Supporting Information

A Synthetic Approach to Kingianin A Based on Biosynthetic Speculation

Pallavi Sharma, Dougal J Ritson, James Burnley and John E. Moses^{*}

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

*john.moses@nottingham.ac.uk. To whom correspondence should be addressed.

Table of contents

- Materials and Methods	S3
- Experimental Procedures	S4-S11
- nOe and NOESY correlation diagram for 2 and 18	S12
- Table (T1)	S12
- References	S13
- Copy of NMR spectra	S14-S37

Materials and Methods

¹H and ¹³C-NMR spectra were recorded on a Bruker AV (III) 400, Bruker AV 400, Bruker DPX 400 (400 MHz (¹H), and 100 MHz (¹³C)), and Bruker DPX 300 (300 MHz (¹H) and 75 MHz (¹³C)) spectrometers. Chemical shifts are expressed in parts per million (ppm) and the spectra calibrated to residual solvent signals of CDCl₃ (7.27 ppm (¹H) and 77.0 ppm (¹³C)). Coupling constants are given in hertz (Hz) and the following notations indicate the multiplicity of the signals: s (singlet), d (doublet), brs (broad singlet), brd (broad doublet), t (triplet), q (quartet), m (multiplet).

High Resolution Mass Spectra were recorded on a VG micron Autospec or Bruker microTOF. Fourier Transform Infrared Spectroscopy (FT-IR) spectra were obtained using a Perkin Elmer 1600 series or Bruker Tensor 27 spectrometer.

Melting points were recorded using a STUART SMP3 apparatus and are uncorrected. Thin layer chromatography were carried out on Merck pre-coated silica gel plates (60F-254) and visualised using ultra violet light, KMnO₄ solution or *p*-anisaldehyde solution. THF was freshly distilled from sodium-benzophenone; DCM was dried over calcium hydride. Where necessary, reactions requiring anhydrous conditions were performed in dry solvents in flame dried or oven-dried apparatus under nitrogen/argon atmosphere.

Experimental Procedures (Z)-3-(Tributylstannyl)-2-propenal (19)¹

Bu₃Sn CHO

To a well-stirred mixture of (*Z*)-3-(tributylstannyl)prop-2-en-1-ol (7.50 g, 21.6 mmol) in anhydrous DCM (100 mL) under nitrogen at 0 °C was added Dess-Martin periodinane (13.7 g, 32.4 mmol) in portions. The mixture was stirred at room temperature until completion of the oxidation (~ 1h, TLC). The reaction was cooled to 0 °C and quenched by addition of a saturated aqueous solution of NaHCO₃. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 100 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent was then removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography to give the aldehyde product **14** as clear oil (4.82 g, 65 %). R_f 0.40 (95:5::PE:EA); v_{max}/cm^{-1} (CHCl₃): 2959, 1681, 1463, 1378, 1192; $\delta_{\rm H}$ (400 MHz, CDCl₃): 9.52 (1H, brd, *J* 6.9 Hz), 7.71 (1H, brd, *J* 13.0 Hz), 7.00 (1H, dd, *J* 6.9, 13.0 Hz), 1.54-1.48 (6H, m), 1.36-1.28 (6H, m), 1.06-1.02 (6H, m), 0.90 (9H, t, *J* 7.3 Hz) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃): 194.5, 162.7, 145.4, 28.9, 27.1, 13.5, 11.3 ppm; HRESIMS calculated for C₁₅H₃₀NaOSn [M+Na]⁺ 369.1211 obtained 369.1229.

(2E,4Z)-Ethyl 5-(tributylstannyl)penta-2,4-dienoate (11)²

To a well stirred solution of the aldehyde **19** (4.50 g, 13.0 mmol) in anhydrous DCM (50 mL) under nitrogen was added ethyl 2-(triphenylphosphoranylidene)acetate (5.45 g, 15.6 mmol). The mixture was stirred overnight (16 h) at room temperature. The solvent was removed under reduced pressure and the product purified by flash silica gel column chromatography to give the Wittig product **11** as yellow oil (5.0 g, 93 %). R_f 0.4 (95:5::PE:EA); v_{max}/cm^{-1}

¹(CHCl₃): 2956, 2926, 1704, 1625, 1463, 1368; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.24-7.12 (2H, m), 6.71 (1H, brd, *J* 11.9 Hz), 5.89 (1H, brd, *J* 14.4 Hz), 4.22 (2H, q, *J* 7.1), 1.53-1.49 (6H, m), 1.37-1.28 (9H, m), 1.04-1.00 (6H, m), 0.90 (9H, t *J* 7.1 Hz) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃): 166.9, 147.7, 146.5, 143.9, 122.5, 60.2, 29.0, 27.1, 14.2, 13.6, 10.6 ppm; HRESIMS calculated for C₁₉H₃₇O₂Sn [M+H]⁺ 417.1810 obtained 417.1803.

(2E, 4Z)-5-(Tributylstannyl)penta-2,4-dien-1-ol (12)

To a well stirred solution of 11 (2.25 g, 5.40 mmol) in anhydrous DCM (20 mL) under argon at -78 °C, was added a solution of DIBAL-H (1 M) (10.8 mL, 10.8 mmol) dropwise, and mixture was stirred at same temperature for an additional 2 hours. The reaction mixture was then slowly warmed to room temperature and stirred for a further 16 h. After this period the reaction mixture was cooled to 0 °C and guenched by slowly adding 5 mL of methanol. An aqueous saturated solution of sodium-potassium tartrate (20 mL) was added and the mixture stirred at room temperature until the two layers were clear. The organic layer was separated and the aqueous layer extracted with DCM (3 x 75 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent removed under reduced pressure to give the crude product as yellow oil. Purification using flash silica gel chromatography gave the alcohol product 12 as clear oil (1.3 g, 65 %). $R_f 0.12$ (95:5::PE:EA); $v_{max}/cm^{-1}(CHCl_3)$: 3611, 2917, 2853, 1558, 1456, 1377; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.07 (1H, dd, J 12.6, 10.5 Hz), 6.21-6.12 (2H, m), 5.86 (1H, dt, J 15.0, 5.7 Hz), 4.22 (2H, brt, J 5.7 Hz), 1.56-1.47 (6H, m), 1.37-1.27 (6H, m), 0.98-0.94 (6H, m), 0.90 (9H, t, J 7.4 Hz) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃): 145.5, 135.2, 133.9, 133.4, 63.4, 29.1, 27.3, 13.6, 10.4 ppm; HRESIMS calculated for $C_{17}H_{34}NaOSn [M+Na]^+$ 397.1524 obtained 397.1522.

(3E, 5Z)-6-(Tributylstannyl)hexa-3,5-dienenitrile (7)

To a well-stirred solution of **12** (0.400 g, 1.07 mmol) in degassed dry THF (2 mL) under argon, was slowly added a solution of triphenyl phosphine (0.674 g, 2.50 mmol) in THF (2 mL) dropwise. The reaction mixture was cooled to 0 °C and stirred for 5 min before adding acetone cyanohydrin (0.228 g, 2.50 mmol) dropwise. The mixture was further stirred for 5 mins. A solution of DEAD (0.448 g, 2.50 mmol) in degassed dry THF (2.2 mL) was added dropwise over 10 mins. The mixture was stirred at 0 °C until the completion of reaction (TLC). The volatile solvent and reagents were removed under reduced pressure to render the crude product. Purification by flash silica gel column chromatography gave the nitrile product 7 as clear oil (0.224 g, 55 %). R_f 0.26 (95:5::PE:EA); v_{max}/cm^{-1} (CHCl₃): 3154, 2925, 2257, 1816, 1793, 1643, 1461, 1378 ; $\delta_{\rm H}$ (400 MHz, CDCl₃): 7.04 (1H, dd, *J* 12.7, 10.4 Hz), 6.35-6.27 (1H, m), 6.24 (1H, brd, *J* 12.7 Hz), 5.57 (1H, dt, *J* 15.0, 5.5 Hz), 3.20 (2H, dd, *J* 5.5, 1.5 Hz), 1.58-1.48 (6H, m), 1.39-1.27 (6H, m), 1.02-0.96 (6H, m), 0.90 (9H, t, *J* 7.2 Hz) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃): 144.1, 137.4, 137.1, 121.1, 117.0, 29.0, 27.2, 20.5, 13.6, 10.4 ppm; HRESIMS calculated for C₁₈H₃₃NNaSn [M+Na]⁺ 406.1527 obtained 406.1530.

(*E*)-Ethyl 4-(benzo[*d*][1,3]dioxol-5-yl)but-2-enoate (8)^{3,4}

To a solution of safrole (9.0 g, 55.5 mmol) in methanol: H_2O (1.5:1) (450 mL), THF (~50 mL) was added dropwise until the solid has dissolved. OsO₄ (0.17 mL, 4% w/v water, 0.28 mmol) was added followed by the addition of sodium periodate (30.0 g, 13.9 mmol). The reaction mixture was vigorously stirred at room temperature for 16 h, then filtered through celite and washed with ethyl acetate (200 mL). The volume of solvent was then reduced by around a third under reduced pressure. The crude mixture was diluted with water (200 mL) and

extracted with ethyl acetate (3 x 400 mL). The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and the solvent removed under reduced pressure.

aldehyde product (8.50 (crude), 51.5 The crude g mmol) and ethyl 2-(triphenylphosphoranylidene)acetate (27.0 g, 77.5 mmol) were taken in dry DCM (200 mL) under nitrogen and heated to reflux for 20 h. The solvent was removed under reduced pressure and the crude residue purified by flash silica gel column chromatography to furnish ester 8 as pale yellow viscous oil (10.3 g, 80%, over 2 steps). R_f 0.51 (80:20::PE:EA)v_{max}/cm⁻¹(CHCl₃): 3011, 2966, 2893, 1722, 1504, 1491, 1445, 1248; δ_H (400 MHz, CDCl₃) 7.06 (1H, dt, J 15.5, 6.8 Hz), 6.77-6.62 (3H, m), 5.94 (2H, s), 5.80 (1H, dt, J 15.5, 1.6 Hz), 4.19 (2H, q, J 7.2 Hz), 3.44 (2H, brd, J 6.7 Hz), 1.28 (3H, t, J 7.2, Hz); δ_C (100 MHz, CDCl₃) 166.3, 147.7, 147.2, 146.2, 131.2, 122.0, 121.6, 109.1, 108.2, 100.8, 60.1, 37.9, 14.1; HRESIMS: Calculated for $C_{13}H_{15}O_4$ [M+H]⁺ 235.0968 found 235.0965, $C_{13}H_{14}NaO_4$ [M+Na]⁺ 257.0784 found 257.0782.

(E)-4-(Benzo[d][1,3]dioxo-5-yl)but-2-en-1-ol (9)

The ester **8** (8.70 g, 37.1 mmol) was dissolved in dry DCM (80 mL) under nitrogen and the solution cooled to -78 °C. DIBAL-H (81.7 mL, 81.7 mmol, 1M heptanes) was added dropwise over 10 min. The solution was warmed to room temperature and stirred for a further 30 mins. The reaction mixture was cooled to 0 °C and methanol (20 mL) added carefully. A saturated solution of sodium potassium tartrate (100 mL) was added and the mixture further stirred at room temperature until both layers were clear. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 200 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent removed under reduced pressure. The residue purified by flash silica gel column chromatography to furnish the allylic alcohol product **9** as viscous pale yellow oil (5.01 g, 71%). R_f 0.31 (60:40::PE:EA)v_{max}/cm⁻¹(CHCl₃):

3611, 3011, 2884, 2777, 1504, 1489, 1443, 1245; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.75 - 6.62 (3H, m), 5.91 (2H, s), 5.84-5.76 (1H, m), 5.71-5.64 (1H, m), 4.10 (2H, brd, *J* 5.4 Hz), 3.29 (2H, d, *J* 6.5 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 147.5, 145.7, 133.7, 131.4, 130.1, 121.1, 108.9, 108.1, 100.7, 63.2, 38.2. HRMS: Calculated for C₁₁H₁₂NaO₃ [M+Na]⁺ 215.0679 found 215.0678.

(*E*)-4-(Benzo[*d*][1,3]dioxol-5-yl)but-2-enal (10)

To a solution of alcohol **9** (500 mg, 2.60 mmol) in dry DCM (5 mL) under nitrogen was added DMP (1.32 g, 3.12 mmol) at 0 °C. The mixture was warmed to room temperature and stirred further for 30 mins. After the completion of reaction (TLC) the mixture was cooled to 0 °C and a saturated aqueous solution of NaHCO₃ (100 mL) was added. The organic layer was separated and the aqueous layer was extracted with DCM (3 x 100 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash column chromatography to furnish the aldehyde product **10** as pale yellow oil (475 mg, 96%). R_f 0.33 (80:20::PE:EA)v_{max}/cm⁻¹(CHCl₃): 3367, 3011, 2824, 1686, 1635, 1489, 1444, 1243; $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.53 (1H, d, *J* 7.7 Hz), 6.92 (1H, dt, *J* 15.5, 6.5 Hz), 6.78 – 6.62 (3H, m), 6.12 (1H, ddt, *J* 15.5, 7.7, 1.5 Hz), 5.94 (2H, s), 3.56 (2H, dd, *J* 6.5, 1.5 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 193.6, 156.3, 147.9, 146.4, 133.2, 130.5, 121.7, 109.1, 108.4, 100.9, 38.5. HRESIMS: Calculated for C₁₁H₁₀NaO₃ [M+Na]⁺ 213.0522 found 213.0524.

5-((2*E*,4*Z*)-5-Bromopenta-2,4-dien-1-yl)benzo[*d*][1,3]dioxole (6)

To a solution of carbon tetrabromide (1.90 g, 5.70 mmol) in anhydrous DCM (20 mL) at 0 °C was added a solution of triphenyl phosphine (3.00 g, 11.4 mmol) in anhydrous DCM (15 mL)

under nitrogen. The mixture was stirred for 10 mins followed by addition of triethylamine (2.00 g, 20 mmol). To this mixture was added the aldehyde **11** (0.390 g, 2.0 mmol) in dry DCM (5 mL) dropwise. The mixture was stirred at room temperature for 15 min. A saturated solution of ammonium chloride (20 mL) was added and the organic layer separated. The aqueous layer was further extracted with DCM (3 x 100 mL) and the combined organic extracts dried over anhydrous Na₂SO₄, filtered and the solvent removed under reduced pressure. The residue was purified using flash column chromatography to give the dibromo product as viscous yellow oil. The compound was put forward to the next step without further delay.

To a solution of dibromo (0.576, 1.6 mmol) in degassed and anhydrous toluene (5.0 mL) was added Pd(PPh₃)₄ (0.192 g, 10 mol%) under argon. To this was added tributyltin hydride (0.533 g, 1.83 mmol) dropwise. The mixture was stirred at room temperature until the completion of reaction (~ 1h, TLC). The reaction mixture was filtered through a pad of silica gel and the solvent removed under reduced pressure. The residue was purified by flash silica gel column chromatography to give the bromo **6** product as an opaque viscous oil which solidified on standing at lower temperature (0.360 g, 67 % yield over 2 steps). R_f 0.6 (75:25::PE:EA); mp: 38-40 °C; v_{max}/cm^{-1} (CHCl₃): 3690, 3606, 1602, 1504, 1488, 1442 ; δ_H (400 MHz, CDCl₃): 6.77-6.75 (3H, m), 6.62 (1H, dd, *J* 10.1, 7.1 Hz), 6.46 (1H, dd, *J* 15.0, 10.1 Hz), 6.10 (1H, brd, *J* 7.1 Hz), 6.02 (1H, dt, *J* 15.0, 7.1 Hz), 5.94 (2H, s), 3.40 (2H, brd, *J* 7.1 Hz) ppm; δ_C (100 MHz, CDCl₃): 147.7, 146.0, 137.4, 133.1, 132.2, 126.9, 121.3, 109.0, 108.2, 106.6, 100.8, 39.0 ppm; HRMS: Calculated for C₁₂H₁₁BrO₂ [M+H]⁺ 265.9943 and 267.9922 obtained 265.9937 and 267.9925.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Bicyclo[4.2.0]octadiene 16 and 17

To a solution of the vinyl bromide 6 (0.144 g, 0.540 mmol) in degassed anhydrous toluene (1.5 mL) under argon was added the vinyl stannane 7 (0.228 g, 0.590 mmol), and the mixture heated at 35 °C. In a separate flask, Pd₂(dba)₃ (0.250 g, 0.027 mmol) and tri-(2furyl)phosphine (0.370 g, 0.160 mmol) were stirred in degassed toluene for 30 minutes. The catalyst mixture was added to the above reaction dropwise over 10 mins and the mixture heated at 100 °C for 10 h. After completion of the reaction (TLC) the mixture was filtered through a pad of silica gel and the solvent removed under reduced pressure. The residue was purified by flash silica gel column chromatography to give a mixture of diastereoisomers 16 and 17 (1:1) as pale yellow viscous oil (0.090 g, 60%). Rf 0.24 (90:10::PE:EA); v_{max}/cm⁻ ¹(CHCl₃): 3154, 2901, 2256, 1816, 1793, 1643, 1461, 1380; $\delta_{\rm H}$ (400 MHz, CDCl₃): 6.75-6.60 (6H, m), 5.97-5.92 (2H, m), 5.94 (4H, s), 5.78 (1H, dd, J 9.6, 5.2 Hz), 5.69-5.61 (3H, m), 5.57 (1H, dd, J 10.0, 4.1 Hz), 5.44 (1H, dd, J 9.7, 5.5 Hz), 3.33-3.24 (2H, m), 2.92-2.52 (10H, m), 2.47 (1H, dd, J 16.6, 9.4 Hz), 2.25 (1H, dd, J 16.7, 6.2 Hz), 2.17 (1H, dd, J 17.0, 4.7 Hz), 2.01 (1H, dd, J 17.0, 7.0 Hz); δ_C (100 MHz, CDCl₃): 147.75, 147.69, 145.99, 145.92, 133.6, 133.3, 126.8, 125.9, 125.7, 125.1, 124.5, 123.6, 122.8, 121.5, 121.4, 121.1, 119.1, 118.4, 108.9, 108.3, 108.26, 100.9, 53.0, 50.8, 46.1, 45.4, 40.8, 36.1, 35.6, 35.5, 35.2, 33.7, 21.5, 17.9 ppm; HRESIMS calculated for $C_{18}H_{17}NNaO_2 [M+Na]^+ 302.1151$ obtained 302.1156.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2011

Pre-kingianin A (2) and bicylo[4.2.0]octadiene 18

To a solution of a diastereomeric mixture of **16** and **17** (0.042 g, 0.15 mmol) in EtOH (1mL) was added 7 (M) aqueous KOH (0.05 mL) at 0 °C. To the above well stirred solution was added 30 % H_2O_2 (0.7 mL) dropwise and the mixture was stirred at room temperature for 1 h followed by heating at 70 °C for 4 h. A change in colour of the mixture was observed from pale yellow to brown. After completion of the reaction, the mixture was extracted with diethyl ether (3 x 5 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent was then removed under reduced pressure. The crude product was carried forward to the next step without further purification.

The crude mixture was then taken in dry toluene (1.0 mL) and CH₃CHO (0.015 g, 0.35 mmol) was added. This was followed by the addition of Et₃SiH (0.041 g, 0.35 mmol) and TFA (0.040 g, 0.35 mmol) and the mixture was then heated at 120 °C for 1 h. The mixture was cooled to room temperature, diluted with ethyl acetate (4.0 mL) and washed with saturated aqueous solution of NaHCO₃ (4.0 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was then evaporated to dryness under reduced pressure. The residue was purified *via* preparative TLC to furnish the compound **2** (0.015 g) and **18** (0.015 g) in 62% combined yield.

Observed nOe and NOESY correlation diagram for 2 and 18

T1: Reaction conditions screened for dimerization studies of 2 and 18

Entry	Substrate	Reaction condition	Results ^a	
1	10	Next Room temperature 14 days	Isomerisation	
1.	10	Neat, Room temperature, 14 days	18:2 ::1:0.30	
2	2	Ethyl acetate:Pet ether, Room	Isomerisation	
Ζ.	2	temperature, 21 days	2 : 18 ::1:0.45	
2	10/2	Toluene, microwave, 120 °C, 30		
3.	18/2	min	No change	
-	10/2	Ethyl acetate, 40 °C, 48 h, sealed	Isomerisation	
5.	18/2	tube	18:2 ::1:1	
-	10	Sublimation at 195 °C, 1-5mbar	Sublimed product	
5.	18	vacuum for 5 h. ⁵	18:2 ::1:1	
ſ	2	Sublimation at 195 °C, 1-5 mbar	No sublimation,	
6.	2	vacuum for 5h	substrate charred	
		Sublimation after melting the	NT 11	
-	•	substrate at 120 °C. Heated at 130	No sublimation	
7.	2	°C under 1-5 mbar vacuum sealed	occurred, residue	
		for 16 h	not conclusive	
0	10/2		Isomerisation	
8.	18/2	5.0 (M) L1C1O ₄ ,° 60 °C, 16 h	18:2 ::1:1	

^{*a*} Ratio based on ¹H NMR integration

References:

- M. R. Webb, M. S. Addie, C. M. Crawforth, J. W. Dale, X. Franci, M. Pizzonero, C. Donald, and R. J. K. Taylor, *Tetrahedron*, 2008, 64, 4778.
- 2. M. B. Andrus, S. D. Lepore and T. M. Turner, J. Am. Chem. Soc., 1997, 119, 12159.
- B. Capuano, I. T. Crosby, E. J. Lloyd, A. Podloucka and D. Taylor A. Aust. J. Chem., 2003, 56, 875.
- 4. C. Jubert and P. Knochel J Org. Chem., 1992, 57, 5425.
- 5. G. R. De Mare, G. Huybrechts, M. Toth and P. Goldfinger, *Trans. Faraday Soc.*, 1961, 67, 1397.
- 6. P. A. Grieco, J. J. Nunes and M. D. Gaul, J. Am. Chem. Soc., 1990, 112, 4595

¹ H NMR:	(Z)-3-(Tributylstannyl) acrylaldehyde (19)
---------------------	---	-----

06/04/2011 11:11:25

Formula C₁₅H₃₀OSn FW

¹³C NMR: (*Z*)-3-(Tributylstannyl) acrylaldehyde (19)

345.1081

06/04/2011 11:14:59

Acquisition Time (sec) 0.6521 Comment UserID p sha SampleID Pal744 SupervisorID moses Lab Phone No. 13540 Slot Number 58 06 Nov 2010 17:04:00 Date Stamp 06 Nov 2010 17:04:00 Date File Name C:\Users\psharma\Desktop\Kingainin\NMR-kingianin-400\aldehyde 1\p sha.Pal744\1\pdata\1\r Frequency (MHz) 100.61 Nucleus 13C Number of Transients 512 Origin av400 Original Points Count 16384 Owner nmruser Points Count 32768 Pulse Sequence zgpg30 **Receiver Gain** 16384.00 25125.63 CHLOROFORM-d Spectrum Offset (Hz) 11061.5605 STANDARD SW(cyclical) (Hz) Solvent Spectrum Type Sweep Width (Hz) 25124.86 Temperature (degree C) 25.160 -194.53 -162.72 -145.48 13C_aldehyde1.esp 2 4 -13.55 ~11.28 28.6 SnBu₃ 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Chemical Shift (ppm)

¹H NMR: (2*E*,4*Z*)-Ethyl 5-(tributylstannyl)penta-2,4-dienoate (11)

Formula C₁₉H₃₆O₂Sn FW 415.1980 Acquisition Time (sec) 3.9846 UserID p sha SampleID PAI802 SupervisorID moses Lab Phone No. 13540 Slot Number 42 Comment Date 22 Jan 2011 15:36:32 Date Stamp 22 Jan 2011 15:36:32 C:\Users\psharma\Desktop\Kingainin\nmr-kingianin-3400\wittig 1\p_sha.Pal802\1\pdata\1\1r 400.07 File Name Frequency (MHz) Nucleus 1H Number of Transients 16 Origin av3400 **Original Points Count** 32768 Owner nmruser Points Count 65536 **Pulse Sequence** zg30 Receiver Gain 362.00 SW(cyclical) (Hz) 8223.68 CHLOROFORM-d Spectrum Offset (Hz) 2462.4780 Spectrum Type STANDARD Solvent Sweep Width (Hz) 8223.56 Temperature (degree C) 24.925 4.19 1H ester1.esp -7.24 -7.12 6.73 5.91 H₃C SnBu₃ 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chemical Shift (ppm)

06/04/2011 11:20:34

¹³C NMR: (2*E*,4*Z*)-Ethyl 5-(tributylstannyl)penta-2,4-dienoate (11)

Formula C10H26O2Sn FW 415.1980 Acquisition Time (sec) 0.6521 Comment UserID p sha SampleID Pa668re SupervisorID moses Lab Phone No. 13540 Slot Number 10 Date 06 Nov 2010 11:03:28 Date Stamp 06 Nov 2010 11:03:28 C:\Users\psharma\Desktop\Kingainin\NMR-kingianin-400\wittig 1\p_sha.Pal668re\2\pdata\1\1r File Name Frequency (MHz) 100.61 av400 16384 Nucleus 13C Number of Transients 512 Origin Original Points Count Owner nmruser Points Count 32768 Pulse Sequence zgpg30 Receiver Gain 18390.40 25125.63 CHLOROFORM-d STANDARD SW(cyclical) (Hz) Solvent Spectrum Offset (Hz) 11063.0947 Spectrum Type Temperature (degree C) 25.160 Sweep Width (Hz) 25124.86 ____147.76 ____146.56 ____143.92 13C wittig1.esp -166.92 -122.57 14.25 13.62 10.64 -60.21 29.01 H₃C SnBu₃ 192 184 176 168 16 -----..... 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 32 24 16 40 8 Ó Chemical Shift (ppm)

06/04/2011 11:31:44

¹H NMR: (2*E*, 4*Z*)-5-(Tributylstannyl)penta-2,4-dien-1-ol (12)

06/04/2011 11:27:11

Formula C₁₇H₃₄OSn **FW** 373.1613

Acquisition Time (sec)	3.9846	Comment	Slot No. 42 Sample ID	Pal717 SupervisorID mo	ses Lab Phone No. 135	40 UserID p_sha	
Date	30 Mar 2011 16:13:04			Date Stamp	30 Mar 2011 16:13:04		
File Name	C:\Users\psharma\Des	sktop\Kingainin\NMR-kingia	nin-dpx400\alcohol 1\p_	sha.Pal717\1\pdata\1\1r		Frequency (MHz)	400.20
Nucleus	1H	Number of Transients	16	Origin	dpx400	Original Points Count	32768
Owner	nmruser	Points Count	65536	Pulse Sequence	zg30	Receiver Gain	80.60
SW(cyclical) (Hz)	8223.68	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	2462.2937	Spectrum Type	STANDARD
Sweep Width (Hz)	8223.56	Temperature (degree C)	25.000				
1H alcohol 1.2.esp		7.10 7.07 7.07 7.07 7.04	6.21 6.12 5.89 5.87 5.87	L5.83	-4.22		
HO	SnBu ₃	<u></u>					
10.0 9.5 9.0) 8.5 8.0	7.5 7.0	6.5 6.0 5	5.5 5.0 4.5 Chemical Shift (ppm)	4.0 3.5	3.0 2.5 2.1	0 1.5 1.0 0.5 0

¹³C NMR: (2*E*, 4*Z*)-5-(Tributylstannyl)penta-2,4-dien-1-ol (12)

06/04/2011 11:36:24

Formula C₁₇H₃₄OSn FW 373.1613

Acquisition Time (sec)	0.6521	Comment	Slot No. 42 Sample ID	PAI717 SupervisorID mos	ses Lab Phone No. 1354	0 UserID p_sha			
Date	30 Mar 2011 16:28:00			Date Stamp	30 Mar 2011 16:28:00				
File Name	C:\Users\psharma\Des	ktop\Kingainin\NMR-kingiar	hin-dpx400\alcohol 1\p_s	sha.Pal717\3\pdata\1\1r		Frequency (MHz)	100.63		
Nucleus	13C	Number of Transients	128	Origin	dpx400	Original Points Count	16384		
Owner	nmruser	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	9195.20		
SW(cyclical) (Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz)	11065.2168	Spectrum Type	STANDARD		
Sweep Width (Hz)	25124.86	Temperature (degree C)	25.000						
13C alcohol 1.2.esp			24.00 		- 63.41				66.0—
	SnBu	3							
192 184	176 168 160	152 144 136	128 120 112	104 96 88 Chemical Shift (ppm)	80 72 64	56 48 40	32 24	16 8	0

¹H NMR: (*3E*, 5*Z*)-6-(Tributylstannyl)hexa-3,5-dienenitrile (7)

Formula C₁₈H₃₃NSn FW 382.1713

¹³C NMR: (3*E*, 5*Z*)-6-(Tributylstannyl)hexa-3,5-dienenitrile (7)

¹H NMR: (*E*)-Ethyl 4-(benzo[*d*][1,3]dioxol-5-yl)but-2-enoate (8)

¹³C NMR: (*E*)-Ethyl 4-(benzo[*d*][1,3]dioxol-5-yl)but-2-enoate (8)

06/04/2011 11:52:05

Formula C₁₃H₁₄O₄ *FW* 234.2479

¹H NMR: (*E*)-4-(Benzo[d][1,3]dioxo-5-yl)but-2-en-1-ol (9)

06/04/2011 11:56:26

S24

¹³C NMR: (*E*)-4-(Benzo[d][1,3]dioxo-5-yl)but-2-en-1-ol (9)

06/04/2011 11:59:10

Acquisition Time (sec)	1.3042	Comment	Slot No. 40 Sample ID jb249 column SupervisorID moses Lab Phone No. 13540 UserID j_bur							
Date	18 Aug 2010 17:55:58	File Name		C:\Users\psharma\Desktop\Kingianin A NMR for Pallavi\allyl alcohol\carbon\1\1r		Frequency (MHz)	100.63			
Nucleus	13C	Original Points C	ount	32768		Points Count	32768	SW(cyclical) (Hz)	25125.63	
Solvent	CHLOROFORM-d	Spectrum Offset	(Hz)	11056.0156		Sweep Width (Hz)	25124.86	Temperature (degree C)	0.000	
13C alcohol 2.esp		—147.53 ~145.74 	∠-131.45 130.16	-121.19	108.96 108.10		-63.25			
	ОН									
192 184	176 168 160 15	52 144 136	12	8 120 11	2 104	96 88 80		48 40 32	24 16 8 0	
Chemical Shift (ppm)										

Formula C₁₁H₁₂O₃ *FW* 192.2112

¹H NMR: (*E*)-4-(Benzo[*d*][1,3]dioxol-5-yl)but-2-enal (10)

06/04/2011 14:07:55

¹³C NMR: (*E*)-4-(Benzo[*d*][1,3]dioxol-5-yl)but-2-enal (10)

06/04/2011 14:12:04

Acquisition Time (sec)	0.6521	Comment	Slot No. 42 Sample ID	Pal749 SupervisorID r	noses Lab Phone No. 1354	0 UserID p sha	
Date	09 Nov 2010 18:14:24			Date Stamp	09 Nov 2010 18:14:24	· · · · · · · · · · · · · · · · · · ·	
File Name	C:\Users\psharma\Des	ktop\Kingainin\NMR-kingia	nin-dpx400\aldehyde 2\p	sha.Pal749\1\pdata\1\1	lr	Frequency (MHz)	100.63
Nucleus	13C	Number of Transients	128	Origin	dpx400	Original Points Count	16384
Owner	nmruser	Points Count	32768	Pulse Sequence	zgpg30	Receiver Gain	14596.50
SW(cyclical) (Hz)	25125.63	Solvent	CHLOROFORM-d	Spectrum Offset (Hz	z) 11069.0000	Spectrum Type	STANDARD
Sweep Width (Hz)	25124.86	Temperature (degree C) 25.000				
			:О				
216 208 200	192 184 176	168 160 152 14	4 136 128 120 () 112 104 96 Chemical Shift (ppm)	88 80 72	64 56 48 40	0 32 24 16 8 0

Formula C₁₁H₁₀O₃ *FW* 190.1953

S27

¹H NMR: 5-((2*E*,4*Z*)-5-Bromopenta-2,4-dien-1-yl)benzo[*d*][1,3]dioxole (6)

Formula C₁₂H₁₁BrO₂ FW 267.1185 Acquisition Time (sec) 3.9846 Slot No. 48 Sample ID Palsaf-Br SupervisorID moses Lab Phone No. 13540 UserID p sha Comment Date 29 Mar 2011 16:45:04 Date Stamp 29 Mar 2011 16:45:04 File Name C:\Users\psharma\Desktop\Kingainin\NMR-kingianin-dpx400\vinyl bromide\p_sha.Palsaf-br\1\pdata\1\1r Frequency (MHz) 400.20 Nucleus 1H Number of Transients 16 Origin dpx400 **Original Points Count** 32768 Points Count Owner nmruser 65536 **Pulse Sequence** zg30 **Receiver Gain** 287.40 SW(cyclical) (Hz) 8223.68 Solvent CHLOROFORM-d Spectrum Offset (Hz) 2462.4192 Spectrum Type STANDARD Sweep Width (Hz) 8223.56 Temperature (degree C) 25.000 3.39 1H vinyl br.esp ڹٛڹ؈ۛ؈ؘۏ؈ ဖု ဖု ဖု 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 6.5 Chemical Shift (ppm)

06/04/2011 14:16:10

¹³C NMR: 5-((2*E*,4*Z*)-5-Bromopenta-2,4-dien-1-yl)benzo[*d*][1,3]dioxole (6)

06/04/2011 14:20:36

¹H NMR: Bicyclo[4.2.0]octadiene 16 and 17

¹³C NMR: Bicyclo[4.2.0]octadiene 16 and 17

¹H NMR: Bicyclo[4.2.0]octadiene 18

¹³C NMR: Bicyclo[4.2.0]octadiene 18

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

NOESY Bicyclo[4.2.0]octadiene 18

S34

¹H NMR:Bicyclo[4.2.0]octadiene 2 (pre-kingianin A)

¹³C NMR: Bicyclo[4.2.0]octadiene 2 (pre-kingianin A)

NOESY Bicyclo[4.2.0]octadiene 2 (pre-kingianin A)

