}), 1655, 1438 and 1282 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₂O₃ 240.0786, found 240.0780.

4-Nitrophenyl(phenyl)methanone (3b)

Light yellow solid m.p. 76-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J* = 8.4 Hz, 2 H), 7.92 (d, *J* = 8.8 Hz, 2 H), 7.80 (d, *J* = 7.6 Hz, 2 H), 7.63 (t, *J* = 7.6 Hz, 1 H), 7.50 (t, *J* = 7.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 194.8 (CO), 149.8 (C), 142.8 (C), 136.3 (C), 133.5 (CH), 130.7 (2 CH), 130.1 (2 CH), 128.7 (2 CH), 123.5 (2 CH); IR (neat) 1650 (v_{CO}), 1594, and 1513 cm⁻¹; HRMS (EI⁺) calcd for C₁₃H₉NO₃ 227.0582, found 227.0590.

3-Cyanophenyl(phenyl)methanone (3c)

Pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 8.04 (s, 1 H), 8.02 (d, J = 8.4 Hz, 1 H), 7.85 (d, J = 7.6 Hz, 2 H), 7.75 (d, J = 7.6 Hz, 2 H), 7.64-7.59 (m, 2 H), 7.50 (t, J = 7.6 Hz, 2 H). ¹³**C NMR** (100 MHz, CDCl₃): δ 194.4 (CO), 138.6.(C), 136.3 (C), 135.3 (CH), 133.8 (CH), 133.4 (CH), 133.2 (CH), 129.9 (2 CH), 129.4 (CH), 128.7 (CH), 117.9 (CN), 112.8(C); IR (neat) 2231, 1664 (v_{CO}), 1597and 1283 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₉NO 207.0684, found 207.0681.

4-Cyanophenyl(phenyl)methanone (3d)

Pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.0 Hz, 2 H), 7.74 (d, *J* = 8.4 Hz, 4 H), 7.60 (t, *J* = 7.2 Hz, 1 H), 7.47 (t, *J* = 7.6 Hz, 2 H). ¹³**C NMR** (100 MHz, CDCl₃): δ 194.9 (CO), 141.1.(C), 136.2 (C), 133.2 (CH), 132.1 (2 CH), 130.1 (2 CH), 129.9 (2 CH), 128.5 (2 CH), 117.9 (CN), 115.5(C); IR (neat) 2228, 1649 (v_{CO}), 1596, and 1447 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₉NO 207.0684, found 207.0681.

Phenyl(2-tolyl)methanone (3e)

Light yellow solid m.p. 114-116 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.84 (dd, J = 7.6, J = 1.4 Hz, 2 H), 7.56 (tt, J = 7.2 Hz, J = 1.2 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 2 H), 7.37 (dt, J = 7.4 Hz, J = 1.2 Hz, 1 H), 7.30-7.21 (m, 3 H), 2.31 (s, 3 H). ¹³C NMR (100

MHz, CDCl₃): δ 198.6 (CO), 138.6 (C), 137.7 (C), 136.7 (C), 133.1 (CH), 130.9 (CH), 130.2 (CH), 130.1 (2 CH), 128.5 (CH), 128.4 (2 CH), 125.2 (CH), 19.9 (CH₃); IR (neat) 1654 (v_{CO}), 1598, and 840 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₁₂O 196.0888, found 196.0884.

Phenyl(4-tolyl)methanone (3f)

Pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 2 H),7.72 (d, J = 7.6 Hz, 2 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.28 (d, J = 7.6 Hz, 2 H),2.43 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 196.3 (CO), 143.0 (C), 137.7 (C), 134.7 (C), 131.9 (CH), 130.1 (2 CH), 129.7 (2 CH), 128.8 (2 CH), 128.0 (2 CH), 21.5 (CH₃); **IR** (neat) 1657 (v_{CO}), 1605 and 833 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₁₂O 196.0888, found 196.0884.

4-Methoxyphenyl(phenyl)methanone (3g)

Pale yellow oil; ¹**H** NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 7.6 Hz, J = 1.2 Hz, 2 H), 7.72 (dd, J = 7.6 Hz, J = 1.2 Hz, 2 H), 7.51 (t, J = 7.6 Hz, 1 H), 7.43 (t, J = 7.2 Hz, 2 H), 6.90 (dd, J = 8.4 Hz, J = 1.2 Hz, 2 H), 3.84 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 195.0 (CO), 162.0 (C), 137.9 (C), 132.1 (2 CH), 131.5 (CH), 129.7 (C), 129.3 (2 CH), 127.8 (2 CH), 113.2 (2 CH), 55.1 (CH₃); IR (neat) 2839, 1651 (v_{CO}), 1508 and 1318 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₁₂O₂ 212.0837, found 212.0836.

4-Bromophenyl(phenyl)methanone (3h)

Pale pink solid m.p. 81-83 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.76- 7.70 (m, 2 H) 7.67-7.50 (m, 5 H), 7.48-7.44 (m, 2 H). ¹³C NMR (125 MHz, CDCl₃): δ 195.6 (CO), 137.1 (C), 136.2(C), 132.6 (CH), 131.6 (2 CH), 131.5 (2 CH), 129.8 (2 CH), 128.3 (2 CH), 127.4 (C); IR (neat) 1648 (v_{CO}), 1586 and 1279 cm⁻¹; HRMS (EI⁺) calcd for C₁₃H₉BrO 259.9837, found 259.9836.

4-Chlorophenyl(phenyl)methanone (3i)

Pale yellow solid m.p. 72-75 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (t, J = 8.0 Hz, 4 H), 7.57 (t, J = 7.6 Hz, 1 H), 7.48-7.42 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃): δ 195.4 (CO), 138.8 (C), 137.1(C), 135.8(C), 132.5 (CH), 131.4 (2 CH), 129.8 (2 CH), 128.5 (2 CH), 128.3 (2 CH); IR (neat) 1649 (v_{CO}), 1585, 1444 and 863 cm⁻¹; HRMS (EI⁺) calcd for C₁₃H₉ClO 216.0342, found 216.0338.

Benzophenone (3j)

White solid m.p. 48-50 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 7.6 Hz, 4 H),7.50 (t, J = 7.2 Hz, 2 H), 7.45 (t, J = 8.0 Hz, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 196.4 (CO), 137.4 (2C), 132.2 (2 CH), 129.8 (4 CH), 128.0 (4 CH); IR (neat) 1651

(v_{CO}), 1598 and 1320 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₃H₁₀O 182.0732, found 182.0736.

2-Furyl(phenyl)methanone (3k)

Yellow oil; ¹**H** NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.2 Hz, 2 H), 7.68 (s, 1 H), 7.56 (t, J = 7.2 Hz, 1 H), 7.46 (t, J = 7.6 Hz, 2 H), 7.20 (d, J = 2.8 Hz, 1 H), 6.57 (dd, J = 3.4 Hz, J = 1.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 182.5 (*CO*), 152.2 (C), 147.0 (*C*H), 137.2 (C), 132.5 (*C*H), 129.2 (2 *C*H), 128.3 (2 *C*H), 120.5 (*C*H), 112.1 (*C*H); IR (neat) 2839, 1651 (v_{CO}), 1508 and 1318 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₁H₈O₂ 172.0524, found 172.0521.

Phenyl(2-thienyl)methanone (3l)

Brown oil; ¹**H** NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.2 Hz, 2 H), 7.70 (d, J = 5.2 Hz 1 H), 7.62 (d, J = 3.6 Hz, 1 H), 7.57 (t, J = 7.2 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.14 (t, J = 4.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 188.1 (CO), 143.6 (C), 138.0(C), 134.8 (CH), 134.1 (CH), 132.2 (CH), 129.1 (2 CH), 128.3 (2 CH) 127.9 (CH); IR (neat) 1636 (v_{CO}), 1598 and 1412 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₁H₈OS 188.0296, found 188.0302.

Phenyl(3-pyridinyl)methanone (3m)

Colourless oil; ¹**H** NMR (400 MHz, CDCl₃): δ 8.96 (s, 1 H), 8.79 (d, *J* = 4.8 Hz, 1 H), 8.15 (d, *J* = 7.6 Hz, 1 H), 7.79 (d, *J* = 7.6 Hz, 2 H), 7.62 (t, *J* = 7.6 Hz, 1 H), 7.52-7.41 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 194.4 (CO), 152.5 (CH), 150.5 (CH), 136.8(CH), 136.3 (C), 132.8 (CH), 132.7 (C), 129.7 (2 CH), 128.3 (2 CH), 123.0 (CH); IR (neat) 2231, 1664 (v_{CO}), 1597 and 1283 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₃H₉NO 183.0684, found 183.0677.

Phenyl(4-Pyridinyl)methanone (3n)

White solid m.p. 66-69 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.75 (d, *J* = 6.0 Hz, 2 H), 7.76 (d, *J* = 7.2 Hz, 2 H), 7.58 (t, *J* = 7.60 Hz, 2 H), 7.52 (d, *J* = 6.0 Hz, 2 H) 7.45 (t, *J* = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 195.0 (CO), 150.2 (2 *C*H), 144.2(C), 135.7(C), 133.4 (*C*H), 130.0 (2 *C*H), 128.5 (2 *C*H), 122.7 (2 *C*H); IR (neat) 1652 (v_{CO}), 1598, 1550 and 1408 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₃H₉NO 183.0684, found 183.0683.

4-Cyanophenyl(4-tolyl)methanone (30)

Yellow liquid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 2 H), 7.78 (d, J = 8.4 Hz, 2 H), 7.69 (d, J = 8.0 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 2.45 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 194.8 (*CO*), 144.4 (C), 141.6 (C), 133.6 (C), 132.1 (2 CH), 130.3 (2 CH), 130.1 (2 CH), 129.3 (2 CH), 118.1(CN), 115.4(C), 21.7 (CH₃); IR (neat) 2230, 1649 (v_{CO}), 1603 and 1140 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₁NO 221.0841, found 221.0843.

4-Cyanophenyl(2-methoxyphenyl)methanone (3p)

Yellow solid m.p. 128-130 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.82 (d, *J* = 8.4 Hz, 2 H), 7.69 (d, *J* = 8.4 Hz, 2 H), 7.50 (t, *J* = 8.0 Hz, 1 H), 7.40 (dd, *J* = 7.6 Hz, *J* = 1.6 Hz, 1 H), 7.04 (t, *J* = 7.6 Hz, 1 H), 6.96 (d, *J* = 8.0 Hz, 1 H), 3.65 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 194.9 (*CO*), 157.5 (C), 141.4 (C), 133.0 (*C*H), 131.9 (2 *C*H), 130.0 (*C*H), 129.7 (2 *C*H), 127.3 (C), 130.8 (*C*H), 118.1(CN), 115.6(C), 111.4 (*C*H), 55.4 (CH₃); IR (neat) 2847, 2230, 1666 (v_{CO}) and 1598 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₁NO₂ 237.0790, found 237.0793.

4-Cyanophenyl(4-methoxyphenyl)methanone (3r)

Yellow solid m.p. 131-134 °C; ¹**H NMR** (500 MHz, CDCl₃): δ 7.81- 7.52 (m, 6 H), 6.97 (dd, *J* = 7.5 Hz, *J* = 2.0 Hz, 2 H), 3.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 193.7 (*CO*), 163.8 (C), 142.0 (C), 132.6 (2 *C*H), 132.0 (2 *C*H), 129.9 (2 *C*H), 128.9 (C), 118.1(CN), 115.1(C), 113.9 (2 CH), 55.6 (CH₃); IR (neat) 2851, 2230, 1655 (v_{CO}) and 1598 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₁NO₂ 237.0790, found 237.0793.

4-Chlorophenyl(4-cyanophenyl)methanone (3s)

Yellow solid m.p. 137-140 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (d, J = 8.4 Hz, 2 H), 7.78 (d, J = 8.0 Hz, 2 H), 7.71 (d, J = 8.4 Hz, 2 H), 7.47 (d, J = 8.4 Hz, 2 H); ¹³C **NMR** (100 MHz, CDCl₃): δ 193.8 (*CO*), 140.8 (C), 139.9 (C), 134.6 (C), 132.2 (2 *C*H), 131.4 (C), 130.1 (2 *C*H), 129.0 (2 *C*H), 117.8(CN), 115.9(C); IR (neat) 2228, 1645 (v_{CO}) and 1588 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₈ClNO 241.0294, found 241.0298.

4-Cyanophenyl(4-flourophenyl)methanone (3t)

Yellow solid m.p. 92-95 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84- 7.76 (m, 6 H), 7.17 (t, J = 8.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5 (*CO*), 165.8 (d, $J_{CF} = 254.0$ Hz, C), 141.1 (C), 133.3 (C), 132.7 (2 *C*H), 132.5 (2 *C*H), 130.0 (2 *C*H), 117.8(CN), 116.0 (*C*H), 115.8 (*C*H), 115.7(C); IR (neat) 2231, 1648 (v_{CO}), 1598 and 860 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₈FNO 225.0590, found 225.0588.

4-Methoxycarbonylphenyl(Phenyl)proponone (3u)

White solid; m.p. 78-82 °C ¹H NMR (400 MHz, CDCl₃): δ 8.11 (dd, J = 6.8 Hz, J = 2.0 Hz, 2 H), 8.00 (dd, J = 6.8 Hz, J = 2.0 Hz, 2 H), 7.32 -7.21 (m, 5 H), 3.94 (s, 3H), 3.33 (t, J = 7.6 Hz, 2 H), 3.07 (t, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 198.6 (*CO*-ketone),166.1 (*CO*-Ester), 140.8 (C), 139.9 (C), 133.7 (C), 129.7 (2 CH), 128.5 (2 CH), 128.3 (2 CH), 127.8 (2 CH), 126.1 (CH), 52.4 (CH₃), 40.7 (CH₂), 29.8 (CH₂); IR (neat) 1712, 1684 (v_{CO}), 1626 and 1576 cm⁻¹; HRMS (EI⁺) calcd for C₁₇H₁₆O₃ 268.1099, found 268.1102.

4-Methoxycarbonylphenyl(4-trifluoromethylPhenyl)proponone (3v)

White solid m.p. 117-120 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.0 Hz, 2 H), 7.97 (d, *J* = 8.4 Hz, 2 H), 7.52 (d, *J* = 7.6 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 3.91 (s, 3H), 3.32 (t, *J* = 7.6 Hz, 2 H), 3.11 (t, *J* = 7.6 Hz, 2 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 198.0 (*CO*-ketone),166.1 (*CO*-Ester), 145.1 (C), 139.7 (C), 133.9 (C), 129.8 (2 CH), 128.7 (2 CH), 128.7 (2 CH), 127.8 (2 CH), 125.4 (q, C_{C-F} J = 3.6Hz, C), 52.4 (CH₃), 40.1 (*C*H₂), 29.5 (*C*H₂); IR (neat) 2924, 1725, 1671 (v_{CO}) and 1571 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₈H₁₅F₃O₃ 336.0973, found 336.0977.

4-Methoxycarbonylphenyl(4-chloroPhenyl)proponone (3w)

White solid m.p. 104-106 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 8.4 Hz, 2 H), 8.17 (d, J = 8.4 Hz, 2 H), 7.43 (d, J = 8.4 Hz, 2 H), 7.35 (d, J = 8.4 Hz, 2 H), 4.11 (s, 3H), 3.48 (t, J = 7.6 Hz, 2 H), 3.21 (t, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 198.6 (*CO*-ketone), 166.1 (*CO*-Ester), 140.8 (C), 139.9 (C), 133.7 (C), 129.7 (2 CH), 128.5 (2 CH), 128.3 (2 CH), 127.8 (2 CH), 126.1 (CH), 52.4 (CH₃), 40.7 (CH₂), 29.8 (CH₂); IR (neat) 1717 (v_{CO}), 1681(v_{CO}), 1618 and 1572 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₇H₁₅ClO₃ 302.0710, found 302.0712.

The spectral data and a copy of the ¹H and ¹³C NMR spectra of compounds **4** are listed below.

3-Phenylisobenzofuran-1(*3H*)-one (4a)

White solid m.p. 112-113 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.93 (d, *J* = 7.6 Hz, 1 H), 7.62 (t, *J* = 7.6 Hz, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.36-7.29 (m, 4 H), 7.26-7.24 (m,, 2 H), 6.38 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4 (*CO-lactone*), 149.6 (C), 136.3 (C), 134.3 (C), 129.3 (*C*H), 129.2 (*C*H), 128.9 (2 *C*H), 126.9 (2 *C*H), 125.5 (*C*H), 125.4(C), 122.8 (*C*H), 82.6 (*C*H); IR (neat) 1764 (v_{CO}), 1495, and 1285 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₁₀O₂ 210.0681, found 210.0681.

3-*p*-Tolylisobenzofuran-1(3*H*)-one (4b)

White solid m.p. 107-110 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.0 Hz, 1 H), 7.62 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.29 (dd, *J* = 7.2 Hz, *J* = 1.2 Hz, 1 H), 7.17-7.11 (m, 4 H), 6.35 (s, 1 H), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5 (*CO-lactone*), 149.7 (C), 136.2 (C), 134.2 (*C*H), 133.3 (C), 129.5 (2 *C*H), 129.2 (*C*H), 126.9 (2 *C*H), 125.6 (C), 125.4(*C*H), 122.8 (*C*H), 82.7

(CH), 21.1 (CH₃); IR (neat) 1754 (v_{CO}), 1513 and 1463 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₂O₂ 224.0837, found 224.0835.

3-(3-Methoxyphenyl)isobenzofuran-1(3*H***)-one (4c)**

White solid m.p. 118-120 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.92 (td, *J* = 7.6 Hz, *J* = 0.8 Hz, 1 H), 7.61 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.32 (qd, *J* = 8.0 Hz, *J* = 0.2 Hz, 1 H), 7.32 (t, *J* = 8.0 Hz, 1H), 6.88-6.75 (m, 3 H), 6.38 (s, 1 H), 3.74 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4 (*CO-lactone*), 159.9 (C), 149.5 (C), 137.9 (C), 134.3 (*C*H), 129.9 (*C*H), 129.3 (*C*H), 125.5 (*C*H), 125.3 (C), 122.8(*C*H), 118.9 (*C*H), 114.5 (*C*H), 112.3 (*C*H), 82.4 (*C*H), 55.2 (*C*H₃); IR (neat) 2837, 1766 (v_{CO}), and 1600 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₂O₃ 240.0786, found 240.0785.

3-(4-Methoxyphenyl)isobenzofuran-1(3H)-one (4d)

White solid m.p. 110-112 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.92 (dd, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.62 (dt, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.52 (dt, J = 7.6 Hz, J = 0.8 Hz, 1 H), 7.28 (dd, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.14 (d, J = 8.8 Hz, 2H), 6.86 (dd, J = 8.8 Hz, J = 2.4 Hz, 2H), 6.34 (s, 1 H), 3.77 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ

170.5 (*CO-lactone*), 160.4 (C), 149.7 (C), 134.2 (*C*H), 129.2 (*C*H), 129.2 (*C*H), 128.7 (2 *C*H), 128.2 (C), 125.8(C), 125.5 (*C*H), 122.9 (*C*H), 114.3 (2 *C*H), 82.7 (*C*H), 55.3 (*C*H₃); IR (neat) 2840, 1753 (v_{CO}), 1612 and 1286 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₅H₁₂O₃ 240.0786, found 240.0782.

(E)-3-Styrylisobenzofuran-1(3H)-one (4e)

White solid m.p. 98-100 °C; ¹**H** NMR (500 MHz, CDCl₃): δ 7.92 (d, *J* = 7.5 Hz, 1 H), 7.68 (t, *J* = 7.5 Hz, 1 H), 7.54 (t, *J* = 7.5 Hz, 1 H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.39 (d, *J* = 7.0 Hz, 2 H), 7.31-7.25 (m, 3 H), 6.90 (d, *J* = 15.0 Hz, 1 H), 6.12 (dd, *J* = 15.0 Hz, *J* = 7.0 Hz, 1 H), 5.99 (d, *J* = 7.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 170.3 (*CO-lactone*), 148.8 (C), 136.3 (C), 135.4 (C), 135.2 (*C*H), 134.2 (*C*H), 129.4 (*C*H), 128.7 (2 *C*H), 128.6 (*C*H), 126.9 (2 *C*H), 125.7 (*C*H), 123.8 (C), 122.6 (*C*H), 82.1 (*C*H); IR (neat) 1760 (v_{CO}), 1598 and 1284 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₆H₁₂O₂ 236.0837, found 236.0836.

White solid m.p. 157-159 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.96 (d, *J* = 7.6 Hz, 1 H), 7.66 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1 H), 7.56 (dt, *J* = 7.2 Hz, *J* = 1.2 Hz, 1 H), 7.50

(d, J = 6.8 Hz, 2 H), 7.31 (dd, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.16 (d, J = 8.8 Hz, 1 H), 6.36 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2 (*CO-lactone*), 149.1 (C), 135.4 (C), 134.4 (*C*H), 132.1 (2 *C*H), 129.5 (*C*H), 128.6 (2 *C*H), 125.7 (*C*H), 123.4 (C), 122.7 (*C*H), 81.8 (*C*H); IR (neat) 1768 (v_{CO}), 1598 and 1284 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₉BrO₂ 287.9786, found 287.9786.

3-(3-Chlorophenyl)isobenzofuran-1(3H)-one (4g)

White solid m.p. 132-134 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.6 Hz, 1 H), 7.62 (dt, *J* = 7.6 Hz, *J* = 1.2 Hz, 1 H), 7.56 (dt, *J* = 7.6 Hz, *J* = 0.8 Hz, 1 H), 7.35-7.29 (m, 3 H), 7.25 (s, 1 H), 7.20-7.17 (m, 1 H), 6.39 (s, 1 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 170.1 (*CO-lactone*), 148.9 (C), 138.4 (C), 134.8 (C), 134.5 (CH), 130.3 (CH), 129.6 (CH), 129.4 (CH), 126.9 (CH), 125.7 (CH), 125.3 (C), 125.0 (CH), 122.7 (CH) 81.6 (CH); IR (neat) 1764 (v_{CO}), 1597 and 1284 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₉ClO₂ 244.0291, found 244.0287.

White solid m.p. 85-87 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.6 Hz, 1 H), 7.64 (t, J = 7.6 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.36- 7.31 (m, 2 H), 7.09 (d, J = 7.6 Hz, 1 H), 7.03 (td, J = 8.4 Hz, J = 2.8 Hz, 1 H), 6.94 (td, J = 8.8 Hz, J = 2.0 Hz,

1 H), 6.36 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1 (*CO-lactone*), 163.1 (d, J_{C-F} =986.8 Hz, C), 149.0 (C), 138.8 (d, J_{C-F} =7.4 Hz, C), 134.4 (*C*H), 130.6 (d, J_{C-F} =8.1 Hz, *C*H), 129.5 (*C*H), 125.7 (*C*H), 125.3 (C), 122.7 (*C*H), 122.5 (d, J_{C-F} =3.7 Hz, *C*H), 116.2 (d, J_{C-F} =21.2 Hz, *C*H), 113.7 (d, J_{C-F} =22.6 Hz, *C*H), 81.6 (*C*H); IR (neat) 1772, 1762 (v_{CO}) and 1466 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₄H₁₀FO₂ 228.0587, found 228.0583.

3-(4-Biphenyl)isobenzofuran-1(3H)-one (4i)

White solid m.p. 211-213 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 1 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.59- 7.54 (m, 5 H), 7.42 (m, 4 H), 7.42 (t, J = 7.6 Hz, 1 H), 7.35- 7.25 (m, 4 H), 6.38 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6 (*CO-lactone*), 149.6 (C), 142.3 (C), 140.2 (C), 135.2 (C), 134.4 (CH), 129.4 (CH), 128.8 (2 CH), 128.3 (2 CH), 127.7 (2 CH), 127.4(2 CH), 126.7 (CH), 125.6 (C), 122.7 (CH), 115.7 (CH), 82.6 (CH); IR (neat) 1750 (v_{CO}), 1598 and 1464 cm⁻¹; **HRMS** (EI⁺) calcd for C₂₀H₁₄O₂ 286.0994, found 286.0996.

3-(4-Vinylphenyl)isobenzofuran-1(3H)-one (4j)

White solid m.p. 116-118 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.6 Hz, 1 H), 7.64 (t, J = 7.6 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 1 H), 7.41 (d, J = 7.6 Hz, 2 H), 7.32 (d, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.23 (d, J = 8.4 Hz, 2 H), 6.70 (dd, J = 17.6 Hz, J = 10.8 Hz, 1 H), 6.40 (s, 1 H), 5.76 (d, J = 17.6 Hz, 1 H), 5.26 (d, J = 11.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5 (*CO-lactone*), 149.6 (C), 138.3 (C), 135.9 (CH), 135.7 (C), 134.3 (CH), 129.4 (CH), 127.2 (2 CH), 126.7 (2 CH), 125.6 (CH), 125.5 (C), 122.8 (CH), 114.9 (CH₂), 82.5 (CH); IR (neat) 1756 (v_{CO}), 1598 and 1284 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₆H₁₂O₂ 236.0837, found 236.0835.

3-(Naphthalen-2-yl)isobenzofuran-1(3H)-one (4k)

White solid m.p. 148-150 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.6 Hz, 1 H), 7.83- 7.78 (m, 4 H), 7.61 (t, J = 7.6 Hz, 1 H), 7.55- 7.47 (m, 3 H), 7.31 (d, J = 7.6 Hz, 1 H), 7.21 (d, J = 8.4 Hz, 1 H), 6.53 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5 (*CO-lactone*), 149.6 (C), 134.3 (*C*H), 133.6 (C), 133.5 (C), 132.9 (C), 129.4 (*C*H), 128.9 (*C*H), 128.0 (*C*H), 127.7 (*C*H),126.8 (*C*H), 126.7 (*C*H), 126.6 (*C*H), 125.6 (*C*H), 125.5(C), 123.7 (*C*H), 122.9 (*C*H), 82.8 (*C*H); IR (neat) 1764 (v_{CO}), 1599, 1465 and 1285 cm⁻¹; **HRMS** (EI⁺) calcd for C₁₈H₁₂O₂ 260.0837, found 260.0836.

References:

 Perrin, D. D.; Armarego, W. L. F. *In Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, 1988.

¹H and ¹³C NMR spectra of compound **3a**

 1 H and 13 C NMR spectra of compound **3b**

 1 H and 13 C NMR spectra of compound **3**c

 1 H and 13 C NMR spectra of compound **3d**

 1 H and 13 C NMR spectra of compound **3f**

 1 H and 13 C NMR spectra of compound **3h**

¹H and ¹³C NMR spectra of compound 3i

¹H and ¹³C NMR spectra of compound 3j

 1 H and 13 C NMR spectra of compound **3**k

 1 H and 13 C NMR spectra of compound **3**l

 1 H and 13 C NMR spectra of compound **3m**

¹H and ¹³C NMR spectra of compound 3n

¹H and ¹³C NMR spectra of compound 3p

¹H and ¹³C NMR spectra of compound 3q

 1 H and 13 C NMR spectra of compound **3r**

 1 H and 13 C NMR spectra of compound **3s**

¹H and ¹³C NMR spectra of compound 3t

 1 H and 13 C NMR spectra of compound **3**u

 1 H and 13 C NMR spectra of compound **3v**

¹H and ¹³C NMR spectra of compound 3w

 1 H and 13 C NMR spectra of compound **4a**

 1 H and 13 C NMR spectra of compound **4b**

 1 H and 13 C NMR spectra of compound **4**c

 1 H and 13 C NMR spectra of compound **4d**

 1 H and 13 C NMR spectra of compound **4**e

 1 H and 13 C NMR spectra of compound **4**g

¹H and ¹³C NMR spectra of compound **4**j

