Supporting information

Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric $\mathbf{C}\left(\mathbf{s p}^{3}\right)$-H activation/cyclisation

Saithalavi Anas, Alex Cordi and Henri B. Kagan*

Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR 8182, CNRS), Laboratoire de Catalyse Moléculaire, Université Paris-Sud, 91405 Orsay, France

Contents

Experimental S2
Synthesis of starting material S3
Optimization reactions S3-S4
Characterization data S5-S6
${ }^{1} H \&{ }^{13} C$ NMR Spectra S8-S19
Chromatogram for compound 2a S20

Experimental section

General: All reactions were carried out in oven dried glasswares. Progress of the reaction was monitored by Thin Layer Chromatography, which was performed on Merck precoated plates (silica gel. $60 \mathrm{~F}_{254}, 0.25$ mm) and was visualized by fluorescence quenching under UV light. Column chromatography was done using 60-120 mesh silica gel and appropriate mixture of pentane and ethyl acetate for elution. The IR spectra were recorded on Perkin-Elmer Spectrum 100 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker FT-NMR spectrometers (360 and 250 MHz respectively) using CDCl_{3} as solvent. TMS was used as internal standard and chemical shifts are in δ-scale. High resolution mass spectra were recorded under EI/HRMS (at 5000 resolution) using mass spectrometer. Enantiomeric excesses were determined by HPLC analysis with a Chiralcel OD-H column (n-hexane/ $/ \mathrm{PrOH} 99: 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $\mathrm{rt})$ unless specified.

1. Representative procedures for the preparation of \mathbf{N}-alkyl-2-bromoaniline:

1a) Preparation of N-isopropyl-2-bromoaniline: Method \mathbf{A}^{1}

To a solution of 2-bromo aniline ($5.8 \mathrm{mmol}, 1 \mathrm{~g}$)) in dichloroethane (10 mL) were added 2-methoxy propane $(11.6 \mathrm{mmol})$, acetic acid $(5.8 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(5.8 \mathrm{mmol})$ under inert atmosphere at room temperature for 16 h . After the reaction, the mixture was neutralized with 1 N NaOH . The mixture was extracted with dichloromethane and dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography with pentane to afford the 2 -bromo- N-isopropylaniline (53% yield).

1b) Preparation of N-alkyl-2-bromoaniline: Method B^{2}

To a solution of 2-bromo-1-iodobenzene (1 eq.) in DMF were added CuI ($20 \mathrm{~mol} \%$), rac-BINOL (20 $\mathrm{mol} \%$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3 eq .) and corresponding amine (1.5 eq.) under argon. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 day. The mixture was filtered and diluted with diethylether, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by silicagel column chromatography with pentane/ethyl acetate (50:1) to afford the products in $50-60 \%$ yield.

2) Preparation of Methyl 2-Bromophenyl(isopropyl)carbamate $\mathbf{1 a}^{\mathbf{3}}$

A mixture of 2-bromo- N -isopropylaniline ($1.0 \mathrm{~g}, 4.5 \mathrm{mmol}$) in methyl chloroformate (20 mL) was heated under reflux for 6 h . The mixture was poured into water and extracted with chloroform. The organic layer was, dried over MgSO_{4}, and concentrated in vacuo. The crude material was purified by silicagel column chromatography with pentane/ethyl acetate (30:1) to afford the methyl 2-bromo phenyl(isopropyl) carbamate 1a in quantitative yield.

1. T. J. Reddy, M. Leclair, M. Proulx, Synlett 2005, 583
2. D. Jiang, H. Fu, Y. Jiang, Y. Zhao J. Org. Chem., 2007, 72, 672
3. T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Org. Lett. 2008, 10, 1759

Optimization reactions

1) Initial Ligand screening studies

These reactions were performed with 0.2 mmol of the substrate $\mathbf{1 a}$ in presence of $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \%$ chiral ligand, 1.4 eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 0.5 eq. pivalic acid in 2 mL xylene at 140 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. Better results in terms of yields as well as $e e$'s were obtained with (S, S)-DIOP and (R, R)-Me-DUPHOS as ligands. The results are presented in table 4.

Table 3

${ }^{\text {a }}$ Procedure: 0.2 mmol of $\mathbf{1 a}$ is mixed with the reagents in xylene at $140^{\circ} \mathrm{C}$ and keep stirring for 16 h .
${ }^{\mathrm{b}}$ Determined by HPLC analysis.
${ }^{\text {c }}$ Isolated yield

2) Optimization reaction for a suitable catalyst/ligand ratio

These reactions were performed with 0.2 mmol of the substrate 1a in presence of $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}, 2.5-10 \mathrm{~mol} \%(R, R)$-Me-DUPHOS, 1.4 eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 0.5 eq. pivalic acid in 2 mL xylene at $140{ }^{\circ} \mathrm{C}$ under argon atmosphere and keep stirring for 16 h . The results are presented in table 4.

Table 4

Entry	Catalyst (mol\%)	Ligand (mol\%)	Trial $1^{\text {a }}$		Trial $2^{\text {a }}$	
			Yield\%	$e e \%$	Yield\%	$e e \%$
1	5	5	77	17	trace	
2	5	7.5	25	44	15	64
3	5	10	55	82	40	63
4	5	2.5	87	19	72	21

${ }^{a}$ Yield and ee calculated by HPLC analysis

3) Optimization studies with different modes of addition of the reagents

These reactions were performed with 0.2 mmol of the substrate $\mathbf{1 a}$ in presence of $5 \mathrm{~mol} \%$ $\operatorname{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \%(S, S)$-DIOP and/or (R, R)-Me-DUPHOS, 1.4 eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 0.5 eq. pivalic acid in 2 mL xylene at $140^{\circ} \mathrm{C}$ in the absence of argon and keep stirring for 16 h . We monitored the progress of the reaction by means of HPLC analysis with time. The results are presented in table 5.

Table 5

Entry	Mode of addition of substrates	Time (hour)	(S,S)-DIOP		$\begin{gathered} \hline(R, R) \\ \text { MeDuphos } \\ \hline \end{gathered}$
			Yield(ee)\%		
			trial 1	trial 2	Yield
1	Substrate was dissolved in xylene at $140^{\circ} \mathrm{C}$. After 5 min catalyst \& ligand were added together. Then additive \& base were added	0.1	4(89)	5(87)	8(63)
		1	98(45)	25(42)	17(47)
		16	99(45)	50(41)	22(45)
2	Catalyst \& ligand were premixed in xylene at $r t$ and kept at $140^{\circ} \mathrm{C}$. Followed by addition of the substrate, additive and base	0.1	3(72)		
		1	16(41)		
		16	25(35)		
3	Catalyst \& ligand were premixed in xylene at $r t$ and kept at $140^{\circ} \mathrm{C}$. Followed by added the additive, base and finally the substrate	0.1	3(99)		
		1	4(93)		
		16	4(90)		
4	Substrate and ligand were premixed in xylene at $140^{\circ} \mathrm{C}$. After 5 min additive and base were added then finally the catalyst	0.1	3(98)	3(94)	5(93)
		1	70(49)	70(48)	11(93)
		16	97(44)	>99(47)	24(75)
5	Catalyst \& ligand were premixed in xylene	0.1	no reaction trace5(65)		
	at $\mathbf{r t}$. Followed by added the additive,	1			
	base and finally the substrate. gradually increased the temp to $140^{\circ} \mathrm{C}$				
6	All reagents were premixed with xylene at rt and stirred for 1 min at rt . Then suddenly put the reaction mixture at $140^{\circ} \mathrm{C}$.	0.1	5(53)	4(50)	4(96)
		1	93(48)	90(44)	95(94)
		2	100(47)	100(43)	100(93)

Note: We initially carried out the reactions with the cheaper ligand (S,S)-DIOP and the better results were re-checked again for reproducibility of the result which we obtained earlier with (R, R)-MeDUPHOS. The condition which gave the consistent result with both (S, S)-DIOP and $(R, R)-M e-D U P H O S$ (entry 6,) was selected as the optimized procedure. (ref 14 in the article)

Representative procedure for the synthesis of 2a from 1a: 2-bromo- N-isopropylaniline derivative 1a ($55 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 5 \mathrm{~mol} \%),(R, R)$-Me-DUPHOS $(6.8 \mathrm{mg}$, $10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(84 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $t-\mathrm{BuCO}_{2} \mathrm{H}(9 \mathrm{mg}, 0.10 \mathrm{mmol})$ were taken in a 10 mL RB flask equipped with a reflux condenser. To this, xylene (2.0 mL) was added in an open atmosphere and mixed well under stirring at room temperature. The reaction mixture was stirred further for 2 h at $140{ }^{\circ} \mathrm{C}$. After cooling, the reaction mixture was concentrated in vacuo. The crude material was purified by silicagel chromatography with pentane/ethyl acetate (30:1) to afford the indoline $\mathbf{2 a}$ ($40 \mathrm{mg}, 97 \%, 93 \% \mathrm{ee}$).

Scale-up reaction with (S,S)-DIOP

The scale up reaction using substrate 1a and (S, S)-DIOP as ligand also gave substantially good results. When the reaction was carried out under optimized procedure with 1 g of the substrate

1a in presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \%(S, S)$-DIOP, 1.4 eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 0.5 eq. pivalic acid at $140^{\circ} \mathrm{C}$ for 2 h , the product 2a was isolated in 95% yield and 34% ee.

Characterization data for compounds 2a-2d, 2 f and $\mathbf{2 g}$

2a

Following the general procedure, 2a was isolated as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}$ $+48.3\left(c \quad 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}$ (neat) $\mathrm{cm}^{-1}: 3422,3019,2957,1698,1603,1486$, $1445,1393,1288,1265,1216,1140,1062,754,668 .{ }^{1} \mathrm{HNMR}(360 \mathrm{MHz}$, CDCl_{3}): $7.82(\mathrm{brs}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{t}, 1 \mathrm{H}), 4.58($ brs, 1 H$), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{dd}, 1 \mathrm{H}), 2.66(\mathrm{~d}, 1 \mathrm{H}), 1.32(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}(250 \mathrm{MHz}$, CDCl_{3}):153.6, 141.3, 130.1, 127.8, 125.1, 122.7, 115.3, 55.5, 52.6, 36.1, 21.3. HRMS (EI) exact mass calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 214.0845$, found 214.0844. The enantiomers were separated on Chiralcel OJ-H column ($1 \% \mathrm{IPA} /$ hexane, $1 \mathrm{~mL} / \mathrm{min}$): 254 nm , rt = 9.3 (3.5\%), 10.3 (96.5\%).

Following the general procedure, $\mathbf{2 b}$ was isolated as a viscous oil; IR(neat) $\mathrm{cm}^{-1}: 3457,3019,2963,2400,1643,1486,1261,1215,1110,929,755,669$.
${ }^{1} \mathrm{HNMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.74(\mathrm{~d}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}$, $1 \mathrm{H}), 6.99(\mathrm{t}, 1 \mathrm{H}), 4.60(\mathrm{brs}, 1 \mathrm{H}), 4.05(\mathrm{~d}, 2 \mathrm{H}), 3.40(\mathrm{dd}, 1 \mathrm{H}), 2.66(\mathrm{~d}, 1 \mathrm{H})$, $2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.7,141.6$, 131.0, 128.1, 124.7, 122.0, 115.6, 56.0, 52.8, 35.4, 23.0, 20.1, 13.2, 13.0. HRMS (EI) exact mass calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 256.1306$, found 256.1313. The enantiomers were separated on the Chiralcel OJ-H column (1% IPA/hexane, $1 \mathrm{~mL} / \mathrm{min}$): $254 \mathrm{~nm}, \mathrm{rt}=7.3$ (22.5\%), 7.6 (77.5\%).

Following the general procedure, $\mathbf{2 c}$ was isolated as a colourless oil: $[\alpha]_{\mathrm{D}}{ }^{20}$ -27.7 (c $0.065, \mathrm{CHCl}_{3}$); IR(neat) $\mathrm{cm}^{-1}: 3433,3019,2967,1694,1645,1486$, $1445,1395,1289,1265,1216,1137,1062,757,668 .{ }^{1} \mathrm{HNMR}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 7.75(\mathrm{brs}, 1 \mathrm{H}), 7.23-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.32(\mathrm{dd}, 1 \mathrm{H}), 2.80(\mathrm{~d}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}(250 \mathrm{MHz}$, CDCl_{3}): 154.1, 141.7, 130.3, 127.9, 124.6, 123.0, 115.5, 59.8, 52.4, 33.6, 27.8, 10.1. LRMS (FAB) exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$205.1503, found 205.16. The enantiomers were separated on the Chiralcel OJ-H column ($1 \% \mathrm{IPA} /$ hexane, $1 \mathrm{~mL} / \mathrm{min}$): 254 nm , rt $=7.7$ (61.5\%), 8.8 (38.5\%).

Following the general procedure, $\mathbf{2 d}$ was isolated as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}$ -21.5 (c 0.2, CHCl_{3}); $\mathrm{IR}\left(\right.$ neat $\mathrm{cm}^{-1}: 3017,2950,1696,1612,1487,1389$, $1258,1215,1126,1098,1064,815,753,665 .{ }^{1} \mathrm{HNMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.76(\mathrm{br}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{brs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{ddd}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, 1 \mathrm{H}), 1.30(\mathrm{~d}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 157.8,153.6,138.1,130.7,126.2,119.6$, 113.8, 62.7, 52.5, 44.9, 25.9. LRMS (FAB) exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FNO}_{2}[M]^{+}$ 224.1087, found 224.19. The enantiomers were separated on the Chiralcel OJ-H column (1% IPA/hexane, $1 \mathrm{~mL} / \mathrm{min}$): 254 nm , rt = 11.5 (7.5%), 13.1 (92.5%).

Following the general procedure, 2 f was isolated as a pale yellow oil; IR (neat) $\mathrm{cm}^{-1}: 3435,3020,2686,2401,1643,1524,1422,1265,1216,928,896$, $763,669 .{ }^{1} \mathrm{HNMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.75(\mathrm{~d}, 1 \mathrm{H}), 7.22(\mathrm{t}, 1 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H})$, $6.99(\mathrm{t}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{ddd}, 1 \mathrm{H}), 2.90(\mathrm{dd}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 155.5,142.7,133.4,127.5,122.6,120.8,115.1,70.1,52.8,48.5,31.9,28.3,26.1$, 25.2. LRMS (FAB) exact mass calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}$232.1259, found 232.13. The enantiomers were separated on the IB column ($1 \% \mathrm{IPA} /$ hexane, $1 \mathrm{~mL} / \mathrm{min}$): $254 \mathrm{~nm}, \mathrm{rt}=12.5$ (27 \%), 13.3 (73\%).

Following the general procedure, $\mathbf{2 g}$ was isolated as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{20}$ +3.7 (c 0.16, CHCl_{3}); IR(neat) $\mathrm{cm}^{-1}: 3435,3019,2932,2962,1777,1694$, 1477, 1460, 1412, 1332, 1263, 1216, 1115,1040,757, 669. ${ }^{1}$ HNMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.79(\mathrm{~d}, 1 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, 1 \mathrm{H}), 4.14-3.93(\mathrm{~m}$, $2 \mathrm{H}), 3.45(\mathrm{ddd}, 1 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.14-2.01(m, 2H), 1.32-1.20(m, 4H), 0.99-0.88 (m, 7H). ${ }^{13} \mathrm{CNMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.7$, 141.7, 131.9, 127.8, 123.1, 120.5, 114.6, 68.3, 54.9, 47.4, 33.0, 28.7, 25.2, 24.4, 20.7, 14.1, 13.2, HRMS (EI) exact mass calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}$274.1801, found 274.1807. The enantiomers were separated on the Chiralcel OD-H column (1% IPA/hexane, $0.3 \mathrm{~mL} / \mathrm{min}$): 254 $\mathrm{nm}, \mathrm{rt}=18.1$ (21\%), 19.4 (79\%).
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR Spectra of compounds 2a-f

-SVs

Chromatogram for compound 2a

Column
Solvent $:$ Hex $/{ }^{i} \operatorname{PrOH} 99 / 1$,
Flow $: 1 \mathrm{~mL} / \mathrm{min}$,
Wavelength : 254 nm

