Synthesis of the ABH rings of ecteinascidin 597 using a connective Pummerer-type cyclisation

Laura H. S. Smith,^a Trung Thanh Nguyen,^a Helen F. Sneddon,^b David J. Procter^{*a}

^a School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK;
^b Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK

Contents

General experimental	S1
Synthesis of simple 4-sulfanyl tetrahydroisoquinolinones	S2
Synthesis of model ABH ring systems	S12
Synthesis of the protected ABH ring system	S27
NMR Spectra of New Compounds	S44
Chiral HPLC Chromatograms	S86
X-Ray Crystal Structure of 11	S89

General experimental

All experiments were performed under an atmosphere of nitrogen, using anhydrous solvents, unless stated otherwise. THF was distilled from sodium and benzophenone, CH_2Cl_2 , NEt_3 and toluene were distilled from $CaH_2.ZnCl_2$ was dried in the oven at 120 °C. Microwave reactions were carried out using a Biotage Initiator.

¹H NMR and ¹³C NMR were recorded using 300, 400 and 500 MHz spectrometers, with chemical shift values reported in ppm relative to residual chloroform ($\delta_{\rm H} = 7.27$ or $\delta_{\rm C} = 77.2$) or DMSO ($\delta_{\rm H} = 2.50$ or $\delta_{\rm C} = 39.5$) as internal standards. All coupling constants (*J*) are reported in Hertz (Hz). Mass spectra were obtained using positive and negative electrospray (ES±) or gas chromatography (GC) methodology. Infra-red spectra were recorded as evaporated films or neat using a FT-IR spectrometer. Column chromatography was carried out using 35 - 70 m, 60A silica gel. Routine TLC analysis was carried out on aluminium

sheets coated with silica gel 60 F254, 0.2 mm thickness. Plates were viewed using a 254 mm ultraviolet lamp and stained using *p*-anisaldehyde or phosphomolybdic acid.

General procedure 1: Swern Oxidation

A solution of oxalyl chloride (0.096 ml/mmol, 1.1 equiv) in CH_2Cl_2 (4 ml/mmol) was cooled to -78 °C. DMSO (0.142 ml/mmol, 2.0 equiv) was added and the solution stirred for 5 minutes. A solution of 2-hydroxyacetamide in CH_2Cl_2 (4 ml/mmol) was added and the reaction stirred for 30 minutes. NEt₃ (0.695 ml/mmol, 5.0 equiv) was added and the solution allowed to warm to room temperature. After 3h the reaction mixture was washed with saturated NaHCO₃ solution (3 × 10 ml/mmol) then dried (MgSO₄). The crude glyoxamide was used without further purification.

Synthesis of simple 4-sulfanyl tetrahydroisoquinolinones

n-Butyl-(3,5-dimethoxy-benzyl)-amine S1

MeO H MeO Bu-*n*

3,5-Dimethoxybenzaldehyde (1.66 g, 10.0 mmol) was dissolved in dry MeOH (50 ml) under N₂and *n*-butylamine (1.30 ml, 11.0 mmol) added. The solution was heated at reflux for 2h then cooled to room temperature and NaBH₄ (417 mg, 11.0 mmol) added portionwise. The solution was stirred for 1 h then the solvent evaporated and the residue dissolved in 1 M HCl (100 ml) and extracted with EtOAc (20 ml). The aqueous layer was basified with saturated Na₂CO₃ solution then extracted with EtOAc (3×50 ml). The extracts were washed with brine (50 ml) then dried (MgSO₄) and evaporated to give **S1** (2.05 g, 94%) as a pale oil which was used without further purification.

¹H NMR (300 MHz, CDCl₃) δ ppm 6.51 (2 H, d, *J* = 2.3 Hz, Ar CH), 6.36 (1 H, t, *J* = 2.3 Hz, Ar CH), 3.80 (6 H, s, OCH₃), 3.75 (2 H, s, ArCH₂N), 2.63 (3 H, t, *J* = 7.1 Hz, CH₂N), 1.44 - 1.57 (2 H, m, CH₂), 1.28 - 1.43 (2 H, m, CH₂), 0.91 (3 H, t, *J* = 7.2 Hz, CH₃).

¹³C NMR (75 MHz, CDCl₃) δ ppm 160.9 (Ar C-O), 142.9 (Ar <u>C</u>-C), 106.0 (Ar CH), 99.0 (Ar CH), 55.3 (OCH₃), 54.1 (ArCH₂N), 49.1 (CH₂N), 32.2 (CH₂), 20.5 (CH₂), 14.0 (CH₃).

MS (ES+) m/z 224.1 [M+H]⁺.

HRMS 224.1646; C₁₃H₂₂NO₂⁺ requires 224.1645.

IR (thin film) v_{max} (cm⁻¹) 3322 (NH stretch), 2654 (CH stretch).

n-Butyl-*N*-(3,5-dimethoxy-benzyl)-2-hydroxy-acetamide S2

Amine **S1** (223 mg, 1.0 mmol) was placed in an oven-dried microwave vial and 2,2dimethyl-1,3-dioxolan-4-one¹ (0.235 ml, 2.0 mmol) added. The vial was flushed with N₂ then sealed and heated to 150 °C in the microwave reactor for 1 h. The acetone generated in the reaction was removed *in vacuo* and the residue purified by flash chromatography (50% EtOAc-pet. ether) to give **S2** (191 mg, 68%) as a pale oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.38 (2 H, s, Ar CH), 6.27 (1 H, s, Ar CH), 4.59 (2 H, s, ArCH₂N of one rotamer), 4.29 (2 H, s, ArCH₂N of one rotamer), 4.24 (2 H, d, *J* = 4.3 Hz CH₂OH of one rotamer), 4.17 (2 H, d, *J* = 4.3 Hz CH₂OH of one rotamer), 3.78 (6 H, s, OCH₃), 3.70 (1 H, t, *J* = 4.3 Hz, OH of one rotamer), 3.65 (1 H, t, *J* = 4.3 Hz, OH of one rotamer), 3.43 (1 H, t, *J* = 7.7 Hz, CH₂N of one rotamer), 3.04 (2 H, t, *J* = 7.7 Hz, CH₂N of one rotamer), 1.48 - 1.58 (2 H, m, CH₂), 1.24 - 1.34 (2 H, m, CH₂), 0.92 (3 H, t, *J* = 7.3 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 171.7 (C=O). 161.4 (Ar C-O of one rotamer), 161.1 (Ar C-O of one rotamer), 139.1 (Ar <u>C</u>-C of one rotamer), 138.2 (Ar <u>C</u>-C of one rotamer), 106.0 (Ar CH of one rotamer), 104.3 (Ar CH), 99.2 (Ar CH of one rotamer), 55.4 (OCH₃), 59.9 (CH₂OH), 49.1 (ArCH₂N of one rotamer), 48.6 (ArCH₂N of one rotamer), 46.5 (CH₂N of one rotamer), 44.8 (CH₂N of one rotamer), 29.4 (CH₂), 20.1 (CH₂), 13.7 (CH₃).

MS (ES+) m/z 304 [M+Na]⁺.

HRMS 304.1522; $C_{15}H_{23}O_4NNa^+$ requires 304.1519.

IR (thin film) v_{max} (cm⁻¹) 3417 (OH stretch), 2956 (CH stretch), 1645 (C=O stretch).

¹2,2-Dimethyl-1,3-dioxolan-4-one was purchased from Sigma-Aldrich or prepared according to a literature procedure: Daryaee, F.; Kobarfard, F.; Khalaj, A.; Farnia, P., *Eur. J. Med. Chem.* 2009, **44**, 289.

2-Butyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decylsulfanyl)-5,7dimethoxy-1,4-dihydro-2*H*-isoquinolin-3-one 5

Hydroxyacetamide **S2** (140 mg, 0.5 mmol) was oxidized according to general procedure 1. The crude glyoxamide was dissolved in CH_2Cl_2 (6 ml) and $HSCH_2CH_2C_8F_{17}$ (0.21 ml, 0.75 mmol) and $Sc(OTf)_3$ (49 mg, 0.1 mmol)were added. The solution was stirred at room temperature for 40 h then the reaction mixture was washed with water (10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (20% EtOAc–pet. ether) gave **5** (248 mg, 67%) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.40 (1 H, d, *J* = 2.3 Hz, Ar C-H), 6.33 (1 H, d, *J* = 2.3 Hz, Ar C-H), 4.81 (1 H, s, ArCHS), 4.77 (1 H, d, *J* = 15.6 Hz, ArCHHN), 4.09 (1 H, d, *J* = 15.6 Hz, ArCHHN), 3.81 (3 H, s, OCH₃), 3.85 (3 H, s, OCH₃), 3.68 (1 H, dt, *J* = 13.6, 7.6 Hz, NCHH), 3.36 (1 H, dt, *J* = 13.6, 7.6 Hz, NCHH), 3.04 - 3.13 (1 H, m, SCHH), 2.82 - 2.91 (1 H, m, SCHH), 2.46 - 2.64 (2 H, m, CH₂C₈F₁₇), 1.56 - 1.64 (2 H, m, CH₂), 1.28 - 1.43 (2 H, m, CH₂), 0.95 (3 H, t, *J* = 7.3 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 167.7 (C=O), 160.6 (Ar C-O), 157.3 (Ar C-O), 135.4 (Ar <u>C</u>-C), 113.4 (Ar <u>C</u>-C), 101.8 (Ar C-H), 97.5 (Ar C-H), 55.7 (OCH₃), 55.5 (OCH₃), 50.3 (ArCH₂N), 47.0 (CH₂N), 41.0 (ArCHS), 31.8 (t, J = 21.2 Hz, <u>C</u>H₂C₈F₁₇), 29.4 (CH₂), 23.0 (t, J = 3.7 Hz, SCH₂), 19.9 (CH₂), 13.8 (CH₃).

MS (ES+) *m*/*z* 764 [M+Na]⁺.

HRMS 764.1068; C₂₅H₂₄F₁₇NO₃SNa⁺ requires 746.1098.

IR (thin film) v_{max} (cm⁻¹) 2962 (CH stretch), 1653 (C=O).

rac-N-butyl-*N*-(3,5-dimethoxybenzyl)-2-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)thio)-2-hydroxyacetamide S3

DMSO (147 µl, 2.06 mmol) was added to a solution of $(COCl)_2$ (99 µl, 1.13 mmol) in CH₂Cl₂ (4 ml) at -78 °C. After 15 minutes, a solution of hydroxyacetamide **S2** (290 mg, 1.03 mmol) in CH₂Cl₂ (4 ml) was added and the solution stirred for a further 35 minutes. NEt₃

(695 μ l, 5.0 mmol) was added then the reaction mixture allowed to warm to room temperature. HSCH₂CH₂C₈F₁₇(354 μ l, 1.24 mmol) was added after 3 h and the reaction was allowed to stir for a further 20 minutes then washed with water (10 ml), saturated NaHCO₃ solution (2 × 10 ml) and dried (MgSO₄) to give crude **S3** which was used without further purification.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.27 - 6.42 (6 H, m, Ar CH), 5.49 (1 H, d, *J* = 9.1 Hz, SC<u>H</u>OH of one rotamer), 5.34 (1 H, d, *J* = 8.8 Hz, SC<u>H</u>OH of one rotamer), 4.99 (1 H, d, *J* = 15.1 Hz, ArC<u>H</u>HN of one rotamer), 4.82 (1 H, d, *J* = 17.0 Hz, ArC<u>H</u>HN of one rotamer), 4.65 (1 H, d, *J* = 8.8 Hz, OH of one rotamer), 4.63 (1 H, d, *J* = 9.1 Hz, OH of one rotamer), 4.31 (1 H, d, *J* = 17.0 Hz ArCH<u>H</u>N of one rotamer), 4.21 (1 H, d, *J* = 15.1 Hz ArCH<u>H</u>N of one rotamer), 3.79 (6 H, s, OCH₃ of one rotamer), 3.77 (6 H, s, OCH₃ of one rotamer), 3.44 - 3.55 (1 H, m, NC<u>H</u>H of one rotamer), 2.98 - 3.16 (3 H, m, NCH<u>H</u> of one rotamer and NCH₂), 2.83 - 2.99 (4 H, m, SCH₂), 2.35 - 2.56 (4 H, m, C<u>H</u>₂C₈F₁₇), 1.58 (4 H, m, CH₂), 1.26 - 1.38 (4 H, m, CH₂), 0.90 - 0.97 (6 H, m, CH₃).

2-Butyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decylsulfanyl)-5,7dimethoxy-1,4-dihydro-2*H*-isoquinolin-3-one 5(from S3)

Hemithioacetal **S3** (0.51 mmol) was dissolved in CH_2Cl_2 (6 ml) and $ZnCl_2$ (70 mg, 0.51 mmol) was added. The solution was stirred for 26 h then washed with saturated NaHCO₃ solution (10 ml) and dried (MgSO₄). Flash chromatography (20% EtOAc–pet. ether) gave **5** (290 mg, 77%) as a yellow oil.

2-(Butyl(3,5-dimethoxybenzyl)amino)-1-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)thio)-2-oxoethyl 2,2,2-trifluoroacetate S4

Hemithioacetal **S3** (0.275 mmol) was dissolved in CDCl₃ (3.3 ml) and TFAA (57 μ l, 0.413 mmol) was added. After 3 h the reaction was complete (NMR) and the solution was diluted

with CH_2Cl_2 (5 ml), washed with water (10 ml) then dried (MgSO₄) and concentrated *in vacuo* to give crude **S4**.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.44 (1 H, s), 6.44 (1 H, s, Ar CH), 6.41 (1 H, d, J = 2.3 Hz, Ar CH), 6.37 (3 H, s, Ar CH), 6.29 (1 H, s, SC<u>H</u>OCOCF₃ of one rotamer), 6.14 (1 H, s, SC<u>H</u>OCOCF₃ of one rotamer), 4.89 (1 H, d, J = 17.3 Hz, ArC<u>H</u>HN of one rotamer), 4.71 (1 H, d, J = 15.1 Hz, ArC<u>H</u>HN of one rotamer), 4.44 (1 H, d, J = 15.1 Hz, ArCH<u>H</u>N of one rotamer), 4.33 (1 H, d, J = 17.3 Hz, ArCH<u>H</u>N of one rotamer), 3.81 (6 H, s, OCH₃ of one rotamer), 3.77 (6 H, s, OCH₃ of one rotamer), 3.42 (1 H, m, ArC<u>H</u>HN of one rotamer), 3.28 - 3.33 (2 H, m), 3.16 - 3.25 (1 H, m ArC<u>H</u>HN of one rotamer), 2.95 - 3.13 (4 H, m), 2.81 - 2.93 (3 H, m), 2.40 - 2.57 (4 H, m C<u>H</u>₂C₈F₁₇), 1.68 (3 H, dt, J = 15.6, 7.8 Hz, CH₂ of one rotamer), 1.57 (3 H, dt, J = 15.1, 7.7 Hz, CH₂ of one rotamer), 1.33 (4 H, m, CH₂), 0.87 - 0.99 (6 H, m, CH₃).

2-Butyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decylsulfanyl)-5,7dimethoxy-1,4-dihydro-2*H*-isoquinolin-3-one 5(from S4)

S4 (0.275 mmol) was dissolved in CH_2Cl_2 (3.0 ml) and $ZnCl_2$ (7.5 mg, 0.055 mmol) was added. The solution was stirred for 21 h then washed with water (10 ml) and dried (MgSO₄). Flash chromatography (20% EtOAc–pet. ether) gave **5** (85 mg, 42%) as a yellow oil.

(3,5-Dimethoxy-benzyl)-(4-methoxy-benzyl)-amine S5

3,5-Dimethoxybenzaldehyde (3.32g, 20 mmol) was dissolved in dry toluene (100 ml) and 4methoxybenzylamine (3.02 g, 22 mmol) was added. The mixture was heated at reflux under Dean-Stark conditions for 5 h then cooled and the solvent removed *in vacuo*. The residue was dissolved in dry MeOH (100 ml) and NaBH₄ (0.834 g, 22 mmol) was added portionwise. The solution was stirred at room temperature overnight then concentrated. The residue was taken up in EtOAc (100 ml) and washed with water (2 ×50 ml) then with brine (50 ml) and dried (MgSO₄). Flash chromatography (40% EtOAc–pet. ether) gave **S5** (5.42 g, 94%) as a pale oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.88 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.52 (2 H, d, *J* = 2.3 Hz, Ar CH), 6.37 (1 H, t, *J* = 2.3 Hz, Ar CH), 3.82 (3 H, s, OCH₃), 3.80 (6 H, s, OCH₃), 3.75 (4 H, s, 2 × CH₂).

¹³C NMR (100 MHz, CDCl₃) δppm 160.8 (Ar C-O), 158.6 (Ar C-O), 142.9 (Ar C-C), 132.4 (Ar C-C), 129.4 (Ar CH of PMB), 113.8 (Ar CH of PMB), 105.9 (Ar CH), 98.9 (Ar CH), 55.3 (3 × OCH₃), 53.2 (CH₂), 52.5 (CH₂).

MS (ES+) m/z 288 [M+H]⁺.

HRMS 288.1588; C₁₇H₂₂NO₃⁺ requires 288.1595.

IR (thin film) v_{max} (cm⁻¹) 3323 (NH stretch), 2937 (CH stretch).

N-(3,5-Dimethoxy-benzyl)-2-hydroxy-N-(4-methoxy-benzyl)-acetamide S6

Amine **S5** (574 mg, 2.0 mmol) was placed in an oven-dried microwave vial and 2,2dimethyl-1,3-dioxolan-4-one (0.352 ml, 4.0 mmol) was added. The vial was flushed with N_2 then sealed and heated to 150 °C in the microwave reactor for 1 h. The acetone generated in the reaction was removed *in vacuo* and the residue purified by flash chromatography (50% EtOAc-pet. ether) to give **S6** (494 mg, 74%) as a pale oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.17 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB of one rotamer), 7.06 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB of one rotamer), 6.90 (4 H, d, *J* = 8.6 Hz, Ar CH of PMB of one rotamer), 6.87 (4 H, d, *J* = 8.8 Hz, Ar CH of PMB of one rotamer), 6.39 (2 H, t, *J* = 2.0 Hz, Ar CH), 6.35 (2 H, d, *J* = 2.3 Hz, Ar CH), 6.24 (2 H, d, *J* = 2.0 Hz, ArCH), 4.59 (2 H, s,ArCH₂N of one rotamer), 4.54 (2 H, s, ArCH₂N of one rotamer), 4.32 (3 H, d, *J* = 4.3 Hz, CH₂O of one rotamer), 4.24 (4 H, d, *J* = 4.3 Hz, CH₂O of one rotamer), 4.21 (2 H, s, CH₂ of PMB of one rotamer), 4.18 (2 H, s, CH₂ of PMB of one rotamer), 3.82 (3 H, s, OCH₃), 3.81 (3 H, s, OCH₃), 3.78 (6 H, s, OCH₃), 3.72 (1 H, t, *J* = 4.3 Hz, OH of one rotamer), 3.68 (1 H, t, *J* = 4.3 Hz, OH of one rotamer).

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.2 (C=O of one rotamer), 172.1 (C=O of one rotamer), 161.4 (Ar C-O), 161.0 (Ar C-O), 159.3 (Ar C-O), 159.2 (Ar C-O), 138.6 (Ar C-C of one rotamer), 137.7 (Ar C-C of one rotamer), 129.9 (Ar CH of PMB of one rotamer), 128.3 (Ar C-C of one rotamer), 128.0 (Ar CH of PMB of one rotamer), 126.8 (Ar C-C of one rotamer), 114.4 (Ar CH of PMB of one rotamer), 114.0 (Ar CH of PMB of one rotamer), 128.0 (Ar C-C of PMB of one rotamer), 126.8 (Ar C-C of one rotamer), 114.4 (Ar CH of PMB of one rotamer), 114.0 (Ar CH of PMB of one rotamer), 126.8 (Ar C-C of PMB of one rotamer), 114.0 (Ar CH of PMB of one rot

106.2 (2 × Ar C-H of one rotamer), 104.5 (2 × Ar C-H of one rotamer), 99.3 (Ar C-H of one rotamer), 99.3 (Ar C-H of one rotamer), 60.0 (CH₂OH of one rotamer), 60.0 (CH₂OH of one rotamer), 55.3 (OCH₃), 55.2 (OCH₃), 55.2 (OCH₃), 48.3 (CH₂N), 47.9 (CH₂N of one rotamer), 47.4 (CH₂N of one rotamer).

MS (ES+) *m*/*z* 368.1 [M+Na]⁺.

HRMS 368.1458; C₁₉H₂₃NO₅Na⁺ requires 368.1469.

IR (thin film) v_{max} (cm⁻¹) 3426 (OH stretch), 2936 (CH stretch), 1651 (C=O stretch).

5,7-Dimethoxy-2-(4-methoxybenzyl)-4-(phenylthio)-1,2-dihydroisoquinolin-3(4*H*)-one S7

Hydroxyamide **S6** (166 mg, 0.5 mmol) was oxidized according to general procedure 1. The crude glyoxamide was dissolved in CH_2Cl_2 (6 ml) and thiophenol (77 µl, 0.75 mmol) and $Sc(OTf)_3$ (49 mg, 0.1 mmol) were added. The reaction mixture was stirred at room temperature for 30 h then diluted with CH_2Cl_2 (5 ml) washed with water (10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (33% EtOAc–pet. ether) gave **S8** (168 mg, 78%) as a yellow gum.

¹H NMR (500 MHz, CDCl₃) δ ppm 7.25 - 7.35 (3 H, m, Ar CH), 7.14 - 7.20 (4 H, m, Ar CH), 6.85 (2 H, d, *J* = 8.5 Hz, Ar CH of PMB), 6.38 (1 H, d, *J* = 1.9 Hz, Ar CH), 6.07 (1 H, d, *J* = 1.6 Hz, Ar CH), 5.09 (1 H, s, ArCHS), 4.62 (1 H, d, *J* = 14.5 Hz, ArC<u>H</u>HN), 4.48 (1 H, d, *J* = 14.5 Hz, ArCH<u>H</u>N), 3.81 - 3.86 (5 H, m, CH₂ and OCH₃), 3.80 (3 H, s, OCH₃), 3.76 (3 H, s, OCH₃)

¹³C NMR (101 MHz, CDCl₃) δ ppm 167.4 (C=O), 159.9 (Ar C-O), 158.6 (Ar C-O), 156.9 (Ar C-O), 135.0 (Ar C-H), 134.5 (Ar C-C), 131.7 (Ar C-C), 129.2 (Ar C-H), 128.2 (Ar C-C), 128.1 (Ar C-H), 128.0 (s), 113.5 (Ar C-C), 113.3 (Ar C-C), 100.3 (Ar <u>C</u>-H), 97.1 (Ar C-H), 55.3 (OCH₃), 55.0 (OCH₃), 54.9 (OCH₃), 49.2 (CH₂), 49.1 (CH₂), 45.1 (ArCHS).

MS (ES+) m/z 458 [M+Na]⁺.

HRMS 458.1390; C₂₅H₂₅O₄NNaS⁺ requires 458.1397.

IR (thin film) v_{max} (cm⁻¹) 2928 (C-H), 1651 (C=O), 1610

3-(2-Butyl-5,7-dimethoxy-3-oxo-1,2,3,4-tetrahydro-isoquinolin-4-ylsulfanyl)-propionic acid methyl ester S8

Hydroxyamide **S2** (143 mmol, 0.5 mmol) was oxidized according to general procedure 1. The crude glyoxamide was dissolved in CH_2Cl_2 (6 ml) and methyl 3-mercaptopropanoate (81 µl, 0.75 mmol) and Sc(OTf)₃ (49 mg, 0.1 mmol) were added. The solution was stirred at room temperature for 40 h then washed with water (2 ×10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (30%EtOAc–pet. ether) gave **S8** (150 mg, 79%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃) δ ppm6.34 (1 H, d, *J* =1.9 Hz, Ar C-H), 6.27 (1 H, d, *J* = 1.7 Hz, Ar C-H), 4.75 (1 H, s, ArCHS), 4.75 (2 H, d, *J* = 15.4 Hz, ArCHHN), 4.03 (1 H, d, *J* = 15.6 Hz, ArCHHN), 3.80 (3 H, s, OCH₃), 3.75 (3 H, s, OCH₃), 3.65 (3 H, s, CO₂CH₃), 3.56 - 3.68 (1 H, m, NCHH), 3.31 (1 H, dt, *J* = 13.7, 7.0 Hz, NCHH), 3.02 - 3.15 (1 H, m, SCHH), 2.80 - 2.94 (1 H, m, SCHH), 2.70 - 2.79 (2 H, m, CH₂CO₂Me), 1.48 - 1.62 (2 H, m, CH₂), 1.24 - 1.39 (2 H, m, CH₂), 0.90 (3 H, t, *J* = 7.2 Hz, CH₃).

¹³C NMR (75 MHz, CDCl₃) δppm 172.4 (C=O), 168.1 (C=O), 160.4 (Ar C-O), 157.2 (Ar C-O), 135.3 (Ar <u>C</u>-C), 113.7 (Ar <u>C</u>-C), 101.7 (Ar C-H), 97.5 (Ar C-H), 55.7 (OCH₃), 55.4 (OCH₃), 51.6 (CO₂<u>C</u>H₃), 50.2 (ArCH₂N), 46.9 (NCH₂), 40.7 (ArCHS), 34.4 (<u>C</u>H₂CO₂Me), 29.4 (CH₂), 27.2 (SCH₂), 23.9 (CH₂), 19.9 (CH₂), 13.9 (CH₃).

MS (ES+) *m*/*z* 404.2 [M+Na]⁺.

HRMS 404.197, C₁₉H₂₇NO₅NaS⁺ requires 404.1502.

IR (thin film) v_{max} (cm⁻¹) 2954 (C-H stretch), 1734 (ester C=O stretch), 1653 (amide C=O stretch).

4-(Cyclohexylthio)-7-(dimethylamino)-5,8-dimethoxy-2-propyl-1,2-dihydroisoquinolin-3(4*H*)-one S9

N-(3-(dimethylamino)-2,5-dimethoxybenzyl)-2-hydroxy-*N*-propylacetamide (0.20 g, 0.64 mmol) was oxidized according to general procedure 1. An aliquot of the crude glyoxamide (0.22 mmol) was dissolved in anhydrous CHCl₃ (3.5 ml) and cyclohexanethiol (40 μ l, 0.32 mmol) and ZnCl₂ (44.0 mg, 0.32 mmol) were added. The reaction was heated at reflux for 16 h then diluted with CHCl₃ (5 ml), washed with water (5 ml) and brine (5 ml) and dried (MgSO₄). Flash chromatography (15% EtOAc–*n*-hexane with 1% NEt₃) gave **S10** (51.0 mg, 58%) as a pale oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 6.37 (1H, s, Ar CH), 4.87 (1H, s, CHS), 4.57 (1H, d, J = 16.1 Hz, C<u>H</u>HN), 4.44 (1H, d, J = 16.1 Hz, CH<u>H</u>N), 3.84 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 3.59 - 3.64 (1H, m, NC<u>H</u>H), 3.32 - 3.39 (1H, m, NCH<u>H</u>), 3.09 - 3.15 (1H, m, SC<u>H</u>(CH₂)₂), 2.83 (6H, s, N(CH₃)₂), 2.31 - 2.33 (1H, m, C<u>H</u>H), 1.90 - 1.92 (1H, m, CH<u>H</u>), 1.23 - 1.8 (10H, m, 4 × CH₂ of *c*-hexyl ring and C<u>H</u>₂CH₃), 0.95 (3H, t, J = 7.3 Hz, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ ppm 168.9 (C=O), 152 (Ar C-O), 145.0 (Ar C-O), 140.8 (Ar C-N), 128.0 (Ar C-C), 114.5 (Ar C-C), 100.7 (Ar CH), 58.7 (OCH₃), 56.0 (OCH₃), 48.8 (NCH₂), 45.1 (CH₂N), 43.8 (S<u>C</u>H(CH₂)₂), 42.2 (N(CH₃)₂), 39.6 (CHS), 33.6 (CH₂), 32.9 (CH₂), 25.9 (CH₂), 20.6 (CH₂), 11.1 (CH₃).

MS (ES+) *m*/*z* 429 [M+Na]⁺.

HRMS 429.2181; $C_{22}H_{34}N_2O_3NaS^+$ requires 429.2182.

IR (thin film) v_{max} (cm⁻¹) 2928, 2851, 1645 (C=O), 1605.

Methyl 3-(7-(dimethylamino)-5,8-dimethoxy-3-oxo-2-propyl-1,2,3,4-tetrahydroisoquinolin-4-ylthio)propanoateS12

N-(3-(dimethylamino)-2, 5-dimethoxybenzyl)-2-hydroxy-*N*-propylacetamide (0.20 g, 0.64 mmol) was oxidized according to general procedure 1. An aliquot of the crude glyoxamide (70mg, 0.22 mmol) was dissolved in anhydrous CHCl₃ (3.5 ml) and methyl 3-mercaptopropanoate (40 μ ml, 0.32 mmol) and ZnCl₂ (44.0 mg, 0.32 mmol) were added. The reaction was heated at reflux for 16 h then diluted with CHCl₃ (5 ml) and washed with water (5 ml) then brine (5 ml) and dried (MgSO₄). Flash chromatography (20% EtOAc–*n*-hexane with 1% NEt₃) gave **S12** (60 mg, 63%) as a pale oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 6.36 (1H, s, Ar CH), 4.78 (1H, s, CHS), 4.54 (1H, d, J = 16.1 Hz, C<u>H</u>HN), 4.44 (1H, d, J = 16.1 Hz, CH<u>H</u>N), 3.83 (3H, s, OCH₃), 3.71 (3H, s, OCH₃), 3.68 (3H, s, OCH₃), 3.59 - 3.66 (1H, m, NC<u>H</u>H), 3.31 - 3.36 (1H, m, NCH<u>H</u>), 3.09 - 3.15 (1H, m, SC<u>H</u>H), 2.88 - 2.94 (1H, m, SCH<u>H</u>), 2.82 (6H, s, N(CH₃)₂), 2.74 - 2.81 (2H, m, CH₂C=O), 1.62 - 1.70 (2H, m, CH₂), 0.94 (3H, t, J = 7.6 Hz, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ ppm 172.4 (C=O), 168.1 (C=O), 152.2 (Ar C-O), 145.3 (Ar C-O), 140.6 (Ar C-N), 127.8 (Ar <u>C</u>-C), 113.4 (Ar <u>C</u>-C), 100.5 (Ar CH), 58.6 (OCH₃), 55.9 (OCH₃), 51.6 (OCH₃), 48.8 (NCH₂), 45.1 (NCH₂), 42.1 (N(CH₃)₂), 40.9 (ArCHS), 34.4 (<u>C</u>H₂CO₂Me), 27.2 (SCH₂), 20.6 (CH₂), 11.1 (CH₃).

MS (ES+) m/z 433 [M+Na]⁺.

HRMS 433.1779; C₂₀H₃₀N₂O₅NaS⁺ requires 433.1768.

IR (thin film) v_{max} (cm⁻¹) 2939, 1736 (C=O), 1646 (C=O).

Methyl 3-(5,7-bis(dimethylamino)-3-oxo-2-propyl-1,2,3,4-tetrahydroisoquinolin-4ylthio)propanoate S11

SO₃-pyridine complex (76.0 mg, 0.48 mmol) was dissolved in anhydrous CH₂Cl₂ (2.0 ml) at -8 to -5 °C. DMSO (46.0 μ l, 0.64 mmol) was added and the mixture stirred for 15 min then NEt₃ (0.34 ml, 2.40 mmol) was added, followed by a solution of *N*-(3,5bis(dimethylamino)benzyl)-2-hydroxy-*N*-propylacetamide (47.0 mg, 0.16 mmol) in CH₂Cl₂ (0.5 ml) and the reaction was stirred for 5 h. The reaction mixture was washed with saturated NaHCO₃solution (3 ml) and dried (MgSO₄). The crude glyoxamide was dissolved in anhydrous CHCl₃ (3.5 ml) and methyl 3-mercaptopropanoate (29.0 μ l, 0.24 mmol) and ZnCl₂ (33.0 mg, 0.24 mmol) were added. The reaction was heated at reflux for 20 h then diluted with CHCl₃ (5 ml), washed with water (5 ml) then brine (5 ml) and dried (MgSO₄). Flash chromatography (30% EtOAc–*n*-hexane with 0.5% NEt₃) gave **S11** (26 mg, 41%) as a pale oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 6.37 (1H, br. s., Ar CH), 6.24 (1H, br. s., Ar CH), 4.89 (1H, s, CHS), 4.88 (1H, d, J = 14.8 Hz, C<u>H</u>HN), 3.97 (1H, d, J = 14.8 Hz, CH<u>H</u>N), 3.68 (3H, s, OCH₃), 3.64-3.69 (1H, m, SC<u>H</u>H), 3.21-3.27 (1H, m, SCH<u>H</u>), 3.09-3.14 (1H, m,

NC<u>H</u>HCH₂), 2.95 (6H, s, N(CH₃)₂), 2.88-2.95 (1H, m, NCH<u>H</u>CH₂), 2.77-2.83 (2H, m, SCH₂C<u>H</u>₂), 2.77 (6H, s, N(CH₃)₂), 1.60-1.67 (2H, m, CH₂), 0.95 (3H, t, J = 7.6 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃) δ ppm 172.5 (C=O), 168.8 (C=O), 153.3 (Ar C-N), 150.6 (Ar C-N), 136.1 (Ar <u>C</u>-C), 115.2 (Ar <u>C</u>-C), 104.5 (Ar CH), 103.2 (Ar CH), 51.6 (OCH₃), 51.0 (CH₂N), 48.6 (SCH₂), 45.2 (N(CH₃)₂), 43.4 (CHS), 40.4 (N(CH₃)₂), 34.3 (SCH₂<u>C</u>H₂), 27.1 (N<u>C</u>H₂CH₂), 20.8 (<u>C</u>H₂CH₃), 11.2 (CH₃). MS (ES+) m/z 411 [M+H]⁺, 433 [M+Na]⁺. HRMS 433.1779; C₂₀H₃₀N₂O₅NaS⁺ requires 433.1768.

IR (thin film) v_{max} (cm⁻¹) 2936, 1734 (C=O), 1645 (C=O), 1603, 1504.

Synthesis of model ABH ring systems

1, **3-Dimethoxy-5-vinyl-benzene** 6²

Methyltriphenylphosphonium bromide (15.5 g, 43.2 mmol) was suspended in dry THF (67 ml) under N₂ and KOt-Bu (5.7 g, 50.4 mmol) added and the mixture stirred at room temperature for 30 minutes then cooled to -78 °C. A solution of 3, 5-dimethoxybenzaldehyde (6.0 g, 36.1 mmol) in dry THF (33 ml) was added dropwise and the reaction mixture allowed to warm to room temperature. The reaction was quenched with MeOH (10 ml) and the solvent evaporated. The crude material was filtered through a short silica column (6% Et₂O– pet. ether) to give **6** (5.90 g, 99%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.66 (1 H, dd, J = 17.4, 10.8 Hz, ArC<u>H</u>=CH₂), 6.58 (2 H, d, J = 2.3 Hz, Ar CH), 6.40 (1 H, t, J = 2.3 Hz, Ar CH), 5.74 (1 H, d, J = 17.4 Hz, ArCH=C<u>H</u>H), 5.26 (1 H, d, J = 10.8 Hz, ArCH=CH<u>H</u>), 3.82 (6 H, s, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ ppm 160.5 (Ar C-O), 139.3 (Ar <u>C</u>-C), 136.5 (Ar<u>C</u>H=CH₂), 114.0 (CH₂), 103.9 (Ar C-H), 99.7(Ar C-H), 55.0 (OCH₃).

NMR data was consistent with literature values.²

² Roberts, J. C., Pincock, J. A. J. Org. Chem. 2006, 71, 1480.

(S)-1-(3,5-Dimethoxyphenyl)-2-((triisopropylsilyl)oxy)ethanol S12

AD-mix- α (27.7 g) was dissolved in water (100 ml) and *t*-BuOH (100 ml) and the solution cooled to 0°C. Styrene **6** (3.28 g, 20 mmol) was added and the solution stirred for 16 h. Saturated Na₂SO₃ solution (50 ml) was added and the mixture stirred for a further 30 minutes. The layers were separated and the aqueous phase extracted with EtOAc (2 × 150 ml). The organic layers were combined and washed with water (100 ml) then brine (100 ml), dried (MgSO₄) and concentrated *in vacuo*. The crude diol was dissolved in CH₂Cl₂ (150 ml) under N₂ then imidazole (3.41 g, 50 mmol) and TIPSCl (4.27 ml, 20 mmol) were added. The solution was stirred for 18 h at room temperature then washed with saturated NH₄Cl solution and dried (MgSO₄). Flash chromatography (5-10%EtOAc–pet. ether) gave **S12** (6.135 g, 86% over two steps) as a pale oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.55 (2 H, d, *J* = 2.4 Hz, Ar CH), 6.40 (1 H, t, *J* = 2.4 Hz, Ar CH), 4.73 (1 H, dd, *J* = 8.9, 3.4 Hz, ArC<u>H</u>OH), 3.85 (1 H, dd, *J* = 10.0, 3.4 Hz, C<u>H</u>HOSi), 3.81 (6 H, s, OCH₃), 3.61 (1 H, dd, *J* = 10.0, 8.9 Hz, CH<u>H</u>OSi), 3.09 (1 H, br. s., OH), 1.05 - 1.11 (21 H, m, SiCH and SiCH(C<u>H</u>₃)₂)

¹³C NMR (101 MHz, CDCl₃) δ ppm 160.8 (Ar C-O), 142.7 (Ar <u>C</u>-C), 104.1(Ar C-H), 99.7 (Ar C-H), 74.5 (Ar<u>C</u>HOH), 69.2 (CH₂OSi), 55.3 (OCH₃), 17.9 (SiCH(<u>C</u>H₃)₂), 11.9 (SiCH). MS (ES+) *m/z* 377 [M+Na]⁺.

HRMS 377.2118, C₁₉H₃₄O₄NaSi⁺ requires 377.2119.

IR (thin film) v_{max} (cm⁻¹) 3460 (br., OH), 2642, 2866, 1598.

 $[\alpha]_D^{34} = -1.2^\circ$ (c = 3.18, EtOH).

$(\it R) - 2 - (1 - (3, 5 - Dimethoxy phenyl) - 2 - ((triis opropyl silyl) oxy) ethyl) is oindoline - 1, 3 - dione S13 - dione$

Alcohol **S12** (5.11 g, 14.4 mmol) was dissolved in THF (85 ml) and phthalimide (2.97 g, 20.2 mmol), DIAD (3.98 ml, 20.2mmol) and PPh₃ (5.30 g, 20.2mmol) were added. The solution

was stirred at room temperature for 90 h then concentrated *in vacuo*. The residue was dissolved in Et₂O (100 ml) then hexane (50 ml) was added. The mixture was triturated then filtered through a plug of silica and the precipitate was washed with 40% Et₂O–*n*-hexane. The filtrate was concentrated *in vacuo* and purified by flash chromatography (10-15% Et₂O– pet. ether) to give **S13** (4.34 g, 62%) as a colourless solid, melting point (Et₂O) 62-65 °C.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (2 H, dd, J = 5.4, 3.0 Hz, phthalimide Ar CH), 7.70 (2 H, dd, J = 5.4, 3.0 Hz, phthalimide Ar CH), 6.71 (2 H, d, J = 2.4 Hz, 2 ×Ar CH), 6.39 (1 H, t, J = 2.4 Hz, Ar CH), 5.41 (1 H, dd, J = 10.2, 5.7 Hz, ArCHN), 4.78 (1 H, t, J = 10.4 Hz, C<u>H</u>HOSi), 4.20 (1 H, dd, J = 10.0, 5.7 Hz, CH<u>H</u>OSi), 3.78 (6 H, s, OCH₃), 0.92 - 1.00 (21 H, m, SiCH and SiCH(C<u>H₃)₂).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 168.6 (C=O), 160.8 (Ar C-O), 139.3 (Ar <u>C</u>-C), 133.9 (phthalimide Ar CH), 131.9 (phthalimide Ar C-C), 123.1 (phthalimide Ar CH), 106.3 (Ar CH), 99.9 (Ar CH), 66.8 (ArCHN), 57.4 (CH₂OSi), 55.3 (OCH₃), 17.8 (CH(<u>C</u>H₃)₂), 11.8 (SiCH).

MS (ES+) *m*/*z* 506 [M+Na]⁺.

HRMS 506.2330; C₂₇H₃₇O₅NNaSi⁺ requires 506.2333.

IR (thin film) v_{max} (cm⁻¹) 3470, 2943, 2865, 1774 (C=O), 1712, 1598.

 $[\alpha]_D^{30} = +15.5^\circ (c = 1.17, EtOH).$

(R)-1-(3,5-Dimethoxyphenyl)-2-((triisopropylsilyl)oxy)ethanamine 7

Phthalimide **S13** (4.34 g, 8.98 mmol) was dissolved in EtOH (60 ml) and hydrazine (62% aq. solution, 1.8 ml, 35 mmol) was added. The solution was heated under reflux for 2 h then cooled, diluted with Et₂O (150 ml) and filtered through celite. The precipitate was washed with Et₂O (200 ml) and the combined filtrate was concentrated *in vacuo* to give **7** (3.15 g, 99%) as a pale oil which was used without further purification.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.57 (2 H, d, J = 2.4 Hz, Ar CH), 6.37 (1 H, t, J = 2.4 Hz, Ar CH), 4.06 (1 H, dd, J = 8.8, 3.8 Hz, ArCHN), 3.83 (1 H, dd, J = 9.1, 5.3 Hz, C<u>H</u>HO), 3.80 (6 H, s, OCH₃), 3.59 (1 H, dd, J = 9.6, 8.8 Hz, CH<u>H</u>O), 1.02 - 1.18 (21 H, m, SiCH and CH(C<u>H₃)₂)</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 160.7 (Ar C-O), 145.2 (Ar <u>C</u>-C), 104.9 (Ar C-H), 99.2 (Ar C-H), 69.7 (CH₂O), 58.1 (NCH), 55.3 (OCH₃), 18.0 (CH(<u>C</u>H₃)₂), 11.9 (SiCH).
MS (ES+) *m/z* 354 [M+H]⁺.
HRMS 354.2472; C₁₉H₃₆O₃NSi⁺ requires 354.2459.

IR (thin film) v_{max} (cm⁻¹) 3386, 2941, 2865, 1597 (C=O).

 $[\alpha]_{D}^{34} = -6.0 \circ (c = 0.69, EtOH)$

Enantiomeric excess was measured as 84% using chiral HPLC (ChiralPak AD column, 90:10 hexane–isopropanol).

$(\it R) - 1 - (3, 5 - Dimethoxy phenyl) - N - (4 - methoxy benzyl) - 2 - ((triis opropyl silyl) oxy)$

Amine **7** (3.02 g, 8.56 mmol) was dissolved in dry MeOH (15 ml) under N₂, 4methoxybenzaldehyde (1.14 ml, 9.41 mmol) was added and the solution heated under reflux for 2 h. The solution was cooled to room temperature and NaBH₄ (356 mg, 9.41 mmol) was added portionwise and the solution stirred for 75 min. The reaction was quenched with water (50 ml) then extracted with EtOAc (3×50 ml). The extracts were washed with brine (20 ml) and dried (MgSO₄). Flash chromatography (10% EtOAc–pet. ether) gave **S14** (3.88 g, 96%) as a pale oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 7.20 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.86 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.61 (2 H, d, *J* = 2.4 Hz, Ar CH), 6.39 (1 H, t, *J* = 2.4 Hz, Ar CH), 3.81 (6 H, s, OCH₃), 3.81 (3 H, s, OCH₃), 3.74 - 3.80 (2 H, m, CH₂O), 3.72 (1 H, d, *J* = 13.0 Hz, C<u>H</u>H of PMB), 3.64 (1 H, t, *J* = 9.5 Hz, CHN), 3.51 (1 H, d, *J* = 13.0 Hz, CH<u>H</u> of PMB), 1.00 - 1.11 (21 H, m, SiCH and SiCH(C<u>H₃)₂)</u>

¹³C NMR (126 MHz, CDCl₃) δ ppm 160.5 (C-O), 158.2 (C-O), 143.3 (C-C), 132.7 (C-C), 128.9 (C-H of PMB), 113.5 (C-H of PMB), 105.4 (Ar C-H), 99.1 (Ar C-H), 68.4 (ArCHN), 64.3 (CH₂OSi), 55.1 (OCH₃), 55.0 (OCH₃), 50.5 (CH₂ of PMB), 17.7 (SiCH(<u>C</u>H₃)₂), 11.6 (Si<u>C</u>H(CH₃)₂).

MS (ES+) m/z 474 [M+H]⁺.

HRMS 474.3045; C₂₇H₄₄O₄NSi⁺ requires 474.3034.

IR (thin film) v_{max} (cm⁻¹) 2940, 2864, 1609, 1596. [α]_D³⁴ = -45.6° (c = 1.05, EtOH).

(*R*)-*N*-(1-(3,5-Dimethoxyphenyl)-2-((triisopropylsilyl)oxy)ethyl)-2-hydroxy-*N*-(4-methoxybenzyl)acetamide 8

Amine **S14** (1.73 g, 3.7 mmol) was dissolved in CH₂Cl₂ (7.4 ml) and AcOCH₂COCl (0.44 ml, 4.07 mmol) and NEt₃ (0.57 ml, 4.07 mmol) were added. The solution was stirred for 15 h then diluted with CH₂Cl₂(20 ml) and washed with saturated NaHCO₃ solution (2 × 20 ml) then dried (MgSO₄) and concentrated *in vacuo*. The residue was dissolved in THF (24 ml), MeOH (4 ml) and water (6 ml) and LiOH·H₂O (311 mg, 7.4 mmol) was added. The solution was stirred for 26 h then the volatiles evaporated and the aqueous layer diluted with water (50 ml), extracted with EtOAc (3 × 50 ml) and dried (MgSO₄). Flash chromatography (30%EtOAc–pet. ether) gave **8** (1.75 g, 89%) as a pale oil.

¹H NMR (400 MHz, DMSO-*d*₆, 120 °C) δ ppm 7.06 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.79 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.48 (2 H, d, *J* = 2.2 Hz, Ar CH), 6.40 (1 H, t, *J* = 2.2 Hz, Ar CH), 5.13 (1 H, t, *J* = 6.3 Hz, ArCHN), 4.52 (1 H, d, *J* = 16.2 Hz, C<u>H</u>H of PMB), 4.33 (1 H, d, *J* = 16.2 Hz, CH<u>H</u> of PMB), 4.16 - 4.25 (2 H, m, CH₂OSi), 4.12 (2 H, d, *J* = 6.8 Hz, CH₂OH), 3.73 (3 H, s, OCH₃), 3.71 (6 H, s, OCH₃), 0.97 - 1.09 (21 H, m, SiCH and CH(C<u>H₃)₂).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 173.3 (C=O), 173.2 (C=O), 161.0 (Ar C-O), 160.6 (Ar C-O), 158.9 (Ar C-O), 158.5 (Ar C-O), 139.6 (Ar <u>C</u>-C), 138.2 (Ar <u>C</u>-C), 130.4 (Ar <u>C</u>-C), 129.1 (Ar CH of PMB), 128.5 (Ar <u>C</u>-C), 127.8 (Ar CH of PMB), 114.0 (Ar CH of PMB), 113.5 (Ar CH of PMB), 106.5 (Ar CH), 105.9 (Ar CH), 99.5 (Ar CH), 99.5 (Ar CH), 62.7 (CH₂O), 62.5 (CH₂O), 61.0 (ArCHN), 60.8 (ArCHN), 60.7 (CH₂O), 60.4 (CH₂O), 55.3 (OCH₃), 55.2 (OCH₃), 55.2 (OCH₃), 47.2 (CH₂ of PMB), 45.9 (CH₂ of PMB), 17.9 (CH(<u>C</u>H₃)₂), 11.8 (SiCH), 11.7 (SiCH).

MS (ES+) *m*/*z* 554 [M+Na]⁺.

HRMS 554.2904; C₂₉H₄₅O₆NNaS⁺ requires 554.2908.

IR (thin film) v_{max} (cm⁻¹) 3431 (br., OH), 2943, 2865, 1650 (amide C=O stretch), 1610.

 $[\alpha]_D^{30} = -11.5^\circ$ (c = 0.72, EtOH).

Methyl 3-(((1R,4S)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1-(((triisopropylsilyl) oxy) methyl)-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoate 9a and methyl 3-(((1R,4R)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1-(((triisopropylsilyl)oxy) methyl)-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoate 9b

Hydroxyamide **8** (274 mg, 0.52 mmol) was dissolved in CH₂Cl₂ (1.4 ml) and DMSO (1.4 ml) at 0 °C and NEt₃ (0.36 ml, 2.60 mmol) and SO₃•py (325 mg, 2.1 mmol) were added. The solution was stirred for 2 h then methyl 3-mercaptopropanoate (84 μ l, 0.78 mmol) was added. After 15 minutes, the solution was diluted with Et₂O (10 ml) and washed with 1 M HCl (10 ml), saturated NaHCO₃ solution (10 ml) then brine (10 ml) and dried (MgSO₄). The crude hemithioacetal was dissolved in CH₂Cl₂ (6 ml) and ZnCl₂ (141 mg, 1.04 mmol) was added. The solution was stirred at room temperature for 22 h then diluted with CH₂Cl₂ (10 ml) and washed with water (10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (30% EtOAc–pet. ether) gave a 1:1 mixture of **9a** and **9b** (267 mg, 81%) as pale gums. MS (ES+) m/z 654 [M+Na]⁺.

HRMS 654.2891; C₃₃H₄₉O₇NNaSSi⁺ requires 654.2891.

For **9a** ¹H NMR (400MHz, CDCl₃) δ ppm 7.30 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.85 - 6.90 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.36 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.22 (1 H, d, *J* = 2.0 Hz, Ar CH), 5.62 (1 H, d, *J* = 15.4 Hz, C<u>H</u>H of PMB), 4.57 (1 H, s, ArCHS), 4.49 (1 H, br. s, ArC<u>H</u>N), 4.15 (1 H, dd, *J* = 3.3, 10.3 Hz, C<u>H</u>HOSi), 3.99 (1 H, d, *J* = 15.4 Hz, CH<u>H</u> of PMB), 3.85 (3 H, s, OCH₃), 3.80 (3 H, s, OCH₃), 3.75 - 3.79 (1 H, m, CH<u>H</u>OSi), 3.73 (3 H, s, OCH₃), 3.68 (3 H, s, CO₂CH₃), 3.29 (1 H, dt, *J* = 7.6, 13.6 Hz, SC<u>H</u>H), 2.95 (1 H, dt, *J* = 7.6, 13.6 Hz, SCH<u>H</u>), 2.73 (2 H, t, *J* = 7.6 Hz, C<u>H</u>₂CO₂Me), 0.82 - 0.94 (21 H, m, SiCH and SiCH(C<u>H₃)₂).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.6 (C=O), 170.7 (C=O), 160.1 (Ar C-O), 158.8 (Ar C-O), 157.3 (Ar C-O), 134.3 (Ar C-C), 129.1 (Ar CH of PMB), 129.1 (Ar <u>C</u>-C) 114.7 (Ar C-C), 114.1 (Ar CH of PMB), 101.0 (Ar C-H), 98.0 (Ar C-H), 64.5 (CH₂OSi), 60.2 (Ar<u>C</u>HN),

55.7 (OCH₃), 55.3 (OCH₃), 55.2 (OCH₃), 51.6 (CO₂<u>C</u>H₃), 45.9 (CH₂ of PMB), 41.1 (ArCHS), 34.3 (<u>CH₂CO₂CH₃), 28.2 (SCH₂), 17.7 (SiCH(<u>CH₃)₂), 11.8 (SiCH(CH₃)₂)</u>. IR (thin film) v_{max} (cm⁻¹)2925, 2865, 1739 (ester C=O), 1651 (amide C=O). $[\alpha]_{D}^{30} = -129.3^{\circ}$ (c = 2.61, EtOH).</u>

For **9b** ¹H NMR (400MHz, CDCl₃) δ ppm 7.14 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.80 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.37 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.23 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.43 (1 H, d, *J* = 15.0 Hz, C<u>H</u>H of PMB), 4.72 (1 H, s, ArCHS), 4.40 (1 H, dd, *J* = 7.7, 5.8 Hz, ArCHN), 4.39 (1 H, d, *J* = 15.1 Hz, CH<u>H</u> of PMB), 4.27 (1 H, dd, *J* = 7.7, 9.9 Hz, C<u>H</u>HOSi), 3.91 (1 H, dd, *J* = 5.8, 9.9 Hz, CH<u>H</u>OSi), 3.86 (3 H, s, OCH₃), 3.76 (3 H, s, OCH₃), 3.75 (3 H, s, OCH₃), 3.72 (3 H, s, OCH₃), 3.38 (1 H, dt, *J* = 6.7, 13.9 Hz, SC<u>H</u>H), 3.00 - 3.13 (1 H, m, SCH<u>H</u>), 2.85 - 2.92 (2 H, m, CH₂CO₂Me), 1.01 - 1.10 (21 H, m, Si[C<u>H</u>(C<u>H₃)₂]₃).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.5 (C=O), 169.1 (C=O), 160.0 (Ar C-O), 158.8 (Ar C-O), 157.2 (Ar C-O), 136.1 (Ar C-C), 129.4 (Ar C-C), 129.1 (PMB CH), 113.9 (PMB CH), 113.5 (Ar C-C), 102.9 (Ar C-H), 98.0 (Ar C-H), 68.8 (CH₂OSi), 62.6 (ArCHN), 55.7 (OCH₃), 55.3 (OCH₃), 55.2 (OCH₃), 51.7(CO₂CH₃), 49.1 (CH₂ of PMB), 39.8 (ArCHS), 34.4 (CH₂CO₂Me), 28.5 (SCH₂), 18.0 (SiCH(CH₃)₂), 11.7(SiCH(CH₃)₂).

IR (thin film) v_{max} (cm⁻¹) 2926, 2865, 1740 (ester C=O), 1648 (amide C=O). [α]_D³⁰ = +32.5° (c = 2.14, EtOH).

(R)-tert-Butyl 3-(((1R,4S)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1-(((triisopropylsilyl)oxy) methyl)-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2-trichloroethoxy)carbonyl)amino)propanoate 10a and (R)-tert-butyl 3-(((1R,4R)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1-(((triisopropylsilyl)oxy) methyl)-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2-trichloroethoxy)carbonyl)amino)propanoate 10b

Hydroxyamide **8** (141 mg, 0.27 mmol) was dissolved in CH_2Cl_2 (0.7 ml) and DMSO (0.7 ml) at 0 °C and NEt₃ (0.18 ml, 1.32 mmol) and SO₃•py (126 mg, 0.79 mmol) were added. The solution was stirred for 2 h then a solution of (*R*)-*tert*-butyl 3-mercapto-2-(((2,2,2-trichloroethoxy)carbonyl)amino)propanoate (280 mg, 0.79 mmol) in CH_2Cl_2 (2 ml) was added. After 30 minutes, the solution was diluted with Et_2O (10 ml) and washed with 1 M HCl (10 ml), saturated NaHCO₃ solution (10 ml) then brine (10 ml) and dried (MgSO₄). The crude hemithioacetal was dissolved in CH_2Cl_2 (3 ml) and $ZnCl_2$ (54 mg, 0.397 mmol) was added. The solution was stirred for 23 h then diluted with CH_2Cl_2 (10 ml) and washed with water (10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (30% EtOAc–pet. ether) gave a 1:1 mixture of **10a** and **10b** (130 mg, 57%) as pale gums.

MS (ES+) *m*/*z* 865 [M+Na]⁺.

HRMS 863.2709; C₃₉H₅₈N₂O₉SSiCl₃⁺ requires 863.2693.

For **21a** ¹H NMR (400 MHz, CDCl₃) δ ppm 7.29 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.96 (1 H, d, *J* = 9.1 Hz, NH), 6.88 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.41 (1 H, d, *J* = 2.0 Hz, Ar CH), 6.18 (1 H, d, *J* = 2.0 Hz, Ar CH), 5.63 (1 H, d, *J* = 15.3 Hz, C<u>H</u>H of PMB), 4.85 (1 H, d, *J* = 11.9 Hz, OC<u>H</u>HCCl₃), 4.66 (2 H, d, *J* = 11.9 Hz, OCH<u>H</u>CCl₃), 4.63 - 4.68 (1 H, m, C<u>H</u>NHTroc), 4.59 (1 H, s, ArCHS), 4.43 (1 H, br. s., ArCHN), 4.13 (1 H, dd, *J* = 10.2, 2.6 Hz, ArC<u>H</u>HO), 4.00 (3 H, s, OCH₃) 3.94 (1 H, d, *J* = 15.3 Hz, CH<u>H</u> of PMB), 3.86 (1 H, dd, *J* = 14.7, 4.0 Hz, C<u>H</u>HS), 3.80 (3 H, s, OCH₃), 3.73 (3 H, s, OCH₃), 3.68 (1 H, d, *J* = 10.2 Hz, CH<u>H</u>O), 3.32 (1 H, dd, *J* = 14.7, 4.4 Hz, CH<u>H</u>S), 1.44 (9 H, s, C(CH₃)₃), 0.82 - 0.94 (21 H, m, Si[C<u>H(CH₃)₂]₃).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 171.5 (C=O), 169.5 (C=O), 160.3 (Ar C-O), 158.9 (Ar C-O), 157.6 (Ar C-O), 154.6 (carbamate C=O), 134.2 (Ar <u>C</u>-C), 129.2 (Ar CH of PMB), 128.8 (Ar <u>C</u>-C), 114.1 (Ar CH of PMB), 113.9 (Ar <u>C</u>-C), 101.2 (Ar CH), 98.1 (Ar CH), 95.5 (CCl₃), 82.2 (O<u>C</u>(CH₃)₃), 74.7 (O<u>C</u>H₂CCl₃), 64.9 (CH₂OSi), 60.4 (ArCHN), 55.9 (<u>C</u>HNHTroc), 55.4 (OCH₃), 55.3 (OCH₃), 55.2 (OCH₃), 45.8 (CH₂ of PMB), 42.3 (ArCHS), 35.7 (CH₂S), 27.9 (C(<u>C</u>H₃)₃), 17.7 (s), 17.6 (CH(CH₃)₂), 11.7 (SiCH).

IR (thin film) v_{max} (cm⁻¹) 3350, 2941, 2865, 1738, 1651, 1612.

 $[\alpha]_D^{30} = -96.7^\circ$ (c = 1.04, EtOH).

For **21b** ¹H NMR (500 MHz, CDCl₃) δ ppm 7.57 (1 H, d, *J* = 8.2 Hz, NH), 7.15 (2 H, d, *J* = 8.5 Hz, Ar CH of PMB), 6.80 (2 H, d, *J* = 8.5 Hz, Ar CH of PMB), 6.39 (1 H, d, *J* = 1.9 Hz, Ar CH), 6.23 (1 H, d, *J* = 2.2 Hz, Ar CH), 5.42 (1 H, d, *J* = 14.8 Hz, C<u>H</u>H of PMB), 4.86 (1

H, s, ArCHS), 4.86 (2 H, d, J = 12.0 Hz, OC<u>H</u>HCCl₃), 4.73 (1 H, d, J = 12.0 Hz, OCH<u>H</u>CCl₃), 4.67 (1 H, m, C<u>H</u>NHTroc), 4.42 (1 H, d, J = 14.8 Hz, CH<u>H</u> of PMB), 4.38 (1 H, t, J = 6.6 Hz, ArCHN), 4.12 (1 H, dd, J = 9.8, 7.6 Hz, C<u>H</u>HO), 3.87 (3 H, s, OCH₃), 3.83 - 3.86 (1 H, m, CH<u>H</u>O), 3.77 (3 H, s, OCH₃), 3.75 (3 H, s, OCH₃), 3.56 (1 H, dd, J = 14.5, 6.0Hz, SC<u>H</u>H), 3.31 (1 H, dd, J = 14.5, 4.1 Hz, SCH<u>H</u>), 1.50 (9 H, s, C(CH₃)₃), 1.00 - 1.08 (21 H, m, Si(C<u>H</u>(C<u>H₃)₂)₃).</u>

¹³C NMR (126 MHz, CDCl₃) δ ppm 169.4 (C=O), 169.1 (C=O), 160.0 (Ar C-O), 158.8 (Ar C-O), 157.3 (Ar C-O), 154.7 (carbamate C=O), 135.7 (Ar <u>C</u>-C), 129.2 (Ar CH of PMB), 129.1 (Ar <u>C</u>-C), 113.9 (Ar CH of PMB), 113.8 (Ar <u>C</u>-C), 102.9 (Ar C-H), 98.0 (Ar C-H), 95.7 (CCl₃), 82.3 (O<u>C</u>(CH)₃), 74.5 (O<u>C</u>H₂CCl₃), 69.1 (CH₂OSi), 62.4 (ArCHN), 55.9 (<u>C</u>HNHTroc), 55.7 (OCH₃), 55.3 (OCH₃), 55.2 (OCH₃), 49.2 (CH₂ of PMB), 40.9 (CHS), 36.3 (CH₂S), 28.0 (C(<u>C</u>H₃)₃), 17.9 (CH(<u>C</u>H₃)₂), 11.7 (SiCH).

IR (thin film) v_{max} (cm⁻¹) 3215, 2942, 2865, 1737, 1637, 1611.

 $[\alpha]_D^{30} = +8.8^\circ (c = 1.06, EtOH).$

Methyl 3-(((1R,4R)-1-(hydroxymethyl)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoate S15a and methyl <math>3-(((1R,4S)-1-(hydroxymethyl)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoate S15b

Silyl ether **9** (1.3:1 dr, 183 mg, 0.3 mmol) was dissolved in CH_2Cl_2 (1.5 ml) and TBAF (1 M solution in THF, 0.6 mmol, 0.6 ml) was added. The solution was stirred for 6.5 h then quenched with saturated NaHCO₃ solution and extracted with CH_2Cl_2 (2 ×20 ml). The extracts were combined, dried (MgSO₄) and concentrated *in vacuo*. Flash chromatography (60% EtOAc–pet. ether) gave **S15a** and **S15b** (108 mg, 78%, 1:2 dr) as a pale gum.

For **S15a** ¹H NMR (400 MHz, CDCl₃) δ ppm 7.17 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.81 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.39 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.21 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.35 (1 H, d, *J* = 14.9 Hz, C<u>H</u>H of PMB), 4.74 (1 H, s, ArCHS), 4.40 (1 H, t, *J* = 6.2 Hz, ArCHN), 4.31 (1 H, d, *J* = 14.9 Hz, CH<u>H</u> of PMB), 4.08 (1 H, dd, *J* = 11.3, 6.3 Hz,

C<u>H</u>HOH), 3.93 (1 H, dd, J = 11.3, 6.1 Hz, CH<u>H</u>OH), 3.87 (3 H, s, OCH₃), 3.77 (3 H, s, OCH₃), 3.75 (3 H, s, OCH₃), 3.71 (3 H, s, OCH₃), 3.34 (1 H, dt, J = 13.9, 7.1 Hz, SC<u>H</u>H), 3.13 (1 H, dt, J = 13.9, 7.1 Hz, SCH<u>H</u>), 2.86 (2 H, t, J = 7.1 Hz, C<u>H₂CO₂CH₃).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.7 (C=O), 169.2 (C=O), 160.4 (Ar C-O), 158.9 (Ar C-O), 157.6 (Ar C-O), 135.7 (Ar <u>C</u>-C), 129.2 (Ar CH of PMB), 129.0 (Ar <u>C</u>-C), 114.1 (Ar CH of PMB), 113.4 (Ar <u>C</u>-C), 102.4 (Ar CH), 98.1 (Ar CH), 66.3 (CH₂OH), 62.4 (CHN), 55.8 (OCH₃), 55.5 (OCH₃), 55.3 (OCH₃), 51.8 (OCH₃), 48.8 (CH₂ of PMB), 39.9 (CHS), 34.4 (<u>C</u>H₂CO₂CH₃), 28.9 (CH₂S).

MS (ES+) *m*/*z* 476 [M+H]⁺, 498 [M+Na]⁺.

HRMS 476.1728 C₂₄H₃₀NO₇S⁺ requires 476.1737.

IR (thin film) v_{max} (cm⁻¹) 3400 (br., OH), 2951, 1737 (ester C=O), 1612 (amide C=O).

 $[\alpha]_D^{32} = -222.7^\circ$ (c = 0.90, EtOH).

For **S15b** ¹H NMR (400 MHz, CDCl₃) δ ppm 7.31 (2 H, d, *J* = 8.7 Hz, Ar CH of PMB), 6.89 (2 H, d, *J* = 8.7 Hz, Ar CH of PMB), 6.41 (1 H, d, *J* = 2.4 Hz, Ar CH), 6.30 (1 H, d, *J* = 2.4 Hz, Ar CH), 5.55 (1 H, d, *J* = 15.4 Hz, C<u>H</u>H of PMB), 4.71 (1 H, s, ArCHS), 4.58 (1 H, s, ArCHN), 4.25 (1 H, d, *J* = 15.4 Hz, CH<u>H</u> of PMB), 4.18 (1 H, m, *J* = 4.5 Hz, C<u>H</u>HOH), 3.92 (1 H, dd, *J* = 12.7, 3.4 Hz, CH<u>H</u>OH), 3.88 (3 H, s, OCH₃), 3.80 (3 H, s, OCH₃), 3.77 (3 H, s, OCH₃), 3.70 (3 H, s, OCH₃), 3.28 (1 H, dt, *J* = 13.8, 6.8 Hz, SC<u>H</u>H), 2.97 (1 H, dt, *J* = 13.8, 7.5 Hz, SCH<u>H</u>), 2.78 (2 H, m, CH₂CO₂Me), 1.79 (1 H, t, OH).

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.5 (C=O), 170.5 (C=O), 160.6 (Ar C-O), 158.9 (Ar C-O), 157.6 (Ar C-O), 133.6 (Ar <u>C</u>-C), 129.1 (Ar CH of PMB), 128.7 (Ar <u>C</u>-C), 114.4 (Ar CH of PMB), 114.3 (Ar <u>C</u>-C), 101.0 (Ar C-H), 98.0 (Ar C-H), 59.2 (ArCHN), 55.8 (OCH₃), 55.3 (OCH₃), 51.7 (OCH₃), 45.9 (CH₂ of PMB), 40.5 (CHS), 34.3 (<u>C</u>H₂CO₂CH₃), 28.0 (CH₂S).

MS (ES+) *m*/*z* 498 [M+Na]⁺.

HRMS 498.1560; C₂₄H₂₉O₇NNaS⁺ requires 498.1557.

 $[\alpha]_D^{30} = +30.6^\circ (c = 0.57, EtOH).$

3-(((1*R*,4*R*)-1-(hydroxymethyl)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1,2,3,4tetrahydroisoquinolin-4-yl)thio)propanoic acid 11

S15 (108 mg, 0.23 mmol, 1:2 dr) was dissolved in THF (1.4 ml) and water (0.4 ml) and LiOH·H₂O (19 mg, 0.46 mmol) was added. The solution was stirred at room temperature for18h then acidified with 1 M HCl (5 ml) and extracted with EtOAc (2×10 ml). The extracts were washed with brine (5 ml), dried (MgSO₄) and concentrated *in vacuo*. Flash chromatography (10% MeOH–CH₂Cl₂) gave **11** (87 mg, 82%) as a pale solid, melting point (CH₂Cl₂) 70-73 °C.

Recrystallisation from EtOH gave crystals for single crystal X-ray diffraction analysis (see page 89 for structure).

¹H NMR (400MHz, CDCl₃) δ ppm 7.14 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.79 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.37 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.20 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.39 (1 H, d, *J* = 15.0 Hz, C<u>H</u>H of PMB), 4.75 (1 H, s, ArCHS), 4.41 (1 H, apparent t, *J* = 6.2 Hz, ArCHN), 4.29 (1 H, d, *J* = 15.0 Hz, CH<u>H</u> of PMB), 4.10 (1 H, dd, *J* = 6.7, 11.5 Hz, C<u>H</u>HOH), 3.90 (1 H, dd, *J* = 5.7, 11.5 Hz, CH<u>H</u>OH), 3.84 (3 H, s, OCH₃), 3.74 (3 H, s, OCH₃), 3.73 (3 H, s, OCH₃), 3.31 (1 H, dt, *J* = 6.8, 13.9 Hz, SC<u>H</u>H), 3.11 (1 H, dt, *J* = 7.1, 13.9 Hz, SCH<u>H</u>), 2.78 - 2.98 (2 H, m, C<u>H</u>₂CO₂H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 175.8 (CO₂H), 170.0 (C=O), 160.3 (Ar C-O), 158.9 (Ar C-O), 157.4 (Ar C-O), 135.4 (Ar <u>C</u>-C), 129.2 (PMB CH), 128.6 (Ar <u>C</u>-C), 114.0 (PMB CH), 113.3 (Ar <u>C</u>-C), 102.3 (Ar CH), 98.0 (Ar CH), 66.5 (CH₂OH), 62.3 (ArCHN), 55.71 (OCH₃), 55.41 (OCH₃), 55.21 (OCH₃), 49.1 (CH₂ of PMB), 40.0 (ArCHS), 34.4 (<u>C</u>H₂CO₂H), 28.7 (CH₂S).

MS (ES+) *m*/*z* 484 [M+Na]⁺.

HRMS 484.1393, C₂₃H₂₇O₇NSNa⁺ requires 484.1400.

IR (thin film) v_{max} (cm⁻¹) 3400 (br.), 2938 (CH stretch), 1705 (acid C=O), 1634 (amide C=O). [α]_D³⁰ = +14.2° (c = 0.90, EtOH).

(1*R*,8*R*)-10,12-Dimethoxy-13-(4-methoxybenzyl)-3,4,7,8-tetrahydro-8,1-(epiminomethano)benzo[*g*][1,5]oxathiecine-5,14(1*H*)-dione 13

A solution of hydroxyacid **11** (46 mg, 0.10 mmol) in CH_2Cl_2 (22 ml) was added *via* pressureequalising dropping funnel over 2.5 h to a solution of MNBA (41.3 mg, 0.12 mmol) and DMAP (29 mg, 0.24 mmol) in CH_2Cl_2 (36 ml) at room temperature. The solution was stirred for a further 3.5h then concentrated *in vacuo* and the residue taken up in CH_2Cl_2 (10 ml), washed with saturated NaHCO₃ solution (10 ml) then brine (10 ml) and dried (MgSO₄). Flash chromatography (15% EtOAc– CH_2Cl_2) gave **13** (29 mg, 65%) as a pale solid.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.18 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.84 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.42 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.20 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.60 (1 H, d, *J* = 15.2 Hz, C<u>H</u>H of PMB), 5.00 (1 H, s, ArCHS), 4.89 (1 H, dd, *J* = 11.4, 1.8 Hz, C<u>H</u>HO), 4.43 (1 H, br. s, ArCHN), 4.28 (1 H, dd, *J* = 11.4, 1.6 Hz, CH<u>H</u>O), 3.98 (1 H, d, *J* = 15.2 Hz, CH<u>H</u> of PMB), 3.87 (3 H, s, OCH₃), 3.78 (3 H, s, OCH₃), 3.78 (3 H, s, OCH₃), 2.91 (1 H, m, C<u>H</u>HS), 2.42 - 2.63 (3 H, m, CH<u>H</u>S and C<u>H</u>₂CO₂R).

¹³C NMR (101 MHz, CDCl₃) δ ppm 170.7 (C=O), 168.6 (C=O), 160.9 (Ar C-O), 159.4 (Ar C-O), 158.2 (Ar C-O), 134.6 (Ar <u>C</u>-C), 129.8 (Ar CH of PMB), 128.4 (Ar <u>C</u>-C), 114.5 (Ar CH of PMB), 102.0 (Ar CH), 98.2 (Ar CH), 63.4 (CH₂O), 59.9 (ArCHN), 56.1 (OCH₃), 55.7 (OCH₃), 55.6 (OCH₃), 47.2 (CH₂ of PMB), 41.3 (ArCHS), 38.8 (<u>C</u>H₂CO₂R), 26.5 (CH₂S). MS (ES+) *m/z* 466 [M+Na]⁺.

HRMS 466.1292; C₂₃H₂₅O₆NNaS⁺ requires 466.1295.

IR (thin film) v_{max} (cm⁻¹) 2394, 1742 (ester C=O), 1640 (amide C=O).

 $[\alpha]_D^{34} = +54.3^\circ (c = 1.44, CHCl_3).$

(*R*)-*tert*-Butyl 3-(((1*R*,4*R*)-1-(hydroxymethyl)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2trichloroethoxy)carbonyl)amino)propanoate S16

Silyl ether **10** (190 mg, 0.23 mmol, 1:1 dr) was dissolved in MeCN (2.3 ml) at 0 °C and 60% aqueous HF (0.23 ml) was added. The solution was stirred for 30 minutes then allowed to warm to room temperature and stirred for a further 90 minutes. The solution was neutralized by dropwise addition of saturated NaHCO₃ solution then extracted with EtOAc (3×15 ml). The extracts were washed with brine (20 ml), dried (MgSO₄) and concentrated *in vacuo*. Flash chromatography (40% EtOAc–pet. ether) gave **S16** (99 mg, 64%, single diastereoisomer) as a pale gum.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.22 (1 H, d, *J* = 8.6 Hz, NH), 7.16 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.81 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.40 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.19 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.46 (1 H, d, *J* = 14.9 Hz, C<u>H</u>H of PMB), 4.88 (1 H, s, ArCHS), 4.79 (1 H, d, *J* = 12.1 Hz, OC<u>H</u>HCCl₃), 4.77 (1 H, d, *J* = 12.1 Hz, OCH<u>H</u>CCl₃), 4.70 (1 H, ddd, *J* = 8.4, 6.2, 4.3 Hz, C<u>H</u>NHTroc), 4.41 (1 H, m, CHN), 4.38 (1 H, d, *J* = 14.9 Hz, CH<u>H</u> of PMB), 4.09 (1 H, m, C<u>H</u>HOH), 3.87 (3 H, s, OCH₃), 3.83 (1 H, m, CH<u>H</u>OH), 3.76 (3 H, s, OCH₃), 3.76 (3 H, s, OCH₃), 3.43 (2 H, m, CH₂S), 2.75 (1 H, m, OH), 1.49 (9 H, s, C(C<u>H₃)₃).</u>

¹³C NMR (101 MHz, CDCl₃) δ ppm 169.4 (C=O), 169.1 (C=O), 160.18 (Ar C-O), 158.6 (Ar C-O), 157.3 (Ar C-O), 154.6 (carbamate C=O), 135.2 (Ar C-C), 128.9 (Ar C-H of PMB), 128.5 (Ar C-C), 113.7 (Ar C-H of PMB), 112.9 (Ar C-C), 101.9 (Ar C-H), 97.7 (Ar C-H), 95.2 (CCl₃), 82.3 (OC(CH₃)₃), 74.3 (OCH₂CCl₃), 66.3 (CH₂OH), 61.8 (ArCHN), 55.5 (OCH₃), 55.3 (OCH₃), 55.1 (OCH₃), 54.9 (CHNHTroc), 48.8 (CH₂ of PMB), 40.9 (ArCHS), 36.1 (CH₂S), 27.7 (C(CH₃)₃).

MS (ES+) *m*/*z* 707 [M+H]⁺, 729 [M+Na]⁺.

HRMS 707.1356; C₃₀H₃₈N₂O₉SCl₃⁺ requires 707.1359.

IR (thin film) v_{max} (cm⁻¹) 3400-3300 (br., OH), 2935 (CH stretch), 1737 (ester C=O), 1732 (amide C=O), 1612 (carbamate C=O).

 $[\alpha]_D^{30} = -13.6^\circ$ (c = 0.76, EtOH).

(*R*)-3-(((1*R*, 4*R*)-1-(Hydroxymethyl)-5,7-dimethoxy-2-(4-methoxybenzyl)-3-oxo-1, 2, 3, 4tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2-trichloroethoxy)carbonyl)amino)propanoic acid 12

Ester **S16** (35 mg, 0.05 mmol) was dissolved in CH_2Cl_2 (1.3 ml) and TFA (0.44 mmol) was added. The solution was stirred at room temperature for 2 h then evaporated and the residue dried *in vacuo* to give crude **12** as a yellow gum which was used without further purification.

¹H NMR (500 MHz, CDCl₃) δ ppm 7.33 (1 H, d, *J* = 8.8 Hz, NH), 7.15 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.80 (2 H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.36 (1 H, d, *J* = 1.9 Hz, Ar CH), 6.17 (1 H, d, *J* = 1.9 Hz, Ar CH), 5.54 (1 H, d, *J* = 14.8 Hz, C<u>H</u>H of PMB), 4.93 (1 H, s, ArCHS), 4.85 (1 H, d, *J* = 12.0 Hz, OC<u>H</u>HCCl₃), 4.75 - 4.81 (1 H, m, C<u>H</u>NHTroc), 4.68 (1 H, d, *J* = 12.0 Hz, OCH<u>H</u>CCl₃), 4.46 (1 H, dd, *J* = 7.6, 4.5 Hz, ArCHN), 4.33 (1 H, d, *J* = 14.8 Hz, CH<u>H</u> of PMB), 4.11 (1 H, dd, *J* = 11.9, 7.6 Hz, C<u>H</u>HO), 3.86 (1 H, dd, *J* = 11.9, 4.5 Hz, CH<u>H</u>O), 3.83 (3 H, s, OCH₃), 3.76 (3 H, s, OCH₃), 3.75 (3 H, s, OCH₃), 3.55 (1 H, dd, *J* = 15.1, 2.8 Hz, C<u>H</u>HS), 3.34 (1 H, dd, *J* = 15.1, 6.9 Hz, CH<u>H</u>S)

¹³C NMR (126 MHz, CDCl₃) δ ppm 172.2 (C=O), 171.1 (C=O), 160.6 (Ar C-O), 159.1 (Ar C-O), 157.6 (Ar C-O), 155.2 (carbamate C=O), 135.0 (Ar <u>C</u>-C), 129.4 (Ar CH of PMB), 128.0 (Ar <u>C</u>-C), 113.9 (Ar CH of PMB), 113.1 (Ar <u>C</u>-C), 102.1 (Ar CH), 98.1 (Ar CH), 95.4 (CCl₃), 74.7 (O<u>C</u>H₂CCl₃), 66.8 (CH₂O), 62.2 (ArCHN), 55.8 (OCH₃), 55.4 (OCH₃), 55.3 (<u>C</u>HNHTroc), 55.2 (OCH₃), 49.7 (CH₂ of PMB), 41.9 (ArCHS), 37.3 (CH₂S).

MS (ES+) m/z 673 [M+Na]⁺.

HRMS 673.0549; C₂₆H₂₉N₂O₉SC₁₃Na⁺ requires 673.0552.

IR (thin film) v_{max} (cm⁻¹) 3400-3300 (br., OH), 2932, 1731, 1612.

2,2,2-Trichloroethyl ((1*R*,4*R*,8*R*)-10,12-dimethoxy-13-(4-methoxybenzyl)-5,14-dioxo-1,3,4,5,7,8-hexahydro-8,1-(epiminomethano)benzo[*g*][1,5]oxathiecin-4-yl)carbamate 14

Hydroxyacid **12** (0.05 mmol) was dissolved in CH_2Cl_2 (11 ml) and added *via* syringe pump over 5.5 h to a solution of MNBA (21 mg, 0.06 mmol) and DMAP (14.6 mg, 0.12 mmol) in CH_2Cl_2 (17 ml). After the addition was complete the reaction was stirred for a further 19 h then concentrated and the residue taken up in CH_2Cl_2 (10 ml) and washed with saturated NaHCO₃ solution (10 ml) then brine (10 ml) and dried (MgSO₄) before concentration *in vacuo*. Flash chromatography (10% EtOAc– CH_2Cl_2) gave **14** (18 mg, 57% for 2 steps) as a pale foam.

¹H NMR (400 MHz, DMSO-*d*₆, 120 °C) δ ppm 7.24 (1 H, d, *J* = 8.0 Hz, NH), 7.19 (2 H, d, *J* = 8.5 Hz, Ar CH of PMB), 6.87 (2 H, d, *J* = 8.8 Hz, Ar CH of PMB), 6.58 (1 H, d, *J* = 2.3 Hz, Ar CH), 6.56 (1 H, d, *J* = 2.3 Hz, Ar CH), 5.23 (1 H, dd, *J* = 11.8, 2.0 Hz, C<u>H</u>HO), 5.21 (1 H, d, *J* = 15.1 Hz, C<u>H</u>H of PMB), 4.81 (1 H, s, ArCHS), 4.77 (2 H, s, OCH₂CCl₃), 4.67 (1 H, br. s, ArCHN), 4.22 (1 H, td, *J* = 7.2, 3.0 Hz, C<u>H</u>NHTroc), 4.16 (1 H, dd, *J* = 11.8, 1.8 Hz, CH<u>H</u>O), 4.03 (1 H, d, *J* = 15.1 Hz, CH<u>H</u> of PMB), 3.86 (3 H, s, OCH₃), 3.74 (3 H, s, OCH₃), 3.04 (1 H, dd, *J* = 15.8, 7.0 Hz, C<u>H</u>HS), 2.68 (1 H, dd, *J* = 15.8, 2.9 Hz, CH<u>H</u>S).

¹³C NMR (101 MHz, DMSO-*d*₆, 120 °C) δ ppm 168.3 (C=O), 165.9 (C=O), 160.0 (Ar C-O), 158.3 (Ar C-O), 157.2 (Ar C-O), 152.9 (carbamate C=O), 134.2 (Ar <u>C</u>-C), 128.5 (Ar C-H of PMB), 128.3 (Ar <u>C</u>-C), 113.7 (Ar CH of PMB), 113.2 (Ar <u>C</u>-C), 102.4 (Ar C-H), 98.0 (Ar C-H), 95.4 (CCl₃), 73.6 (O<u>C</u>H₂CCl₃), 64.3 (CH₂O), 59.0 (ArCHN), 55.5 (OCH₃), 55.4 (<u>C</u>HNHTroc), 54.9 (OCH₃), 54.6 (OCH₃), 46.0 (CH₂ of PMB), 30.6 (CH₂S).

MS (ES+) m/z 655 [M+Na]⁺.

HRMS 633.0598; C₂₆H₂₈N₂O₈SCl₃⁺ requires 633.0627.

IR (thin film) v_{max} (cm⁻¹) 3410, 1737, 1643, 1611.

 $[\alpha]_D^{34} = +76.8^\circ (c = 1.25, EtOH).$

Synthesis of the protected ABH ring system

AcCl (2.15 ml, 30.0 mmol) was added to a 1 M solution of TiCl₄ in CH₂Cl₂ (30 ml, 30 mmol) at - 10 °C. The temperature was maintained below 0 °C and a solution of 1,3-dimethoxy-2methylbenzene 15 (2.28 g, 15.0 mmol) in CH₂Cl₂ (7.0 ml) was added over 10 minutes with vigorous stirring. The reaction was stirred at 0 °C for 30 minutes then poured into cooled 1 M HCl (70 ml) and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2 \times 50 ml). The organic extracts were combined and washed with 1 M HCl (2 \times 100 ml), saturated NaHCO₃solution (100 ml) then brine (100 ml), dried (MgSO₄) and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (25 ml) then KHCO₃ (2.59 g, 30.8 mmol) was added and the mixture cooled to 0 °C. A solution of MCPBA 70% (7.59 g, 30.8 mmol) in CH₂Cl₂ (50 ml) was added over 30 min then the reaction was stirred at room temperature for 17 h. An aqueous solution of 10% Na₂CO₃ (80 ml) and saturated Na₂SO₃ (20 ml) were added. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 50 ml). The extracts were combined and washed with 10% aqueous Na_2CO_3 (2 × 150 ml), then water (200 ml) and brine (200 ml) then dried (MgSO₄) and concentrated in vacuo. The residue was dissolved in MeOH (155 ml) and a solution of K₂CO₃ (21.5 g, 154 mmol) in water (77.5 ml) was added. The reaction was stirred at room temperature for 16 h then the solvent was evaporated. The residue was dissolved in water (100 ml) and extracted with CH_2Cl_2 (3 × 100 ml). The extracts were combined and dried (MgSO₄) then concentrated in vacuo to give 16 (1.95 g, 77%) as yellow oil.

¹H NMR (300 MHz, CDCl₃) δ ppm 6.76 (1H, d, *J* = 8.9 Hz, Ar CH), 6.55 (1H, d, *J* = 8.9 Hz, Ar CH), 5.26 (1H, br. s, OH), 3.79 (6H, s, OCH₃), 2.18 (3H, s, ArCH₃).

¹³C NMR (75 MHz, CDCl₃) δ ppm 151.9 (Ar C-O), 145.9 (Ar C-O), 142.9 (Ar C-O), 119.9 (Ar <u>C</u>-C), 111.6 (Ar CH), 106.7 (Ar CH), 60.9 (OCH₃), 56.1 (OCH₃), 9.3 (ArCH₃). NMR data was consistent with literature values.³

³Knölker, H.-J.; Fröhner, W.; Reddy, K. R. Synthesis, 2002, 557.

1-Bromo-2,3,5-trimethoxy-4-methylbenzene S17⁴

Phenol **16** (1.77 g, 10.5 mmol) was dissolved in anhydrous CH_2Cl_2 (20 ml) and K_2CO_3 (2.32 g, 16.8 mmol) was added. The mixture was cooled to -78 °C and a solution of Br_2 (0.60 ml, 11.6 mmol) in anhydrous CH_2Cl_2 (5 ml) was added over 2 h. The reaction mixture was added to a 10% aqueous solution of $Na_2S_2O_3$ and $NaHCO_3$ (1:1, 100 ml). The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3 × 70 ml). The organic phases were combined and washed with 10% aqueous solution of $Na_2S_2O_3$ and $NaHCO_3$ (2 × 150 ml) then brine (100 ml) and dried (MgSO₄) and concentrated *in vacuo*. The residue was dissolved in anhydrous DMF (29 ml) and K_2CO_3 (2.90 g, 21.0 mmol) and Me₂SO₄ (2.05 ml, 21.6 mmol) was added. The reaction was stirred at room temperature for 17 h. Further Me₂SO₄ (1.03 ml, 10.8 mmol) was added and the reaction was stirred at room temperature for a further 16 h. The reaction mixture was diluted with water (200 ml) and extracted with EtOAc (3 × 100 ml). The extracts were combined and washed with brine (200 ml) then dried (MgSO₄). Flash chromatography (10% Et₂O-pet. ether) gave **17** (1.66 g, 61%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 6.77 (1H, s, Ar CH), 3.84 (3H, s, OCH₃), 3.83 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 2.08 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 152.6 (Ar C-O), 154.6 (Ar C-O), 144.6 (Ar C-O), 120.6 (Ar <u>C</u>-C), 113.6 (Ar <u>C</u>-C), 109.7 (Ar CH), 60.8 (OCH₃), 60.6 (OCH₃), 55.9 (OCH₃), 8.9 (ArCH₃).

NMR data was consistent with literature values.⁴

2,3,5-Trimethoxy-4-methylbenzaldehyde S18⁵

OMe MeO СНО ÓMe

⁴ (a) Zhou, B.; Guo, J.; Danishefsky, S. J. *Org. Lett.*, 2002, **4**, 43. (b) Nieto-Oberhuber, C.; Pérez-Galán, P.; Herrero-Gómez, E.; Lauterbach, T.; Rodríguez, C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D. J.; Echavarren, A. M. *J. Am. Chem. Soc.*2007, **130**, 269.

⁵ (a) White, J. D.; Smits, H. *Org. Lett.*2005, **7**, 235. (b) Kitahara, Y.; Nakahara, S.; Numata, R.; Kubo, A. *Chem. Pharm. Bull.*1985, **33**, 2122.

Bromide **S17** (2.08 g, 7.97 mmol) was dissolved in anhydrous THF (130 ml) and the solution was cooled to -78 °C. *n*-BuLi (2.2 M in hexanes, 9.0 ml, 19.9 mmol) was added slowly. The reaction was stirred at -78 °C for 15 minutes then DMF (6.48 ml, 83.7 mmol) was added. The reaction was allowed to warm to -10 °C then saturated NH₄Cl solution (5 ml) was added. The reaction was stirred at room temperature for 20 minutes. H₂O (50 ml) was added and the phases separated. The aqueous phase was extracted with EtOAc (3 × 50 ml) then the extracts were combined, washed with brine (200 ml) then dried (MgSO₄) and concentrated *in vacuo*. Flash chromatography (10% Et₂O–*n*-hexane) gave **S18** (1.00 g, 60%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 10.33 (1H, s, CHO), 7.02 (1H, s, Ar CH), 3.94 (3H, s,

OCH₃), 3.85 (3H, s, OCH₃), 3.83 (3H, s, OCH₃), 2.19 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 189.4 (C=O), 154.5 (Ar C-O), 152.0 (Ar C-O), 151.3 (Ar C-O), 129.7 (Ar <u>C</u>-C), 127.0 (Ar <u>C</u>-C), 102.2 (Ar CH), 62.5 (OCH₃), 60.4 (OCH₃), 55.8 (OCH₃), 9.7 (CH₃).

NMR data was consistent with literature values.⁵

1,3,4-Trimethoxy-2-methyl-5-vinylbenzene 17

Methyltriphenylphosphonium bromide (4.29 g, 12.0 mmol) was suspended in anhydrous THF (40 ml) under N₂and KO*t*-Bu (1.57 g, 14.0 mmol) added and the mixture was stirred at room temperature for 30 minutes then cooled to -78 °C. A solution of aldehyde **S18** (2.10 g, 10.0 mmol) in THF (12 ml) was added dropwise then the reaction mixture was allowed to warm to room temperature. The reaction was quenched with MeOH (20 ml) and the solvent evaporated. The crude material was filtered through a short silica column (5% EtOAc–pet. ether) to give **17** (2.00 g, 9.62 mmol, 96%) as a colourless oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.02 (1H, dd, J = 17.9, 11.1 Hz, ArC<u>H</u>=CH₂), 6.74 (1H, s, Ar CH), 5.72 (1H, dd, J = 17.9, 1.3 Hz, CH<u>H</u>), 5.28 (1H, dd, J = 11.1, 1.3 Hz, C<u>H</u>H), 3.84 (6H, s, 2 × OCH₃), 3.80 (3H, s, OCH₃), 2.14 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 154.2 (Ar C-O), 152.1 (Ar C-O), 144.9 (Ar C-O), 131.2 (Ar CH), 128.5 (Ar <u>C</u>-C), 120.9 (Ar <u>C</u>-C), 113.9 (CH₂), 101.9 (Ar<u>C</u>H=CH₂), 61.1 (OCH₃), 60.5 (OCH₃), 55.7 (OCH₃), 9.0 (CH₃).

MS (ES+) *m*/*z* 208 [M]⁺, 209 [M+H]⁺, 231 [M+Na]⁺.

HRMS 209.1167; $C_{12}H_{17}O_3^+$ requires 209.1173. IR (thin film) v_{max} (cm⁻¹) 2933, 1601, 1572, 1480, 1463.

(S)-2-((tert-Butyldiphenylsilyl)oxy)-1-(2,3,5-trimethoxy-4-methylphenyl)ethanol S19

AD-mix- α (4.44 g) was dissolved in water (15 ml) and *t*-BuOH (10 ml) and the solution cooled to 0 °C. Styrene **S18** (0.67 g, 3.22 mmol) in *t*-BuOH (5 ml) was added and the solution stirred for 17 h. Saturated Na₂SO₃ solution (9 ml) was added and the reaction mixture was stirred for 30 minutes. The reaction mixture was extracted with CH₂Cl₂ (3 × 15 ml). The organic layers were combined and washed with brine (50 ml) then dried (MgSO₄). The crude product was dissolved in CH₂Cl₂ (23 ml) and imidazole (0.44 g, 6.44 mmol) and TBDPSCl (0.84 ml, 3.22 mmol) were added and the reaction was stirred at room temperature for 2 h. Water (20 ml) was added, the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 20 ml) then the organic phases were combined and dried (MgSO₄). Flash chromatography (2.5% EtOAc-pet. ether) gave **S19** (1.46 g, 3.03 mmol, 94% over 2 steps) as colourless oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.62-7.69 (4H, m, Ar CH of TBDPS), 7.35-7.46 (6H, m, Ar CH of TBDPS), 6.73 (1H, s, Ar CH), 5.10-5.14 (1H, m, ArCHOH), 3.89 (1H, dd, J = 10.1, 3.8 Hz, CHHO), 3.78 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 3.66 (1H, dd, J = 10.1, 2.0 Hz, CHHO), 3.64 (3H, s, OCH₃), 3.18 (1H, d, J = 3.3 Hz, OH), 2.11 (3H, s, ArCH₃), 1.10 (9H, s, C(CH₃)₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 154.1 (Ar C-O), 151.4 (Ar C-O), 144.1 (Ar C-O), 135.6 (Ar CH of TBDPS), 133.2 (Ar C-Si), 130.5 (Ar <u>C</u>-C), 129.7 (Ar CH of TBDPS), 127.7 (Ar CH of TBDPS), 120.0 (Ar <u>C</u>-C), 103.7 (Ar CH), 69.8 (ArCHOH), 68.6 (CH₂O), 60.6 (OCH₃), 60.1 (OCH₃), 55.7 (OCH₃), 26.9 (C(<u>C</u>H₃)₃), 19.3 (Si<u>C</u>(CH₃)₃), 8.8 (ArCH₃).

MS (ES+) *m*/*z* 503 [M+Na]⁺.

HRMS 503.2223; $C_{28}H_{36}O_5SiNa^+$ requires 503.2225.

IR (thin film) v_{max} (cm⁻¹) 2930, 2856, 1483, 1462.

 $[\alpha]_D^{24} = -2.5^\circ (c = 1.4, CHCl_3).$

(R)-2-((tert-Butyldiphenylsilyl)oxy)-1-(2,3,5-trimethoxy-4-methylphenyl)ethanamine 18

Alcohol **S19** (0.57 g, 1.19 mmol) and PPh₃ (0.78 g, 2.98 mmol) were dissolved in anhydrous THF (8 ml) and cooled to 0 °C. DIAD (0.59 ml, 2.98 mmol) was added dropwise, followed by DPPA (0.64 ml, 2.98 mmol) and the reaction mixture was stirred at 0 °C for 6 h then concentrated *in vacuo*. Flash chromatography (1% EtOAc–pet. ether) gave the azide intermediate which was dissolved in THF (8 ml) then PPh₃ (0.94 g, 3.57 mmol) and H₂O (0.21 ml, 11.9 mmol) were added. The reaction was heated at 60 °C for 3 h then concentrated *in vacuo*. Flash chromatography (30% EtOAc–pet. ether) gave **18** (0.30 g, 0.63 mmol, 53% over 2 steps) as a colourless oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 7.63 - 7.69 (4H, m, Ar CH of TBDPS), 7.34 - 7.43 (6H, m, Ar CH of TBDPS), 6.73 (1H, s, Ar CH), 4.49 (1H, dd, *J* = 7.9, 4.1 Hz, CHN), 3.83 (1H, dd, *J* = 9.8, 4.1 Hz, OC<u>H</u>H), 3.77 (6H, s, OCH₃), 3.62 - 3.66 (4H, m, OCH<u>H</u>, OCH₃), 2.11 (3H, s, ArCH₃), 1.08 (9H, s, C(CH₃)₃).

¹³C NMR (125 MHz, CDCl₃) δ ppm 154.0 (Ar C-O), 151.2 (Ar C-O), 144.6 (Ar C-O), 135.6 (Ar CH of TBDPS), 133.5 (Ar C-Si), 132.8 (Ar C-C), 129.6 (Ar CH of TBDPS), 127.6 (Ar CH of TBDPS), 119.5 (Ar C-C), 104.1 (Ar CH), 69.2 (CH₂O), 60.8 (OCH₃), 60.1 (OCH₃), 55.8 (OCH₃), 51.5 (ArCHN), 26.9 (C(<u>C</u>H₃)₃), 19.3 (Si<u>C</u>(CH₃)₃), 8.8 (ArCH₃).

MS (ES+) m/z 480 [M+H]⁺.

HRMS 480.2568; C₂₈H₃₈NO₄Si⁺ requires 480.2565.

IR (thin film) v_{max} (cm⁻¹) 2996, 2931, 1639, 1608, 1586, 1511, 1482.

 $[\alpha]_D^{24} = +0.4^\circ (c = 3.5, CHCl_3).$

Enantiomeric excess was measured as 95% using chiral HPLC (ChiralPak AD column, 98:2 hexane–isopropanol).

(*R*)-2-((*tert*-Butyldiphenylsilyl)oxy)-*N*-(4-methoxybenzyl)-1-(2,3,5-trimethoxy-4-methylphenyl)ethanamine S20

Amine **18** (0.24 g, 0.50 mmol) was dissolved in MeOH (10 ml) and 4-methoxybenzaldehyde (0.08 ml, 0.6 mmol) was added. The reaction was heated at reflux for 4 h then cooled to 0 °C. NaBH₄ (0.06 g, 1.50 mmol) was added quickly and the reaction was allowed to warm to room temperature and stirred for 2.5 h. The reaction mixture was concentrated *in vacuo* then taken up in water (20 ml) and extracted with CH_2Cl_2 (3 × 20 ml). The organic extracts were combined and dried (MgSO₄). Flash chromatography (20% EtOAc–pet. ether with 1% NEt₃) gave **S20** (0.30 g, 0.50 mmol, 100%) as a colourless oil.

¹H NMR (500 MHz, CDCl₃) δ ppm 6.61-7.64 (4H, m, Ar CH of TBDPS), 7.33 - 7.44 (6H, m, Ar CH of TBDPS), 7.25 (2H, d, *J* = 8.5 Hz, Ar CH of PMB), 6.86 - 6.88 (3H, m, Ar CH), 4.31 (1H, dd, *J* = 8.8, 4.1 Hz, ArCHN), 3.82 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.77-3.80 (1H, m, C<u>H</u>HO), 3.76 (3H, s, OCH₃), 3.71 (1H, d, *J* = 12.9 Hz, C<u>H</u>H of PMB), 3.62-3.66 (1H, m, OCH<u>H</u>), 3.57 (1H, d, *J* = 12.9 Hz, C<u>H</u>H of PMB), 3.53 (3H, s, OCH₃), 2.11 (3H, s, CH₃), 1.05 (9H, s, C(CH₃)₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 158.5 (Ar C-O), 154,2 (Ar C-O), 151.6 (Ar C-O), 145.5 (Ar C-O), 135.6 (Ar CH), 135.5 (Ar CH of TBDPS), 133.4 (Ar C-Si), 133.0 (Ar C-C), 130.7 (Ar C-C), 129.3 (Ar CH of TBDPS), 127.6 (Ar CH of TBDPS), 119.4 (Ar C-C), 113.8 (Ar CH of PMB), 104.3 (Ar CH), 68.0 (CH₂O), 60.6 (OCH₃), 60.1 (OCH₃), 57.3 (ArCHN), 55.8 (OCH₃), 55.3 (OCH₃), 51. 0 (CH₂ of PMB), 26.8 (C(CH₃)₃), 19.2 (SiC(CH₃)₃), 8.8 (ArCH₃). MS (ES+) m/z 600 [M+H]⁺.

HRMS 600.3141; C₃₆H₄₆NO₅Si⁺ requires 600.3140.

IR (thin film) v_{max} (cm⁻¹) 2931, 2856, 1638, 1610, 1510, 1461.

 $[\alpha]_D^{24} = -5.5^\circ (c = 1.2, CHCl_3).$

(*R*)-*N*-(2-((*tert*-Butyldiphenylsilyl)oxy)-1-(2,3,5-trimethoxy-4-methylphenyl)ethyl)-2hydroxy-*N*-(4-methoxybenzyl)acetamide S21

Amine **S20** (300 mg, 0.50 mmol) was dissolved in CH_2Cl_2 (8 ml) and AcOCH₂COCl (70µl, 0.60 mmol) was added and the reaction mixture was cooled to 0°C and NEt₃ (80µl, 0.60 mmol) was added. The reaction allowed to warm to room temperature and stirred for 5 h. The reaction mixture was concentrated *in vacuo* then the residue was dissolved in MeOH (10 ml) and a solution of K₂CO₃ (0.69 g, 5.00 mmol) in H₂O (5 ml) was added. The reaction was stirred at room temperature for 17 h then concentrated *in vacuo*. The residue was diluted with H₂O (20 ml) and extracted with CH₂Cl₂ (3 × 20 ml). The organic phases were combined and washed with brine (50 ml), dried (MgSO₄) and concentrated to give **S21** (300 mg, 92%) as a pale oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 - 7.62 (4H, m, Ar CH of TBDPS), 7.33 - 7.48 (6H, m, Ar CH of TBDPS), 6.97 (2H, d, J = 8.6 Hz, Ar CH of PMB of one rotamer), 6.92 (2H, d, J = 8.6 Hz, Ar CH of PMB of one rotamer), 6.71 (2H, d, J = 8.6 Hz, Ar CH of PMB of one rotamer), 6.70 (1H, s, Ar CH of one rotamer), 6.66 (2H, d, J = 8.6 Hz, Ar CH of PMB of one rotamer), 6.22 (1H, s, Ar CH of one rotamer), 5.87 - 5.90 (1H, m, ArCHN of one rotamer), 5.02 (1H, dd, J = 8.7, 5.4 Hz, ArCHN of one rotamer), 3.83 - 4.59 (6H, m, CH₂OH, CH₂OSi and CH₂ of PMB), 3.64 - 3.75 (12H, m, OCH₃), 2.09 (3H, s, ArCH₃), 1.02 (9H, s, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃) δ ppm 173.4 (C=O of one rotamer), 172.8 (C=O of one rotamer), 158.8 (Ar C-O of one rotamer), 158.4 (Ar C-O of one rotamer), 153.9 (Ar C-O), 151.8 (Ar C-O), 145.9 (Ar C-O of one rotamer), 145.8 (Ar C-O of one rotamer), 135.6 (Ar CH of TBDPS of one rotamer), 135.4 (Ar CH of TBDPS of one rotamer), 132.6 (Ar C-Si), 130.4 (Ar CH of TBDPS of one rotamer), 130.0 (Ar CH of TBDPS of one rotamer), 129.7 (Ar CH of PMB of one rotamer), 129.0 (Ar CH of PMB of one rotamer), 127.9 (Ar CH of TBDPS of one rotamer), 127.7 (Ar CH of one rotamer of TBDPS), 127.5 (Ar C-C of one rotamer), 125.8 (Ar C-C of one rotamer), 121.9 (Ar C-C of one rotamer), 121.1 (Ar C-C of one rotamer), 114.0 (Ar CH of PMB of one rotamer), 113.4 (Ar CH of PMB of one rotamer), 106.1 (Ar CH of one rotamer), 104.8 (Ar CH of one rotamer), 62.9 (CH₂OH), 60.7 (OCH₂), 61.2 (OCH₃), 60.0 (OCH₃ of one rotamer), 59.9 (OCH₃ of one rotamer), 56.0 (OCH₃), 55.8

(CHN of one rotamer), 55.3 (OCH₃ of one rotamer), 55.2 (OCH₃ of one rotamer), 54.8 (CHN of one rotamer), 47.3 (NCH₂ of one rotamer), 45.2 (NCH₂ of one rotamer), 26.7 (C(<u>CH₃)₃</u>), 19.0 (<u>C</u>(CH₃)₃), 8.8 (ArCH₃). MS (ES+) m/z 658 [M+H]⁺, 680 [M+Na]⁺. HRMS 658.3193; C₃₈H₄₈NO₇Si⁺ requires 658.3195. IR (thin film) v_{max} (cm⁻¹) 3432, 3071, 2932, 2857, 1642, 1610, 1586, 1511, 1485. [α]_D²⁴= -7.8° (c = 3.5, CHCl₃).

SO₃•py (220 mg, 1.38 mmol) was dissolved in DMSO (0.22 ml, 2.75 mmol) and CH₂Cl₂ (5 ml) at 0 °C. After 15 minutes, NEt₃ (0.77 ml, 5.50 mmol) and a solution of hydroxyamide **S21** (183 mg, 0.28 mmol) in CH₂Cl₂ (0.5 ml) were added. The reaction was allowed to warm to room temperature and stirred for 16 h then quenched with NaHCO₃ solution (15 ml) and extracted with CH₂Cl₂ (3×15 ml). The organic phases were combined and washed with 1 M HCl (40 ml) then NaHCO₃ solution (40 ml) and dried (MgSO₄). The crude product was dried under high vacuum at 35 °C for 4-5 h. The crude glyoxamide **3** (P = Me) was then dissolved in anhydrous CH₂Cl₂ (5 ml), methyl 3-mercaptopropanoate (0.017 ml, 0.14 mmol) was added and the reaction was stirred at room temperature for 17 h then concentrated *in vacuo*. The residue was dissolved in anhydrous CHCl₃ (3 ml), Sc(OTf)₃ (34 mg, 0.07 mmol) was added and the reaction was heated at reflux for 16 h, then NaHCO₃ solution (10 ml) was added and the mixture extracted with CH₂Cl₂ (3×10 ml). The organic phases were combined and dried (MgSO₄). Flash chromatography (20-60% EtOAc–pet. ether) gave a 1:1 mixture of **19a** and **19b** (151 mg, 0.20 mmol, 71%) as a pale oil.

For **19a** ¹H NMR (500 MHz, CDCl₃) δ ppm 7.20 - 7.73 (10H, m, Ar CH of TBDPS), 7.13 (2H, d, *J* = 7.7 Hz, Ar CH of PMB), 6.85 (2H, d, *J* = 7.7 Hz, Ar CH of PMB), 5.54 (1H, d, *J*

= 14.8 Hz, C<u>H</u>H of PMB), 4.69 (1H, br. s, ArCHN), 4.57 (1H, s, ArCHS), 3.94 (1H, dd, J = 10.4, 2.5 Hz, C<u>H</u>HO), 3.86 (1H, d, J = 14.8 Hz, CH<u>H</u> of PMB), 3.79 (3H, s, OCH₃), 3.73 (3H, s, OCH₃), 3.67 (3H, s, OCH₃), 3.66 (3H, s, OCH₃), 3.48 (3H, s, OCH₃), 3.42 - 3.44 (1H, m, CH<u>H</u>O), 3.20 - 3.26 (1H, m, SC<u>H</u>H), 2.93 -2.99 (1H, m, SC<u>H</u>H), 2.59 - 2.69 (2H, m, C<u>H₂</u>CO₂Me), 2.27 (3H, s, ArCH₃), 0.94 (9H, s, C(CH₃)₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 172.5 (C=O), 170.8 (C=O), 158.9 (Ar C-O), 152.0 (Ar C-O), 151.0 (Ar C-O), 144.3 (Ar C-O), 135.6 (Ar <u>C</u>-C), 135.3 (Ar CH of TBDPS), 133.0 (Ar C-Si), 132.5 (Ar <u>C</u>-C), 129.9 (Ar <u>C</u>-C), 129.5 (Ar CH of TBDPS), 128.9 (Ar <u>C</u>-C), 127.8 (Ar CH of TBDPS), 127.4 (Ar CH of PMB), 125.5 (Ar <u>C</u>-C), 123.9 (Ar <u>C</u>-C), 123.1 (Ar <u>C</u>-C), 114.0 (Ar CH of PMB), 63.3 (CH₂O), 61.2 (OCH₃), 60.0 (2 × OCH₃), 57.3 (ArCHN), 55.2 (OCH₃), 51.6 (OCH₃), 46.6 (CH₂ of PMB), 42.3 (ArCHS), 34.2 (<u>C</u>H₂CO₂Me), 28.2 (<u>C</u>H₂S), 26.5 (C(CH₃)₃), 19.0 (SiC(CH₃)₃), 9.8 (CH₃).

MS (ES+) *m*/*z* 758 [M+H]⁺, 780 [M+Na]⁺.

HRMS 758.3177; C₄₂H₅₂NO₈SiS⁺ requires 758.3178.

IR (thin film) v_{max} (cm⁻¹) 2997, 1738, 1651, 1513, 1465, 1428.

 $[\alpha]_D^{24} = -15.9^\circ (c = 0.64, CHCl_3).$

For **19b** ¹H NMR (500 MHz, CDCl₃) δ ppm 7.69 - 7.73 (4H, m, Ar CH of TBDPS), 7.38 - 7.40 (6H, m, Ar CH of TBDPS), 7.16 (2H, d, J = 8.5 Hz, Ar CH of PMB), 6.80 (2H, d, J = 8.5 Hz, Ar CH of PMB), 5.68 (1H, d, J = 14.5 Hz, C<u>H</u>H of PMB), 4.91 (1H, dd, J = 9.6, 3.3 Hz, ArCHN), 4.74 (1H, s, ArCHS), 4.62 (1H, d, J = 14.5 Hz, CH<u>H</u> of PMB), 4.42 - 4.46 (1H, dd, J = 10.1, 9.6 Hz, C<u>H</u>HO), 3.81 (3H, s, OCH₃), 3.79 (1H, dd, J = 10.1, 3.3 Hz, CH<u>H</u>O), 3.76 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 3.70 (3H, s, OCH₃), 3.43 (3H, s, OCH₃), 3.38 - 3.41 (1H, m, SCH<u>H</u>), 3.06 - 3.12 (1H, m, SCH<u>H</u>), 2.85 - 2.88 (2H, m, C<u>H</u>₂CO₂Me), 2.14 (3H, s, ArCH₃), 1.13 (9H, s, C(CH₃)₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 172.4 (C=O), 168.8 (C=O), 158.8 (Ar C-O), 151.7 (Ar C-O), 151.1 (Ar C-O), 144.9 (Ar C-O), 135.6 (Ar CH of TBDPS), 133.2 (Ar C-Si), 132.9 (Ar \underline{C} -C), 129.7 (Ar CH of TBDPS), 129.6 (Ar \underline{C} -C), 129.5 (Ar CH of PMB), 127.7 (Ar CH of TBDPS), 125.9 (Ar \underline{C} -C), 125.3 (Ar \underline{C} -C), 122.0 (Ar \underline{C} -C), 114.0 (Ar \underline{C} -C), 113.9 (Ar CH of PMB), 69.1 (CH₂O), 61.5 (OCH₃), 60.0 (2 × OCH₃), 57.0 (ArCHN), 55.2 (OCH₃), 51.7 (OCH₃), 49.7 (CH₂ of PMB), 40.3 (ArCHS), 34.3 (\underline{C} H₂CO₂Me), 28.5 (SCH₂), 26.9 (C(\underline{C} H₃)₃), 19.2 (Si \underline{C} (CH₃)₃), 9.7 (CH₃).

MS (ES+) m/z 758 $[M+H]^+$, 780 $[M+Na]^+$.

HRMS 758.3193; $C_{42}H_{52}NO_8SiS^+$ requires 758.3178. IR (thin film) v_{max} (cm⁻¹) 2934, 1739, 1649, 1512, 1463. $[\alpha]_D^{24} = -2.6^\circ$ (c = 0.66, CHCl₃).

 $(R)-Methyl \ \ 3-(((1R,4R)-1-(((tert-butyldiphenylsilyl)oxy) methyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6-methyl-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2-trichloroethoxy)carbonyl)amino)propanoate \ 20a \ and \ (R)-methyl \ \ 3-(((1R,4S)-1-(((tert-butyldiphenylsilyl)oxy) methyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6-methyl-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinolin-4-yl)thio)-2-((2,2,2-tetrahydroisoquinoli$

trichloroethoxy)carbonyl)amino)propanoate 20b

SO₃•py (289 mg, 1.82 mmol) was dissolved in DMSO (0.29 ml, 3.71 mmol) and CH₂Cl₂ (7 ml) at 0 °C. After 15 minutes, NEt₃ (1.02 ml, 7.33 mmol) and a solution of hydroxyamide **S21** (236 mg, 0.36 mmol) in CH_2Cl_2 (4 ml) were added and the reaction allowed to warm to room temperature and stirred for 16 h. NaHCO₃ solution (15 ml) was added and the mixture extracted with CH_2Cl_2 (3 × 15 ml). The organic extracts were combined and washed with 1 M HCl (30 ml), NaHCO₃ solution (30 ml), dried (MgSO₄) and concentrated in vacuo. The crude glyoxamide 3 (P = Me) was dried under high vacuum at 35 °C for 4-5 h then dissolved in CH₂Cl₂ (10)ml) (*R*)-methyl 3-mercapto-2-(((2,2,2and trichloroethoxy)carbonyl)amino)propanoate (222 mg, 0.72 mmol) was added. The reaction was stirred at room temperature for 16 h then Sc(OTf)₃ (180 mg, 0.36 mmol) was added and the reaction was heated at reflux for 17 h. NaHCO₃ solution (10 ml) was added and the mixture extracted with CH_2Cl_2 (3 × 10 ml). The organic phases were combined and dried (MgSO₄). Flash chromatography (20-60% EtOAc-pet. ether) gave a 1:1 mixture of 20a and **20b** (284mg, 0.30 mmol, 84%) as a pale oil.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.29 - 7.72 (20 H, m, 10 × Ar CH), 7.15 - 7.20 (4H, m, 2 × Ar CH), 6.80 - 6.86 (4H, m, 2 × Ar CH), 5.70 (1H, d, J = 14.6 Hz, C<u>H</u>H of PMB of one diastereoisomer), 5.30 - 5. 39 (2H, m, C<u>H</u>HO of one diastereoisomer, and C<u>H</u>H of PMB of
one diastereoisomer), 4.89 - 4.92 (2H, m, ArCHS of one diastereoisomer and ArCHN of one diastereoisomer), 4.75 - 4.84 (6H, m, CH₂CCl₃ and C<u>H</u>NH of both diastereoisomers), 4.59 - 4.63 (2H, m, CH<u>H</u> of PMB of one diastereoisomer and ArCHS of one diastereoisomer), 4.37 (1H, d, J = 14.6 Hz, CH<u>H</u> of PMB of one diastereoisomer), 4.29 (1H, dd, J = 10.3, 10.3 Hz, OC<u>H</u>H of one diastereoisomer), 3.70 - 3.84 (27H, m, 4 × OCH₃, CH<u>H</u>O of both diastereoisomers and ArCHN of one diastereoisomer), 3.52 - 3.62 (2H, m, SC<u>H</u>H), 3.43 (3H, s, OCH₃ of one diastereoisomer), 3.40 (3H, s, OCH₃ of one diastereoisomer), 3.19 - 3.25 (2H, m, SCH<u>H</u>), 2.24 (3H, s, ArCH₃ of one diastereoisomer), 2.14 (3H, s, ArCH₃ of one diastereoisomer), 1.12 (9H, s, C(CH₃)₃ of one diastereoisomer), 0.99 (9H, s, C(CH₃)₃ of one diastereoisomer).

¹³C NMR (100 MHz, CDCl₃) δ ppm 171.4 (C=O), 170.9 (C=O), 168.8 (C=O), 159.0 (Ar C-O of one diastereoisomer), 158.9 (Ar C-O of one diastereoisomer), 154.7 (Ar C-O of one diastereoisomer), 152.7 (Ar C-O of one diastereoisomer), 151.4 (Ar C-O of one diastereoisomer), 150.7 (Ar C-O of one diastereoisomer), 144.9 (Ar C-O of one diastereoisomer), 144.2 (Ar C-O of one diastereoisomer), 133.0 (Ar C-Si of one diastereoisomer), 132.8 (Ar C-Si of one diastereoisomer), 132.6 (Ar C of one diastereoisomer), 132.4 (Ar C of one diastereoisomer), 129.9 (2 × Ar CH of one diastereoisomer), 129.8 (2 \times Ar CH of one diastereoisomer), 129.5 (2 \times Ar CH of one diastereoisomer), 129.4 (2 × Ar CH of one diastereoisomer), 129.2 (Ar C of one diastereoisomer), 128.5 (Ar C of one diastereoisomer), 127.8 (Ar CH of TBDPS of one diastereoisomer), 127.7 (Ar CH of TBDPS of one diastereoisomer), 126.7 (Ar C of one diastereoisomer), 126.0 (Ar C of one diastereoisomer), 124.9 (Ar C of one diastereoisomer), 124.1 (Ar C-C of one diastereoisomer), 123.1 (Ar C-C of one diastereoisomer), 121.7 (Ar C-C of one diastereoisomer), 114.0 (Ar CH of PMB of one diastereoisomer), 113.9 (Ar CH of PMB of one diastereoisomer), 95.5 (CCl₃ of both diastereoisomers), 74.7 (CH₂CCl₃ of one diastereoisomer), 74.6 (CH₂CCl₃ of one diastereoisomer), 69.2 (CH₂OSi of one diastereoisomer), 65.8 (CHNHTroc of one diastereoisomer), 65.5 (CH₂OSi of one diastereoisomer), 61.4 (OCH₃), 60.8 (OCH₃), 60.0 (OCH₃), 56.8 (OCH₃), 56.0 (ArCHN of one diastereoisomer), 55.7 (ArCHN of one diastereoisomer), 55.2 (OCH₃), 52.7 (CHNHTroc), 49.1 (CH₂ of PMB of one diastereoisomer), 48.8 (CH₂ of PMB of one diastereoisomer), 40.8 (ArCHS of both diastereoisomers), 35.1 (CH₂S of both diastereoisomers), 26.9 (C(\underline{CH}_3)₃ of one diastereoisomer), 26.8 (C(\underline{CH}_3)₃ of one

diastereoisomer), 19.2 ($\underline{C}(CH_3)_3$ of one diastereoisomer), 19.0 ($\underline{C}(CH_3)_3$ of one diastereoisomer), 9.8 (ArCH₃ of one diastereoisomer), 9.4 (ArCH₃ of one diastereoisomer). MS (ES+) m/z 947 [M+]⁺. HRMS 947.2366; $C_{45}H_{54}N_2O_{10}SSiCl_3^+$ requires 947.2329. IR (thin film) v_{max} (cm⁻¹) 2933, 1738, 1640, 1511, 1460, 1427, 1408. [α]_D²⁴= -1.6° (c = 0.3, CHCl₃).

Methyl 3-(((1*R*,4*R*)-1-(hydroxymethyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6-methyl-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoate S22

Silyl ether **19** (1:1 dr, 40 mg, 52.8 μ mol) was dissolved in MeCN (0.5 ml), pyridine (0.2 ml) was added and the mixture was cooled to 0 °C then 60% aqueous HF (0.05 ml) was added. The reaction was stirred at 0 °C for 2 hours then allowed to warm to room temperature over 15 hours. Aqueous 1 M HCl (10 ml) was added and the mixture extracted with CH₂Cl₂ (3 × 10 ml). The organic phase was washed with aqueous 1 M HCl (20 ml) then dried (MgSO₄). Flash chromatography (45% EtOAc–petrol. ether) gave recovered starting material (10 mg, 25%) and **S22** (22 mg, 31 μ mol, 71% based on recovered starting material).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.19 (2H, d, J = 8.7 Hz, Ar CH of PMB), 6.82 (2H, d, J = 8.7 Hz, Ar CH of PMB), 5.43 (1H, d, J = 14.9 Hz, C<u>H</u>H of PMB), 4.79 (1H, s, ArCHS), 4.75 (1H, dd, J = 7.1, 5.0 Hz, ArCHN), 4.35 (1H, d, J = 14.9 Hz, CH<u>H</u> of PMB), 4.16 - 4.20 (1H, m, C<u>H</u>HOH), 3.89 - 3.93 (1H, m, CH<u>H</u>OH), 3.86 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.76 (3H, s, OCH₃), 3.72 (3H, s, OCH₃), 3.57 (3H, s, OCH₃), 3.30 - 3.40 (1H, m, SC<u>H</u>H), 3.16 - 3.23 (1H, m, SCH<u>H</u>), 2.82 - 2.93 (2H, m, C<u>H</u>₂CO₂Me), 2.19 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 172.5 (C=O), 168.8 (C=O), 158.9 (Ar C-O), 152.1 (Ar C-O), 151.4 (Ar C-O), 144.8 (Ar C-O), 129.4 (Ar CH of PMB), 129.0 (Ar <u>C</u>-C), 126.0 (Ar <u>C</u>-C), 125.7 (Ar <u>C</u>-C), 121.6 (Ar <u>C</u>-C), 114.0 (Ar CH of PMB), 66.1 (CH₂OH), 61.6 (OCH₃), 60.1 (2 × OCH₃), 57.4 (ArCHN), 55.2 (OCH₃), 51.8 (OCH₃), 49.1 (CH₂ of PMB), 40.6 (ArCHS), 34.3 (<u>C</u>H₂CO₂Me), 28.6 (CH₂S), 9.8 (ArCH₃).

MS (ES+) *m*/*z* 542 [M+Na]⁺.

HRMS 520.2004; C₂₆H₃₄NO₈S⁺ requires 520.2000.

IR (thin film) v_{max} (cm⁻¹) 2937, 1736, 1641, 1612, 1511, 1460. [α]_D²⁴= +3.2° (c = 1.2, CHCl₃).

3-(((*1R*,4*R*)-1-(hydroxymethyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6-methyl-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)propanoic acid 21

Ester **S22** (80 mg, 0.15 mmol) was dissolved in MeOH (5.6 ml) and a solution of K_2CO_3 (0.39 g, 2.80 mmol) in H₂O (2.8 ml) was added and the reaction was stirred at room temperature for 16 h. The reaction mixture was concentrated *in vacuo* then the residue was dissolved in H₂O (5 ml), acidified to pH 5.5 with 1 M HCl then extracted with CH₂Cl₂ (3 × 10 ml). The organic phases were combined, dried (MgSO₄) and concentrated to give **21** (55 mg, 0.11 mmol, 73%) as a pale yellow foam.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.18 (2H, d, *J* = 8.6 Hz, Ar CH of PMB), 6.81 (2H, d, *J* = 8.6 Hz, Ar CH of PMB), 5.46 (1H, d, *J* = 14.6 Hz, C<u>H</u>H of PMB), 4.82 (1H, s, ArCHS), 4.76 (1H, dd, *J* = 7.3, 4.8 Hz, ArCHN), 4.35 (1H, d, *J* = 14.6 Hz, CH<u>H</u> of PMB), 4.16 - 4.21 (1H, m, C<u>H</u>HOH), 3.88 - 3.93 (1H, m, CH<u>H</u>OH), 3.87 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 3.56 (3H, s, OCH₃), 3.32 - 3.39 (1H, m, SC<u>H</u>H), 3.17 -3.24 (1H, m, SCH<u>H</u>), 2.94 - 3.01 (1H, m, C<u>H</u>HCO₂Me), 2.81 - 2.88 (1H, m, CH<u>H</u>CO₂Me), 2.19 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 175.4 (C=O), 169.6 (C=O), 159.0 (Ar C-O), 152.0 (Ar C-O), 151.4 (Ar C-O), 144.8 (Ar C-O), 129.5 (Ar CH of PMB), 128.7 (Ar <u>C</u>-C), 126.1 (Ar <u>C</u>-C), 125.4 (Ar <u>C</u>-C), 121.7 (Ar <u>C</u>-C), 114.0 (Ar CH of PMB), 66.1 (CH₂OH), 61.5 (OCH₃), 60.2 (2 × OCH₃), 57.3 (ArCHN), 55.2 (OCH₃), 49.4 (CH₂ of PMB), 40.6 (ArCHS), 34.4 (CH₂CO₂H), 28.8 (SCH₂), 9.8 (ArCH₃).

MS (ES–) *m*/*z* 504 [M-H][–].

HRMS 504.1705, C₂₅H₃₀NO₈S⁻ requires: 504.1697

IR (thin film) v_{max} (cm⁻¹) 2904, 1724, 1613, 1512, 1465.

 $[\alpha]_D^{24} = -3.7^\circ (c = 1.1, CHCl_3)$

(1*R*,8*R*)-9,10,12-trimethoxy-13-(4-methoxybenzyl)-11-methyl-3,4,7,8-tetrahydro-8,1-(epiminomethano)benzo[g][1,5]oxathiecine-5,14(1*H*)-dione 23

A solution of **21** (50 mg, 0.099 mmol) in CH_2Cl_2 (10 ml) was added using a syringe pump over 12 h to a solution of MNBA (41 mg, 0.12 mmol) and DMAP (27 mg, 0.22 mmol) in CH_2Cl_2 (10 ml) at room temperature. The solution was stirred for a further 3h then NaHCO₃ solution (20 ml) was added and the phases separated. The aqueous phase was extracted with CH_2Cl_2 (2 × 20 ml) then the organic layers were combined and dried (MgSO₄). Flash chromatography (40% EtOAc–pet. ether) gave **23** (34.7 mg, 0.071 mmol, 72%) as a white foam.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.22 (2H, d, J = 8.7 Hz, Ar CH of PMB), 6.85 (2H, d, J = 8.7 Hz, Ar CH of PMB), 5.55 (1H, d, J = 15.4 Hz, C<u>H</u>H of PMB), 5.01 (1H, s, ArCHS), 4.84 (1H, dd, J = 11.3, 2.0 Hz, C<u>H</u>HO), 4.68 (1H, br. s, ArCHN), 4.34 (1H, dd, J = 11.3, 1.3 Hz, CH<u>H</u>O), 4.01 (1H, d, J = 15.4 Hz, CH<u>H</u> of PMB), 3.81 (OCH₃), 3.80 (OCH₃), 3.78 (OCH₃), 3.69 (OCH₃), 2.97 -3.02 (1H, m, SCH<u>H</u>), 2.64 - 2.71 (1H, m, SC<u>H</u>H), 2.47 - 2.60 (2H, m, CH₂CO₂Me), 2.22 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 170.5 (2 × C=O), 159.1 (Ar C-O), 152.2 (Ar C-O), 151.2 (Ar C-O), 144.6 (Ar C-O), 129.5 (Ar CH of PMB), 128.3 (2 × Ar <u>C</u>-C), 126.1 (Ar <u>C</u>-C), 123.7 (Ar <u>C</u>-C), 114.1 (Ar CH of PMB), 61.9 (OCH₂), 61.0 (OCH₃), 60.1 (OCH₃), 60.0 (OCH₃), 55.2 (OCH₃), 55.1 (ArCHN), 47.1 (CH₂ of PMB), 41.2 (CHS), 38.4 (SCH₂), 26.8 (<u>C</u>H₂CO₂Me), 10.0 (ArCH₃).

MS (ES+) *m*/*z* 488 [M+H]⁺, 510 [M+Na]⁺.

HRMS 488.1759, C₂₅H₃₀NO₇S⁺requires 488.1738.

IR (thin film) v_{max} (cm⁻¹) 2937, 1743, 1645, 1512, 1460.

 $[\alpha]_D^{24} = +14.2^\circ (c = 3.2, CHCl_3).$

(*R*)-Methyl 3-(((1*R*,4*R*)-1-(hydroxymethyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6methyl-3-oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2trichloroethoxy)carbonyl)amino)propanoate S23

Silyl ether **20** (65 mg, 68 μ mol) was dissolved in MeCN (0.7 ml), pyridine (0.4 ml) was added and the mixture was cooled to 0 °C then aqueous 60% HF (0.1 ml) was added and the reaction was stirred then allowed to warm to room temperature gradually and stirred for a further 15 hours. 1 M HCl (15 ml) was added and extracted by CH₂Cl₂ (3 × 15 ml). The organic phases were washed with aqueous 1 M HCl (30 ml) then dried (MgSO₄) and evaporated to give crude product. Flash chromatography (45% EtOAc–petrol. ether) gave recovered starting material (12 mg, 18%) and **S23** (31.5 mg, 44 µmol, 65%, 79% based on recovered stating material).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.20 (2H, d, J = 8.6 Hz, Ar CH of PMB), 6.95 (1H, d, J = 8.8 Hz, NH), 6.81 (2H, d, J = 8.6 Hz, Ar CH of PMB), 5.57 (1H, d, J = 14.8 Hz, C<u>H</u>H of PMB), 4.90 - 4.96 (2H, m, CHS and C<u>H</u>NHTroc), 4.76 - 4.78 (3H, m, CH₂CCl₃ and ArCHN), 4.40 (1H, d, J = 14.8 Hz, CH<u>H</u> of PMB), 4.10 - 4.16 (1H, m, C<u>H</u>HO), 3.76 - 3.85 (13H, m, 4 × OCH₃ and CH<u>H</u>O), 3.54 - 3.58 (4H, m, SC<u>H</u>H and OCH₃), 3.34 - 3.40 (1H, m, SCH<u>H</u>), 2.19 (3H, s, Ar CH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 171.2 (C=O), 169.4 (C=O), 158.9 (carbamate C=O), 155.1 (Ar C-O), 152.3 (Ar C-O), 151.7 (Ar C-O), 144.8 (Ar C-O), 129.6 (Ar CH of PMB), 128.9 (Ar <u>C</u>-C), 126.1 (Ar <u>C</u>-C), 125.4 (Ar <u>C</u>-C), 121.1 (Ar <u>C</u>-C), 114.0 (Ar CH of PMB), 95.3 (CCl₃), 74.7 (O<u>C</u>H₂CCl₃), 66.0 (OCH₂), 61.6 (OCH₃), 60.2 (OCH₃), 60.1 (OCH₃), 57.2 (ArCHN), 55.2 (OCH₃), 54.9 (CHNHTroc), 52.8 (OCH₃), 49.5 (CH₂ of PMB), 42.1 (ArCHS), 36.7 (SCH₂), 9.9 (ArCH₃).

MS (ES+) *m*/*z* 731 [M+Na]⁺.

HRMS 709.1183; C₂₉H₃₆N₂O₁₀SCl₃⁺ requires 709.1151.

IR (thin film) v_{max} (cm⁻¹) 3307, 2951, 1736, 1630, 1511, 1463, 1408.

 $[\alpha]_D^{24} = -2.6^\circ (c = 2.7, CHCl_3).$

(*R*)-3-(((1*R*,4*R*)-1-(hydroxymethyl)-5,7,8-trimethoxy-2-(4-methoxybenzyl)-6-methyl-3oxo-1,2,3,4-tetrahydroisoquinolin-4-yl)thio)-2-(((2,2,2trichloroethoxy)carbonyl)amino)propanoic acid 22

Ester **S23** (26 mg, 0.037 mmol) was dissolved in MeOH (1 ml) and a solution of K_2CO_3 (10 mg, 0.073 mmol) in H_2O (0.5 ml) was added and the reaction was stirred at room temperature for 4 h. The residue was diluted with H_2O (2 ml) and acidified to pH 5.5 with 1 M HCl then extracted with CH_2Cl_2 (3 × 10 ml). The organic layers were combined and dried (MgSO₄). Flash chromatography (50% EtOAc–*n*-hexane with 0.5% TFA) gave **22** (14.5 mg, 0.021 mmol, 56%) as a yellow foam.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.18 (2H, d, *J* = 8.3 Hz, Ar CH of PMB), 7.06 (1H, d, *J* = 7.8 Hz, NH of one rotamer), 6.80 (2H, d, *J* = 8.3 Hz, Ar CH of PMB), 6.37 (1H, d, *J* = 7.8 Hz, NH of one rotamer), 5.60 (1H, d, *J* = 14.8 Hz, C<u>H</u>H of PMB of one rotamer), 5.50 (1H, d, *J* = 14.8 Hz, C<u>H</u>H of PMB of one rotamer), 4.97 (1H, s, ArCHS), 4.69 - 4.86 (4H, m, C<u>H</u>₂CCl₃, ArCHN and C<u>H</u>NHTroc), 4.40 (1H, d, *J* = 14.8 Hz, CH<u>H</u> of PMB of one rotamer), 4.32 (1H, d, *J* = 14.8 Hz, CH<u>H</u> of PMB of one rotamer), 4.07 - 4.22 (1H, m, C<u>H</u>HO), 3.74 - 3.86 (10H, m, OCH₃ and CH<u>H</u>O), 3.63 (1H, dd, *J* = 14.9, 2.5 Hz, C<u>H</u>HS), 3.54 (3H, s, OCH₃), 3.31 (1H, dd, *J* = 14.9, 7.8 Hz, CH<u>H</u>S), 2.17 (3H, s, ArCH₃).

¹³C NMR (100 MHz, CDCl₃) δ ppm 170.7 (C=O), 159.0 (2 × C=O), 155.3 (Ar C-O), 152.2 (Ar C-O), 151.7 (Ar C-O), 144.7 (Ar C-O), 129.7 (Ar CH of PMB of one rotamer), 129.5 (Ar CH of PMB of one rotamer), 128.2 (Ar <u>C</u>-C), 126.2 (Ar <u>C</u>-C), 124.9 (Ar <u>C</u>-C), 121.1 (Ar <u>C</u>-C), 114.1 (Ar CH of PMB of other rotamer), 114.0 (Ar CH of PMB of one rotamer), 95.2 (CCl₃), 74.8 (<u>CH₂CCl₃</u>), 65.9 (CH₂O), 61.5 (OCH₃), 60.2 (OCH₃), 60.1 (OCH₃), 57.3 (CHNHTroc), 55.2 (ArCHN and OCH₃), 50.1 (CH₂ of PMB), 42.6 (ArCHS), 37.6 (CH₂S), 9.6 (ArCH₃).

MS (ES+) *m*/*z* 695 [M+H]⁺, 717 [M+Na]⁺.

HRMS 717.0819; $C_{28}H_{33}N_2O_{10}SNa^+$ requires 717.0814.

IR (thin film) v_{max} (cm⁻¹) 2927, 1728, 1629, 1512, 1465.

 $[\alpha]_{D}^{24} = -8.9^{\circ} (c = 1.2, CHCl_3).$

2,2,2-Trichloroethyl ((1*R*,4*R*,8*R*)-9,10,12-trimethoxy-13-(4-methoxybenzyl)-11-methyl-5,14-dioxo-1,3,4,5,7,8-hexahydro-8,1-(epiminomethano)benzo[g][1,5]oxathiecin-4-

yl)carbamate 2

A solution of hydroxyacid **22** (12 mg, 17.2 μ mol) in CH₂Cl₂ (7 ml) was added *via* syringe pump over 12 h at room temperature to MNBA (7.7 mg, 22.4 μ mol) and DMAP (5.0 mg, 41.3 μ mol) in anhydrous CH₂Cl₂ (5 ml) then the reaction was stirred for a further 3 h. NaHCO₃ solution (10 ml) was added and the aqueous phase was extracted with CH₂Cl₂ (2 × 10 ml) then the organic layers were combined and dried (MgSO₄). Flash chromatography (40% EtOAc–pet. ether) gave **2** (7.8 mg, 11.5 μ mol, 67%) as a white foam.

¹H NMR (400 MHz, DMSO–*d*₆, 110 °C) δ ppm 7.01 (1H, br. s, NH), 6.79 (2H, d, *J* = 8.7 Hz, Ar CH of PMB), 6.45 (2H, d, *J* = 8.7 Hz, Ar CH of PMB), 4.77 - 4.82 (2H, m, C<u>H</u>H of PMB and OC<u>H</u>H), 4.48 (1H, s, ArCHS), 4.35 - 4.39 (3H, m, C<u>H</u>₂CCl₃ and ArCHN), 3.79 (1H, ddd, *J* = 7.6, 3.0, 3.0 Hz, C<u>H</u>NHTroc), 3.64 - 3.67 (2H, m, CH<u>H</u> of PMB and OCH<u>H</u>), 3.37 (6H, s, OCH₃), 3.21 (3H, s, OCH₃), 3.27 (3H, s, OCH₃), 2.68 (1H, dd, *J* = 15.8, 7.6 Hz, SC<u>H</u>H), 2.35 (1H, dd, *J* = 15.8, 3.0 Hz, SCH<u>H</u>), 1.76 (3H, s, ArCH₃).

¹³C NMR (100 MHz, DMSO–*d*₆, 110 °C) δ ppm 168.6 (2 × C=O), 165.5 (C=O), 158.4 (Ar C-O), 151.5 (Ar C-O), 150.5 (Ar C-O), 143.7 (Ar C-O), 128.7 (Ar CH of PMB), 128.2 (Ar <u>C</u>-C), 124.8 (Ar <u>C</u>-C), 123.3 (Ar <u>C</u>-C), 113.8 (Ar CH of PMB), 95.5 (Ar <u>C</u>-C), 78.5 (<u>C</u>Cl₃), 73.6 (<u>C</u>H₂CCl₃), 62.8 (CH₂O), 60.2 (OCH₃), 59.5 (OCH₃), 59.4 (OCH₃), 55.5 (CHNHTroc), 54.7 (OCH₃), 54.6 (ArCHN), 46.0 (CH₂ of PMB), 39.9 (ArCHS), 31.2 (CH₂S), 9.1 (ArCH₃).

MS (ES+) *m*/*z* 677 [M+H]⁺, 699 [M+Na]⁺.

HRMS 677.0883; C₂₈H₃₂N₂O₉SCl₃⁺ requires 677.0889.

IR (thin film) v_{max} (cm⁻¹) 2944, 1739, 1645, 1521, 1463.

 $[\alpha]_D^{24} = +12.4^\circ (c = 1.0, CHCl_3).$

NMR Spectra of New Compounds

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48

40 32 24

.....

16 8

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

¹³C NMR (125 MHz, CDCl₃)

------32

24 16 8

0

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, DMSO–*d*₆, 110 °C)

Chiral HPLC Chromatograms

C₂₃H₂₇NO₇S; M = 461.52 CCDC 808088

Crystal system: monoclinic Space group: P2 1 Unit cell dimensions: a = 9.535(17) Å, b = 21.700(4) Å, c = 11.136(2) Å $\alpha = 90 \circ, \beta = 103.28(3) \circ, \gamma = 90 \circ$ Volume = 2237.4(7) Å³ Z = 4Reflections collected: 17909 Unique reflections: 8994 $R_{int} = 0.0196$

R1 (all data) = 0.0345

Temperature = 100 K

Diffractometer: Bruker Smart Apex CCD

Solution and refinement software: SHELXS 97; SHELXL 97

The structure was solved by the direct methods. All non-H atoms were refined anisotropically. H atoms bonded to C were included in calculated positions. Those bonded to O were found by difference Fourier techniques and refined isotropically. The absolute configuration was determined by refining the Flack parameter.⁶

⁶ Burla M. C., Caliandro R., Camalli M., Carrozzini B., Cascarano G. L., De Caro L., Giacovazzo C., Polidori G. and Spagna R. *J. Appl. Cryst.*, 2005, **38**, 381.

Sheldrick, G. M. (1997). SHELXS-97 and SHELXL-97. University of Göttingen, Germany.

Sheldrick, G, M. (2005). CELL_NOW. University of Göttingen, Germany.

Sheldrick, G, M. (2007). TWINABS. University of Göttingen, Germany.

Spek, A.L. J. Appl. Cryst., 2003, 36, 7.