Phase Separation and Superconductivity in Fe_{1+x}Te_{0.5}Se_{0.5}

Vikas Bhatia^{*a*}, Efrain E. Rodriguez^{*b*}, Nicholas P. Butch^c, Johnpierre Paglione^c and Mark A. Green^{*a,b,**}

Supplementary Information

Quenched from 800 °C

Phase	Label	a (Å)	b (Å)	Formula	Phase
					Fraction
Te-rich	Te	3.79793(6)	6.0343(2)	FeTe _{0.67(3)} Se _{0.33(3)}	48(1)%
Se-rich	Se	3.7907(2)	5.8748(5)	$FeTe_{0.4(1)}Se_{0.6(1)}$	29(2) %
Hexagonal	Н	3.7081(2)	5.832(4)	FeSe	23(1)

R-factor = 5.98%, ² = 1.18%

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Quenched from 440 °C

Phase	Label	a (Å)	<i>b</i> (Å)	Formula	Phase
					Fraction
Te-rich	Te	3.79859(5)	5.9792(1)	FeTe _{0.52(3)} Se _{0.48(3)}	51(2) %
Se-rich	Se	3.7910(1)	5.861(1)	FeTe _{0.41(5)} Se _{0.59(5)}	44(2) %
Hexagonal	Н	3.6347(9)	5.836(2)	FeSe	5(1)

R-factor = 5.75%, $^2 = 2.79\%$

Cooled over 12 hours

Phase	a (Å)	<i>b</i> (Å)	Formula	Phase
				Fraction
Single	3.79510(3)	5.9294(1)	FeTe _{0.57(2)} Se _{0.43(2)}	100 %
Phase				

```
R-factor = 6.24\%, ^2 = 1.37\%
```

Slow cooled over 2 weeks

Phase	Label	a (Å)	<i>b</i> (Å)	Formula	Phase
					Fraction
Se-rich	Se	3.79391(9)	5.9025(8)	FeTe _{0.26(2)} Se _{0.74(2)}	53(2) %
Equal	Е	3.7974(1)	5.9616(3)	FeTe _{0.47(2)} Se _{0.53(2)}	38(2) %
Se-rich 2	Se2	3.7805(5)	5.727(2)	FeTe _{0.30(7)} Se _{0.70(7)}	9(1) %

R-factor = 5.44%, $^2 = 2.21\%$

Rietveld refinement fits obtained for the sample slow cooled over two weeks with (a) single phase model with strain and (b) a two pha e model both of P4/nmm symmetry.

Comparison of selected reflections between 2 and 3 phase model for sample cooled for 2 weeks, showing that although the third phase of P4/nmm symmetry is a minor phase it has a very significant impact on the fit

