Electronic Supplementary Information

Redox-active π -conjugated polymer nanotubes with viologen for encapsulation and release of fluorescent dye in the nanospace

Keisuke Sato, Tsukasa Nakahodo and Hisashi Fujihara*

Department of Applied Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan.

- 1) Terthiophene (1-VL²⁺) and protective ligand (SF⁻) for Au nanoparticles (SF⁻AuNPs).
- 2) Synthesis and characterization of water-soluble gold nanoparticles (SF-AuNPs).
- 3) TEM image of SF⁻-AuNPs, and TEM image and EDX spectrum of SF⁻-AuNP@1-VL²⁺-PT-NTs.

1) Terthiophene (1-VL²⁺) and protective ligand for Au nanoparticles (SF⁻AuNPs).

New terthiophene $(1-VL^{2+})$ and protective ligand (SF⁻) for Au nanoparticles (SF⁻AuNPs) were synthesized according to Scheme S1-S2.

Scheme S1. Reagents and Conditions: (i) $Br(CH_2)_6Br$, NaH, THF, reflux, 5 h; (ii) bipyridine, MeCN, reflux, 7 h; (iii) KPF₆, MeCN, room temp., 3 h.

1-VL²⁺ : ¹H-NMR (CD₃CN- d_3) δ 1.29-1.40 (m, 8H, CH₂), 1.44-1.56 (m, 4H, CH₂), 1.88-1.98 (m, 4H, CH₂), 2.92 (t, *J*=6.5 Hz, 4H, CH₂), 3.40 (t, *J*=6.2 Hz, 4H, CH₂), 3.64 (t, *J*=6.5 Hz, 4H, CH₂), 4.52 (t, *J*=7.5 Hz, 4H, CH₂), 7.02 (dd, *J*=3.6, 5.1 Hz, 2H, Ar-H), 7.10 (dd, *J*=3.6, 5.2 Hz, 2H, Ar-H), 7.17 (s, 2H, Ar-H), 7.20 (dd, *J*=1.1, 3.6 Hz, 2H, Ar-H), 7.22 (dd, *J*=1.2, 3.6 Hz, 2H, Ar-H), 7.31 (dd, *J*=1.1, 5.1 Hz, 2H, Ar-H), 7.43 (dd, *J*=1.2, 5.2 Hz, 2H, Ar-H), 8.30 (d, *J*=6.8 Hz, 4H, Ar-H), 8.80 (d, *J*=6.8 Hz, 4H, Ar-H). ¹³C NMR (CD₃CN- d_3) δ 26.3, 30.0, 30.5, 31.8, 63.0, 70.8, 71.1, 125.0, 126.1, 127.2, 127.6, 128.1, 128.1, 128.9, 129.3, 131.3, 135.8, 136.0, 137.5, 138.4, 146.4, 150.7; MS (FAB) Exact mass calcd. for C₅₀H₅₄O₂N₂S₆ (-2PF₆): 906.2510. Found: 906.2515.

Scheme S2. Reagents and Conditions: (i) $Br(CH_2)_{10}Br$, NaOH, EtOH-H₂O, 50 °C, 18 h, (ii) MeCOSK, MeCN, reflux, 15 h; (iii) HCl, MeOH, reflux, 1h.

SF⁻: ¹H-NMR (DMSO- d_6) δ 1.17-1.44 (m, 16H, CH₂), 1.69 (q, 2H, CH₂), 2.21 (t, 1H, SH), 3.94 (t, 2H, CH₂), 6.83 (d, 2H, Ar-H), 7.49 (d, 2H, Ar-H); ¹³C NMR (DMSO- d_6) δ 23.7, 25.5, 27.7, 28.4, 28.6, 28.7, 28.9, 33.4, 67.4, 113.2, 126.9, 140.9, 158.6.

2) Synthesis and characterization of water-soluble gold nanoparticles (SF-AuNPs).

Typical procedure for the preparation of SF⁻AuNPs is as follows. To a vigorously stirred solution of HAuCl₄.4H₂O (82 mg, 0.20 mmol) in 10 mL of H₂O was added thiol **SF**⁻ (74 mg, 0.20 mmol) in 30 mL of MeOH. NaBH₄ (76 mg, 2.0 mmol) in 8 mL of H₂O was then added. The mixture was stirred for 1 h at room temperature. After the reaction, the filtrate was evaporated in vacuo to yield SF⁻AuNPs. Purification of SF⁻AuNPs was repeated until no free thiol remained, as detected by TLC, ¹H and ¹³C NMR spectroscopy.

The particle size and size distribution of SF⁻AuNPs were analyzed with transmission electron microscopy (TEM). The core size and size distribution of SF⁻AuNPs are shown in Fig. S1. The X-ray photoelectron spectroscopy (XPS) spectrum of SF⁻AuNPs shows the Au 4f binding energies at 84.1 and 87.8 eV, corresponding to the Au⁰ state.

3) TEM image of SF⁻-AuNPs, and TEM image and EDX spectrum of SF⁻-AuNP@1-VL²⁺-PT-NTs.

Fig. S1. (a) TEM image and (b) size distribution $(4.6 \pm 0.5 \text{ nm})$ of SF⁻AuNPs. Scale: 20 nm. (c) TEM image of SF⁻AuNP@1-VL²⁺-PT-NTs. Scale: 100 nm. Inset: its EDX spectrum, Cu peaks are from the supporting copper grid.