Supplementary Information

Cobalt-catalyzed conjugate addition of silylacetylenes to α , β -unsaturated ketones

Takahiro Nishimura,* Takahiro Sawano, Keiyu Ou and Tamio Hayashi*
Department of Chemistry, Graduate School of Science
Kyoto University, Sakyo, Kyoto 606-8502, Japan
E-mail: tnishi@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp

Contents of Supplementary Information:

1.	General method	S-2
2.	Materials	S-2
3.	A general procedure for Table 2	S-2
4.	Characterization of the products	S-3~S-6
5.	Asymmetric addition of 2m to 1	S-7~S-8
6.	¹ H, ¹³ C, and ³¹ P NMR spectra	S-9~S-28
7.	Chiral HPLC charts for Table 3	S-29~S-33

1. General

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen. NMR spectra were recorded on a JEOL JNM LA-500 spectrometer (500 MHz for ¹H, 125 MHz for ¹³C, 202 MHz for ³¹P). Chemical shifts are reported in δ (ppm) referenced to the residual peaks of CDCl₃ (δ 7.26) for ¹H NMR and CDCl₃ (δ 77.00) for ¹³C NMR. The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, sext: sextet, sept: septet, m: multiplet. Optical rotations were measured on a JASCO P-2200 polarimeter. High-resolution mass spectra were obtained with a Bruker micrOTOF spectrometer.

2. Materials

MeCN and DMSO were distilled over CaH₂ under N₂. 1,4-Dioxane and toluene were purified by passing through a neutral alumina column under N₂. Co(OAc)₂·4H₂O (99.0%) and zinc powder were purchased from Kanto Chemical Co., Inc. and used as received. The starting enone **1a** was purchased and purified by column chromatography (silica gel, hexane/ethyl acetate = 20/1). Enones **1b** [97060-29-2], ¹ **1c** [95826-96-3], ² **1d** [131323-45-0], ¹ **1e** [91897-73-3], ³ **1f** [61752-66-7], ¹ **1g** [36597-08-7], ⁴ **1h** [3102-33-8], ⁵ **1i** [167645-81-0], ⁶ **1k** [769-60-8]^{7,8} were prepared according to the reported procedures. All other chemicals were purchased from commercial suppliers and used as received.

3. A general procedure for cobalt-catalyzed conjugate addition of (triisopropylsilyl)acetylene to enone (Table 2)

A mixture of $Co(OAc)_2 \cdot 4H_2O$ (3.7 mg, 0.015 mmol), dppe (6.0 mg, 0.015 mmol), Zn powder (9.8 mg, 0.15 mmol), enone **1** (0.30 mmol), and (triisopropylsilyl)acetylene (**2m**) (135 µL, 0.60 mmol) in DMSO (0.5 mL) was stirred at 80 °C for 20 h under N₂. The mixture was passed through a short column of silica gel with diethyl ether as eluent. After evaporation of the solvent, the residue was subjected to column chromatography on silica gel with hexane/ethyl acetate to give compound **3**.

¹ D. A. Oare, M. A. Henderson, M. A. Sanner and C. H. Heathcock, J. Org. Chem., 1990, 55, 132.

² M. Bandini, M. Fagioli, M. Garavelli, A. Melloni, V. Trigari and A. Umani-Ronchi, J. Org. Chem., 2004, 69, 7511.

³ J. D. Sieber, S. Liu and J. P. Morken, J. Am. Chem. Soc., 2007, 129, 2214.

⁴ C. D. Brown, J. M. Chong and L. Shen, *Tetrahedron*, 1999, 55, 14233.

⁵ M. Arisawa, Y. Torisawa, M. Kawahara, M. Yamanaka, A. Nishida and M. Nakagawa, J. Org. Chem., 1997, 62, 4327.

⁶ D. Nakashima and H. Yamamoto, J. Am. Chem. Soc., 2006, 128, 9626.

⁷ P. DeShong, C. M. Dicken, R. R. Staib, A. J. Freyer and S. M. Weinreb, J. Org. Chem., 1982, 47, 4397.

⁸ J. Yin, C. E. Gallis and J. D. Chisholm, J. Org. Chem., 2007, 72, 7054.

4. Characterization of the products

3am

Compound 3am ([CAS: 1008533-93-4]; 97% yield): ¹H NMR (CDCl₃) δ 0.80–1.05 (m, 21H), 1.28 (d, J = 6.6 Hz, 3H), 3.00 (dd, J = 14.5, 8.5 Hz, 1H), 3.19–3.29 (m, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.96 (d, J = 8.3 Hz, 2H).

3bm

Compound 3bm ([CAS: 1008533-94-5]; 92% yield): ¹H NMR (CDCl₃) δ 0.94–1.04 (m, 21H), 1.26 (d, J = 6.4 Hz, 3H), 2.95 (dd, J = 17.3, 9.5 Hz, 1H), 3.17–3.24 (m, 1H), 3.20 (dd, J = 17.3, 5.9 Hz, 1H), 3.85 (s, 3H), 6.92 (d, J = 8.7 Hz, 2H), 7.94 (d, J = 8.7 Hz, 2H).

3cm

Compound 3cm (74% yield): ¹H NMR (CDCl₃) δ 0.92–1.04 (m, 21H), 1.28 (d, J = 6.6 Hz, 3H), 2.92–3.00 (m, 1H), 3.19 (dd, J = 12.9, 6.5 Hz, 1H), 3.23 (dd, J = 12.9, 6.2 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 11.2, 18.6, 21.3, 23.2, 45.4, 80.6, 112.2, 128.9, 129.6, 135.4, 139.6, 196.8. HRMS (ESI) calcd for C₂₁H₃₁ClNaOSi (M+Na)⁺ 385.1725, found 385.1724.

3dm

Compound 3dm ([CAS: 1008533-95-6]; 93% yield): ¹H NMR (CDCl₃) δ 0.93–1.05 (m, 21H), 1.27 (d, J = 6.8 Hz, 3H), 2.85 (dd, J = 15.4, 7.5 Hz, 1H), 3.10 (dd, J = 15.4, 6.7 Hz, 1H), 3.19 (dqd, J = 7.5, 6.8, 6.7 Hz, 1H), 6.53 (dd, J = 3.6, 1.7 Hz, 1H), 7.21 (dd, J = 3.6, 0.7 Hz, 1H), 7.58 (dd, J = 1.7, 0.7 Hz, 1H).

3em

Compound 3em ([CAS: 1008533-96-7]; 80% yield): ¹H NMR (CDCl₃) δ 0.94–1.10 (m, 21H), 1.26 (d, J = 6.9 Hz, 3H), 2.70 (dd, J = 15.7, 7.5 Hz, 1H), 2.94 (dd, J = 15.7, 6.6 Hz, 1H), 3.13 (dqd, J = 7.5, 6.9, 6.6 Hz, 1H), 6.78 (d, J = 16.1 Hz, 1H), 7.30–7.45 (m, 3H), 7.50–7.57 (m, 2H), 7.56 (d, J = 16.1 Hz, 1H).

3fm

Compound 3fm ([CAS: 1008533-99-0]; 88% yield): ¹H NMR (CDCl₃) δ 0.95–1.05 (m, 21H), 1.08 (t, *J* = 7.4 Hz, 3H), 1.43–1.53 (m, 1H), 1.60–1.70 (m, 1H), 3.02 (dd, *J* = 15.7, 7.1 Hz, 1H), 3.05–3.12 (m, 1H), 3.25 (dd, *J* = 15.7, 6.2 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.52–7.58 (m, 1H), 7.93–7.99 (m, 2H).

3gm

Compound 3gm (65% yield): ¹H NMR (CDCl₃) δ 0.90–1.05 (m, 24H), 1.07 (d, *J* = 6.8 Hz, 3H), 1.81 (sept d, *J* = 6.8, 4.9 Hz, 1H), 2.99 (dd, *J* = 15.7, 6.2 Hz, 1H), 3.12 (ddd, *J* = 7.7, 6.2, 4.9 Hz, 1H), 3.25 (dd, *J* = 15.7, 7.7 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.52–7.58 (m, 1H), 7.92–8.00 (m, 2H); ¹³C NMR (CDCl₃) δ 11.2, 17.8, 18.6, 21.3, 31.2, 35.5, 41.8, 82.7, 109.1, 128.2, 128.5, 133.0, 137.3, 198.6. HRMS (ESI) calcd for C₂₃H₃₆ONaSi (M+Na)⁺ 379.2428, found 379.2426.

3hm

Compound 3hm ([CAS: 1008533-97-8]; 92% yield): ¹H NMR (CDCl₃) δ 0.95–1.08 (m, 21H), 1.19 (d, J = 6.9 Hz, 3H), 2.16 (s, 3H), 2.48 (dd, J = 16.1, 7.1 Hz, 1H), 2.66 (dd, J = 16.1, 7.0 Hz, 1H), 2.98 (ddq, J = 7.1, 7.0, 6.9 Hz, 1H).

3im

Compound 3im (87% yield): ¹H NMR (CDCl₃) δ 0.95–1.07 (m, 21H), 1.18 (d, J = 7.0 Hz, 3H), 2.45 (dd, J = 16.0, 7.0 Hz, 1H), 2.65 (dd, J = 16.0, 7.0 Hz, 1H), 2.72–2.84 (m, 2H), 2.84–2.95 (m, 2H), 3.02 (sext, J = 7.0 Hz, 1H), 7.15–7.21 (m, 3H), 7.27 (t, J = 7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 11.2, 18.6, 21.1, 22.9, 29.5, 45.0, 49.9, 80.5, 112.2, 126.1, 128.3, 128.5, 141.0, 207.6. HRMS (ESI) calcd for C₂₃H₃₆ONaSi (M+Na)⁺ 379.2428, found 379.2427.

3jm

Compound 3jm ([CAS: 1008534-00-6]; 67% yield): ¹H NMR (CDCl₃) δ 0.87 (t, J = 7.0 Hz, 3H), 0.94–1.08 (m, 21H), 1.20–1.56 (m, 8H), 2.17 (s, 3H), 2.48 (dd, J = 16.0, 6.5 Hz, 1H), 2.63 (dd, J = 16.0, 7.7 Hz, 1H), 2.85–2.93 (m, 1H).

3km

Compound 3km (73% yield): ¹H NMR (CDCl₃) δ 0.96–1.05 (m, 21H), 1.33 (d, *J* = 7.0 Hz, 3H), 2.48 (dd, *J* = 17.0, 8.2 Hz, 1H), 2.67 (dd, *J* = 17.0, 5.9 Hz, 1H), 3.63–3.73 (m, 1H), 7.44–7.49 (m, 2H), 7.56 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.96 (dd, *J* = 8.1, 1.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 11.2, 17.3, 18.55, 18.56, 23.9, 40.6, 82.1, 106.4, 128.4, 128.6, 133.0, 136.2, 202.5. HRMS (ESI) calcd for C₂₁H₃₂ONaSi (M+Na)⁺ 351.2115, found 351.2110.

3lm

Compound 3lm (77% yield): ¹H NMR (CDCl₃) δ 0.96–1.10 (m, 24H), 2.45 (q, J = 7.3 Hz, 2H), 2.50 (t, J = 7.3 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 7.6, 11.2, 14.7, 18.5,

36.1, 41.4, 80.8, 107.4, 209.2. HRMS (ESI) calcd for $C_{16}H_{30}ONaSi (M+Na)^+$ 289.1958, found 289.1955.

3an

Compound 3an (95% yield): ¹H NMR (CDCl₃) δ 1.03 (s, 9H), 1.40 (d, J = 6.6 Hz, 3H), 3.12 (dd, J = 18.4, 9.3 Hz, 1H), 3.35–3.44 (m, 2H), 7.30–7.40 (m, 6H), 7.46 (t, J = 7.7 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.73–7.78 (m, 4H), 7.97–8.01 (m, 2H); ¹³C NMR (CDCl₃) δ 18.4, 21.0, 23.2, 27.0, 45.2, 79.8, 114.9, 127.6, 128.1, 128.6, 129.3, 133.1, 133.7, 135.5, 137.0. 197.7. HRMS (ESI) calcd for C₂₈H₃₀ONaSi (M+Na)⁺ 433.1958, found 433.1955.

3ao

Compound 3ao ([CAS: 960318-62-1]; 70% yield): ¹H NMR (CDCl₃) δ 0.04 (s, 6H), 0.88 (s, 9H), 1.27 (d, J = 6.8 Hz, 3H), 3.01 (dd, J = 15.8, 7.3 Hz, 1H), 3.21 (dqd, J = 7.3, 6.8, 5.8 Hz, 1H), 3.26 (dd, J = 15.8, 5.8 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.96 (d, J = 7.3 Hz, 2H).

3ap

Compound 3ap ([CAS: 1008534-03-9]; 40% yield): ¹H NMR (CDCl₃) δ 0.53 (q, J = 7.8 Hz, 6H), 0.94 (t, J = 7.8 Hz, 9H), 1.27 (d, J = 6.7 Hz, 3H), 3.02 (dd, J = 15.6, 7.1 Hz, 1H), 3.17–3.30 (m, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.96 (d, J = 7.7 Hz, 2H).

5. Asymmetric addition of (triisopropylsilyl)acetylene (2m) to enone 1a (Scheme 1 and Table

A mixture of $Co(OAc)_2 \cdot 4H_2O$ (7.5 mg, 0.030 mmol), (*S*,*S*)-bdpp (13.2 mg, 0.030 mmol), Zn powder (9.8 mg, 0.15 mmol), enone **1a** (43.9 mg, 0.30 mmol), and (triisopropylsilyl)acetylene (**2m**) (135 µL, 0.60 mmol) in DMSO (0.5 mL) was stirred at 80 °C for 20 h under N₂. The mixture was passed through a short column of silica gel with diethyl ether as eluent. After evaporation of the solvent, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 10/1) to give compound **3am** (91.2 mg, 0.28 mmol, 93%).

3am

Compound 3am (Table 3, entry 1): The ee was measured by HPLC (Chiralcel OJ-H column × 2, flow 0.2 mL/min, hexane/2-propanol = 500/1, 224 nm, $t_1 = 40.8 \text{ min } (S)$, $t_2 = 44.0 \text{ min } (R)$); $[\alpha]_{D}^{20} + 2$ (*c* 0.99, CHCl₃) for 87% ee (*R*). The absolute configuration of (*R*)-(+)-**3am** produced by (*S*,*S*)-bdpp was determined by comparison of the specific rotation and the retention time of the chiral HPLC analysis with the values reported previously.⁹

3bm

Compound 3bm (Table 3, entry 2): The ee was measured by HPLC (Chiralcel OJ-H column × 2, flow 0.2 mL/min, hexane/2-propanol = 500/1, 224 nm, t_1 = 61.6 min (*S*), t_2 = 83.2 min (*R*)); $[\alpha]_{D}^{20}$ +12 (*c* 0.60, CHCl₃) for 79% ee (*R*).

⁹ T. Nishimura, X.-X. Guo, N. Uchiyama, T. Katoh and T. Hayashi, J. Am. Chem. Soc., 2008, 130, 1576.

Compound 3cm (Table 3, entry 3): The ee was measured by HPLC (Chiralcel OJ-H column × 2, flow 0.2 mL/min, hexane/2-propanol = 500/1, 224 nm, t_1 = 41.9 min (*S*), t_2 = 45.1 min (*R*)); $[\alpha]_{D}^{20}$ +5 (*c* 0.88, CHCl₃) for 90% ee (*R*).

3dm

Compound 3dm (Table 3, entry 4): The ee was measured by HPLC (Chiralcel OJ-H column × 2, flow 0.2 mL/min, hexane/2-propanol = 500/1, 224 nm, $t_1 = 67.7 \text{ min } (S)$, $t_2 = 71.7 \text{ min} (R)$); $[\alpha]_{D}^{20} + 13 (c \ 0.63, \text{CHCl}_3)$ for 81% ee (R).

Compound 3fm (Table 3, entry 5): The ee was measured by HPLC (Chiralcel OJ-H column × 2, flow 0.2 mL/min, hexane/2-propanol = 500/1, 224 nm, t_1 = 40.6 min (*S*), t_2 = 43.4 min (*R*)); $[\alpha]_{D}^{20}$ +3 (*c* 0.79, CHCl₃) for 91% ee (*R*).

6. ¹H and ¹³C NMR spectra

7. Chiral HPLC charts for Table 3

	2	43.999	00047837	93,008	033432
To	tals				
			64148070	100.000	934580

	Pk #	Retention Time	Area	Area Percent	Height
• • • • • • • • • • • • • • • • • • •	1	61.634	12958209	10.657	101984
	2	83.163	108632716	89.343	448670
1	otals				
			121590925	100.000	550654

S-30

2	43.924	11109307	49.040	129492
Totals				
		22410339	100.000	301013

Pk #	Retention Time	Area	Area Percent	Height
1	41.867	3663391	5.175	66697
2	45.120	67129404	94.825	798616
Totals				
		70792795	100.000	865313

S-31

UV Results						
Pk #	Retention Time	Area	Area Percent	Height		
1	68.659	5092078	9.348	76977		
2	71.202	49380192	90.652	469628		
Totals						
		54472270	100.000	546605		

S-32

UV Results

Pk #	Retention Time	Area	Area Percent	Height
1	40.086	23259529	50.201	389842
2	42.899	23073161	49.799	291865
Totals				
1 Otais		46332690	100.000	681707

UV Results Pk # **Retention Time** Area Area Percent Height 40.602 3885939 67169 1 4.680 79140026 2 43.359 95.320 907088 Totals 83025965 100.000 974257