Supporting Information

A Self-Assembled Helical Anthracene Nanofibre Whose *P*- and *M*-Isomers Show Unequal Linear Dichroism in a Vortex

Yasunari Ando, Tomoki Sugihara, Kenjiro Kimura and Akihiko Tsuda*

Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

Table of Contents

- 1. Materials
- 2. Measurements
- 3. Synthetic scheme
- 4. Synthesis
- 5. Absorption spectrum of (R)-AN in CHCl₃
- 6. SEM micrograph of self-assembled nanofibres formed from (R)-AN
- 7. Photo-dimerization of (R)-AN in hexane
- 8. Absorption and LD spectroscopy of self-assembled (R)-AN in octane
- 9. LD spectroscopy of a thin film of aligned nanofibres of (R)-AN formed by dip coating
- 10. Pointwise LD spectroscopy for a stirred *n*-hexane solution of (*R*)-AN
- 11. DLS measurements of self-assembled (R)-AN in hexane after CW and CCW stirring
- 12. References

1. Materials

Unless otherwise noted, reagents and solvents were used as received from Kishida Chemical Co., Ltd. [CHCl₃ (>99%) and hexane (>96%)] and Wako Pure Chemical Industries, Ltd. [n-octane (>98%)]. For column chromatography, Wakogel C-300HG (particle size 40–60 mm, silica), C-400HG (particle size 20-40 mm, silica) and standardized aluminum oxide 90 (Merck) used. 3,4,5-[Tris-(*R*)-3,7-dimethylocthyloxy]benzoic acid (*R*)-1, was 3,4,5-[tris-(S)-3,7-dimethylacid octhyloxy]benzoic (S)-1and 9,10-bis(aminomethyl)anthracene 2 were prepared by procedures analogous to those reported previously,^{1,2} and unambiguously characterized by means of ¹H NMR, IR spectroscopy and fast atom bombardment (FAB) mass spectrometry.

2. Measurements

CD and LD spectra were recorded on a JASCO J-820 spectropolarimeter equipped with a JASCO PTC-423L temperature/stirring controller and a custom made CW/CCW-stirring system. The spectrometer is equipped with a 10 × 10 × 40 mm quartz optical cuvette, in which sample solutions (3 mL) are stirred mechanically using a ϕ 2.0 × 5.0 mm Teflon-coated magnetic stirr bar at the bottom of the cuvette, 14 mm below the centre of a ϕ 8.0 mm wide polarized light pass. LD intensity is defined as $\Delta_{LD}A = A_{//} - A_{\perp} (\Delta_{LD}A$ represents magnitude of LD, while $A_{//}$ and A_{\perp} denote horizontal and perpendicular absorbances, respectively). Prior to spectral measurements, sample *n*-hexane solutions ([AN] = 8.3 × 10⁻⁵ M) were prepared by dilution of a CHCl₃ solution of AN ([AN] = 5.0 × 10⁻² M), allowed to stand in the dark at 25 °C for 2 h, and then, stirred at 1350 rpm in both clockwise (CW) and counterclockwise (CCW) stirrings for 1 h. Photo-irradiation was performed on a USHIO Optical Modulex equipped with a 500 W Xenon short-arc lamp.

The frequency-modulation AFM (FM-AFM) apparatus used in this experiment was developed by a commercially available AFM (Shimadzu, SPM9600) modified with the low-noise optical deflection scheme after Fukuma et al.³ The deflection noise was less than 40 fm $Hz^{-1/2}$. The resonance frequency and Q factor of the cantilever oscillation were typically 135 kHz. In FM-AFM,⁴ a cantilever is used as a mechanical resonator in a self-oscillation

circuit such that the cantilever vibrates at its resonance frequency with a constant oscillation amplitude. The frequency shift (Δf) of the cantilever resonance induced by the tip-sample interaction force is detected and used for the tip-sample distance regulation.

¹H and ¹³C NMR spectra were recorded on a VARIAN model INOVA 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to tetramethylsilane as the internal standard. Infrared absorption spectra (IR) were recorded on a JASCO FT/IR-4200 fourier transform infrared spectrometer. FAB mass spectrometry was performed on a JEOL JMS-BU30 LC Mate spectrometer with 3-nitrobenzylalcohol as the matrix. Scanning electron microscopy (SEM) was performed using a JEOL JSM–7001FA FE–SEM operating at 15 kV. Dynamic light scattering (DLS) measurements were performed using an Otsuka model ELS-Z2 instrument. Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

3. Synthetic scheme

Scheme S1. Reagents and conditions: **a**, (1) SOCl₂, reflux; (2) N, N'-dimethyl-4-aminopyridine, dryCH₂Cl₂, reflux.

4. Synthesis

3,4,5-[Tris-(*R*)-3,7-dimethylocthyloxy]benzoic (**R**)and (*S*)-AN: acid (R)-1 or 3,4,5-[tris-(S)-3,7-dimethylocthyloxy]benzoic acid (S)-1 (0.17 g, 0.29 mmol) was dissolved in thionyl chloride (5 mL), and the reaction mixture refluxed under Ar for 4 h and then evaporated to dryness. The residue was mixed with 9,10-bis(aminomethyl)anthracene 2 (0.02 g, 0.08 mmol) and N, N'-dimethyl-4-aminopyridine (0.07 g, 0.57 mmol) in dry CH₂Cl₂ (10 mL), and the solution refluxed under Ar for 24 h and then evaporated to dryness. The residue was then dissolved into CHCl₃ and washed with aqueous solutions of 1 N HCl, saturated NaHCO₃ and saturated NaCl. The organic layer was then extracted, dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was washed with CH₂Cl₂/CH₃OH to leave AN as orange oil [34% for (R)-AN, 69% for (S)-AN]. FAB-MS m/z calcd for M^+ $(C_{90}H_{144}N_2O_8)$ 1382, found 1383 (M + H⁺); ¹H NMR (400 MHz, CDCl₃, 20 °C): δ 8.48–8.46 (dd, 4H, J = 3.2 Hz, 7.0 Hz, anthracene), 7.66-7.64 (dd, 4H, J = 3.2 Hz, 7.0 Hz, anthracene),6.91 (s, 4H, phenyl), 6.22–6.19 (t, 2H, J = 4.7 Hz, amide), 5.67–5.66 (d, 4H, J = 4.6 Hz, methylene), 3.98-3.95 (m, 12H, -OCH₂-), 1.87-1.11 (m, 60H, alkyl), 0.89-0.84 (m, 54H, methyl); ¹³C NMR (100 MHz, CDCl₃, 20 °C): δ 167.1, 153.2, 141.4, 130.4, 130.1, 128.9, 126.7, 124.8, 105.8, 71.7, 67.7, 39.3, 37.4, 36.3, 29.7, 28.0, 24.7, 22.6, 19.5; IR (KBr): 3304, 2956, 2925, 2852, 1630, 1580, 1544, 1498, 1466, 1426, 1382, 1334, 1261, 1114 cm⁻¹; UV-Vis (CHCl₃, 25 °C): λ_{max} 262, 340, 357, 376, 397 nm.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

5. Absorption spectrum of (*R*)-AN in CHCl₃

Fig. S1. Absorption spectrum of a CHCl₃ solution of (*R*)-AN at 25 °C. [(R)-AN] = 8.3 × 10⁻⁵ M.

6. SEM micrograph of self-assembled nanofibres formed from (R)-AN

Fig. S2. SEM micrograph of an air-dried sample of self-assembled (*R*)-AN in *n*-hexane solution $(8.3 \times 10^{-5} \text{ M})$ deposited on a silicon substrate at room temperature.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

7. Photo-dimerization of (*R*)-AN in hexane

Fig. S3. Changes in absorption (top) and CD (bottom) spectra at 25 °C upon photo-irradiation for 20 min of hexane solutions of self-assembled (*R*)-AN in a Pyrex glass tube with a 500 W Xenon lamp. The spectral measurements were demonstrated with a quartz optical cuvettes having light path length of 1 mm. $[(R)-AN] = 8.3 \times 10^{-5}$ M.

 \rightarrow Since dynamic light scattering (DLS) response of the hexane solution of (*R*)-AN was also disappeared upon photo-irradiation, these spectral changes indicate dissociation of the self-assembled nanofibres of (*R*)-AN due to photo-dimerization of the anthracene components.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

8. Absorption and LD spectroscopy of self-assembled (R)-AN in octane

Fig. S4. Absorption (top) and LD (bottom) spectra of an octane solution (3.0 mL) of self-assembled (*R*)-AN (8.3×10^{-5} M) upon CW (—) or CCW (—) rotary stirring at 1350 rpm using a $\phi 2.0 \times 5.0$ mm Teflon-coated magnetic stir bar at 25 °C.

9. LD spectroscopy of a thin film of aligned nanofibres of (R)-AN formed by dip coating

Fig. S5. Linear dichroism (LD) spectroscopy of an oriented thin film of the nanofibres of (*R*)-AN. The films were positioned in such a way that their oriented directions were angled by 0° (blue curve) and 90° (red curve) relative to the vertical axis of a linearly polarized incident light for the spectroscopy. The films were prepared by dip-coating of a *n*-hexane solution of (*R*)-AN (8.3×10^{-5} M) at 25 °C on a 0.12–0.17 mm thick glass plates.

10. Pointwise LD spectroscopy for a stirred *n*-hexane solution of (*R*)-AN

Fig. S6. LD spectroscopy of a *n*-hexane solution (3.0 mL) of the nanofibres of (*R*)-AN (8.3 × 10^{-5} M), upon lower-side rotary stirring at 1350 rpm in CW (blue curve) or CCW (red curve) direction using a $\phi 2.0 \times 5.0$ mm Teflon-coated magnetic stir bar at 25 °C in a $10 \times 10 \times 40$ mm quartz optical cell masked at a vertical centre with a 5 mm wide black tape.

11. DLS measurements of self-assembled (R)-AN in hexane after CW and CCW stirring

Fig. S7. DLS histogram profiles of nanofibres of (*R*)-AN in hexane ([(*R*)-AN] = 16.6×10^{-5} M) at 25 °C after CW (—) or CCW (—) stirring for 30 min.

12. References

- (a) S. V. Aathimanikandan, B. S. Sandanaraj, C. G. Arges, C. J. Bardeen and S. Thayumanavan, Org. Lett., 2005, 14, 2809–2812; (b) J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes, K. M. DiVittorio, J. R. Johnson, B. C. Noll and B. D. Smith, J. Am. Chem. Soc., 2007, 129, 15054–15059.
- S. Ghosh, X.-Q. Li, V. Stepanenko and F. Würther, *Chem. Eur. J.*, 2008, 14, 11343– 11357.
- 3. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige and H. Yamada, *Rev. Sci. Instrum.*, 2005, **76**, 053704.
- 4. T. R. Albrecht, P. Grütter, D. Horne and D. Rugar, J. Appl. Phys., 1991, 69, 668–673.