Supplementary Information

Luminescence on-Off switching via reversible interconversion between inter- and intramolecular aurophilic interactions

Semi Han, Yu Young Yoon, Ok-Sang Jung and Young-A Lee*

- S1. Experimental details of 1a and 1b
- S2. TGA/DSC overlay of 1a and 1b
- S3. FT-IR spectra of 1a and 1b in KBr
- S4. ¹H NMR spectrum of **1a** and **1b** in CDCl₃/CD₃OD
- S5. ¹³C NMR spectrum of **1a** and **1b** in CDCl₃/CD₃OD
- S6. ³¹P NMR spectrum of **1a** and **1b** in CDCl₃/CD₃OD
- S7. ¹⁹F NMR spectrum of **1a** in CDCl₃/CD₃OD
- S8. Emission spectra of 1a and 1b in solid state at RT
- S9. Emission spectra of **1a** and **1b** in solid state at 77 K
- S10. Time-dependent emission spectra of 1a in CF₃CO₂H and NEt₃ chamber at RT
- S11. Time-dependent emission spectra of 1a in HCl and NEt₃ chamber at RT

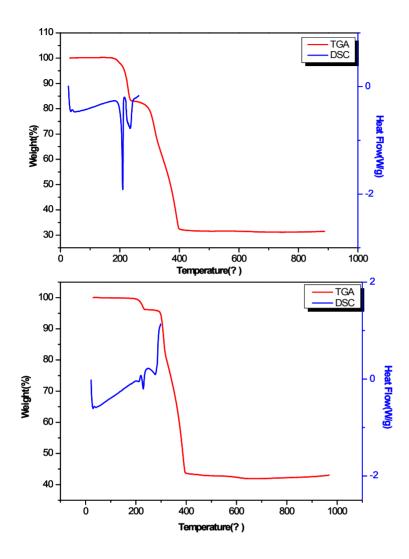
^a Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk
National University, Jeonju 561-756, Korea. Fax: +82 63 270 3408; Tel: +82 63 270 3347;
E-mail: ylee@jbnu.ac.kr

^b Department of Chemistry, Pusan National University, Pusan 609-735, Korea.

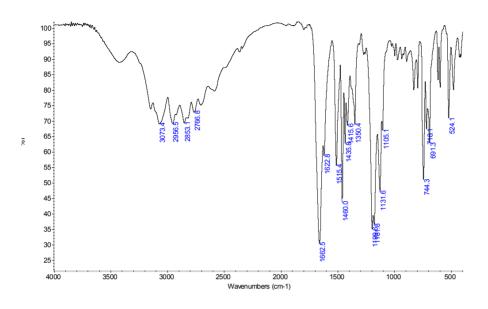
S1. Experimental details of 1a and 1b

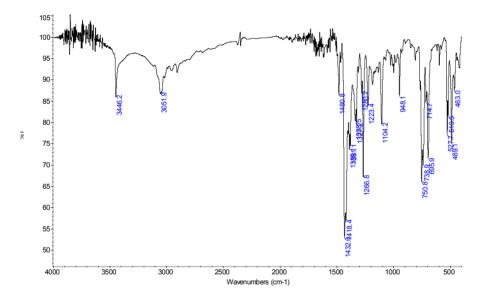
Materials and Instrumentation: Au₂(dppp)Cl₂ were prepared according to the literature procedure. 2-benzimidazolethiol (BIT) was purchased from Aldrich and was used without further purification. Elemental analyses were performed on crystalline samples by using a Vario-EL analyzer at Center for University-Wide Research Facilities, CBNU. Infrared spectra were obtained with a Thermo Nicolet AVATAR 330 FT-IR spectrophotometer as KBr pellets.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded with a JEOL JNM AL-400 instrument relative to SiMe₄.

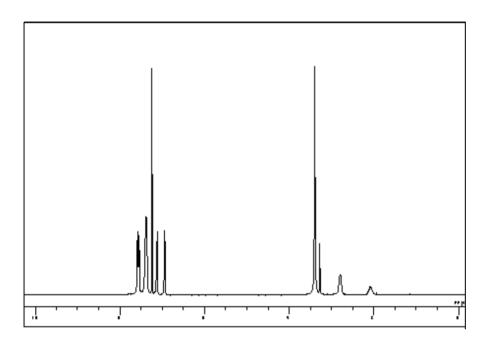

¹⁹F NMR (376 MHz) and ³¹P NMR (162 MHz) spectra were reported relative to external CF₃CO₂H (100%) and H₃PO₄ (85%), respectively, with a JEOL JNM AL-400 spectrometer. Emission spectra were obtained using a JASCO FP-6500 spectrofluorometer corrected for instrument response with monochromators positioned with a 2 nm band-pass. Solid-state emission samples were prepared as a 10% (w/w) mixture of the complex in a matrix of finely ground KBr. The melting points were determined with a SRS EZ-Melt MPA-120 melting point apparatus and were uncorrected. Thermal analyses were carried out under a dinitrogen atmosphere at a scan rate of 10 °C/min using a TA Instruments SDT Q20 and DSC Q20.

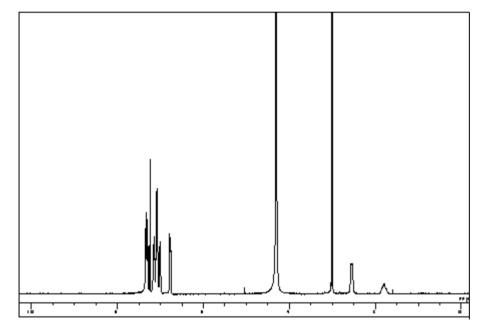
Au₂(dppp)(BIT)₂·2CF₃CO₂H (1a): To a solution of Au₂(dppp)Cl₂ (310 mg, 0.35 mmol) in CH₂Cl₂ (15 mL) was added AgCF₃CO₂ (156 mg, 0.71 mmol), and the reaction mixture was stirred at RT for 30 min. The suspension was filtered through a pad of celite to remove the AgCl precipitate, and into a suspension of 2-benzimidazolethiol (BIT) (106 mg, 0.71 mmol) in CH₂Cl₂ (15 mL). The reaction mixture was stirred 2 h at RT. The resulting solution was concentrated to 5 mL, and the addition of Et₂O (75 mL) gave an off-white precipitate. The precipitate was collected by filtration and washed with Et₂O. Recrystallization by slow diffusion of Et₂O into a CH₂Cl₂ solution gave a white colored product. Yield 76%. Mp 197.6 °C. Anal. Calcd for C₄₁H₃₆N₄P₂S₂Au₂·2CF₃CO₂H: C, 40.55; H, 2.87; N, 4.20; S, 4.81. Found: C, 40.91; H, 3.03; N, 4.56; S, 5.88. IR (KBr): v = 1201(s), 1460(m), 1661(s) cm⁻¹ (C=O). ¹H NMR (400 MHz, CDCl₃/CD₃OD, 25 °C, TMS): δ= 7.57 (dd, *J*=12.7, 6.8 Hz, 8H), 7.38 (d, *J*=5.9 Hz, 12H), 7.13 (dd, *J*=6.1, 3.2 Hz, 4H), 6.95 (dd, *J*=6.1, 3.2 Hz, 4H), 2.79 (br, 4H), 2.08 (br, 2H). ¹³C NMR (100 MHz, CDCl₃/CD₃OD, 25 °C, TMS): δ= 20.4, 27.2, 27.6, 111.5, 115.1, 118.1, 123.8, 127.7, 128.2, 129.0, 129.1, 131.8, 131.9, 132.7, 132.8, 156.5,

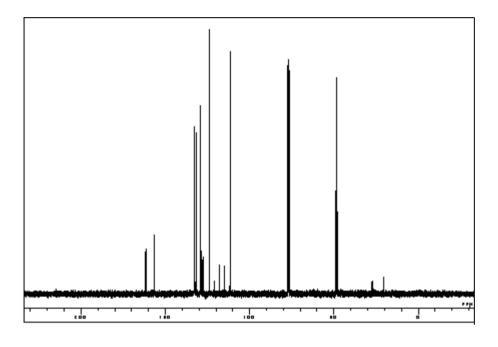

161.1, 161.5, 161.8. ¹⁹F NMR (376 MHz, CDCl₃/CD₃OD, 25 °C, CF₃CO₂H): δ = -75.5. ³¹P NMR (162 MHz, CDCl₃/CD₃OD, 25 °C, PCl₃): δ = 32.3.

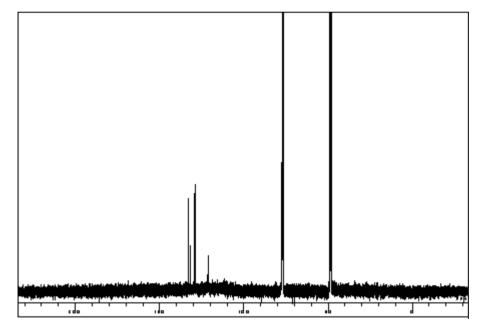

Au₂(dppp)(BIT)₂·2.5CH₃OH·0.5H₂O (1b): Method A This compound was prepared by the similar method as for 1a, except for using basic reaction condition. To a solution of [Au₂(dppp)(CF₃CO₂)₂] in CH₂Cl₂ was added excess K₂CO₃ and two equivalent BIT at once, and the resulting suspensions were then stirred 12 h at RT. After excess K₂CO₃ and other precipitate were filtered off, the filtrate was evaporated to dryness. The crude white solid was recrystallized from a solvent pair of CH₂Cl₂ and hexane (10:1) to obtain colorless crystals. Yield 88%. **Method B** To a solution of [Au₂(dppp)(CF₃CO₂)₂] in CH₂Cl₂ was added two equivalent K(BIT)·H₂O in methanol, and the resulting solution was then stirred 2 h at RT. After KCF₃CO₂ was filtered off, the filtrate was evaporated to dryness. The crude white solid was recrystallized from a solvent pair of CH₂Cl₂ and hexane to obtain colorless crystals. Yield 85%. Mp 280.7 °C. Anal. Calcd for C₄₁H₃₆N₄P₂S₂Au₂·2.5CH₃OH·0.5H₂O: C, 43.76; H, 3.97; N, 4.69; S, 5.37. Found: C, 44.18; H, 3.44; N, 5.04; S, 6.27. IR (KBr): v = 1431 (m) cm⁻ ¹. ¹H NMR (400 MHz, CDCl₃/CD₃OD 25 °C, TMS): δ = 7.32 (t, J=10.2 Hz, 9H), 7.14 (d, J=7.3 Hz, 5H), 7.09 (d, J=7.3 Hz, 9H), 7.01 (s, 4H), 6.78 (s, 4H), 2.53 (br, 4H), 1.80 (br, 2H). ¹³C NMR (100 MHz, CDCl₃/CD₃OD 25 °C, TMS): δ = 121.3, 128.4, 129.0, 129.2, 131.7, 132.8, 132.9. ³¹P NMR (162 MHz, CDCl₃/CD₃OD 25 °C, PCl₃): δ = 33.6.

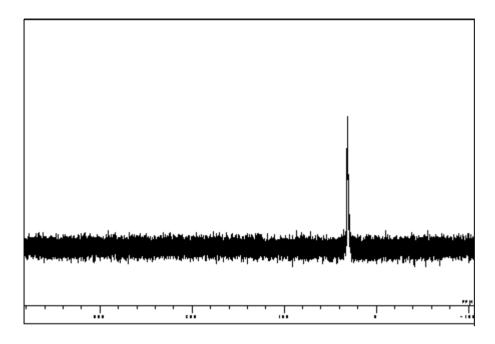
S2. TGA/DSC overlay of 1a (top) and 1b (down)

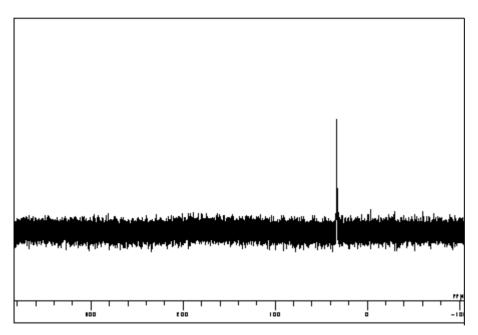


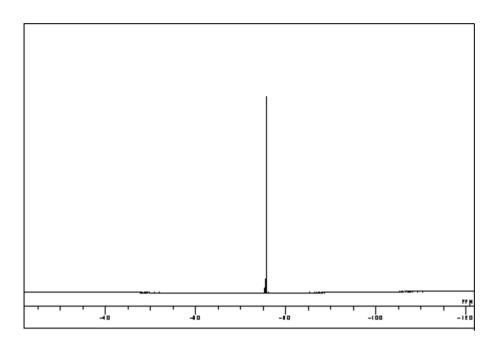

S3. FT-IR spectra of 1a (top) and 1b (down) in KBr



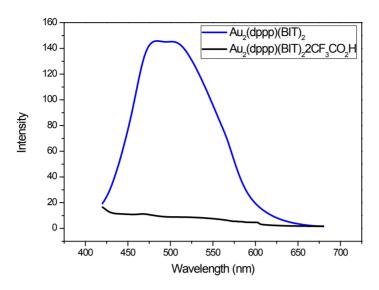

S4. ¹H NMR spectrum of 1a (top) and 1b (down) in CDCl₃/CD₃OD

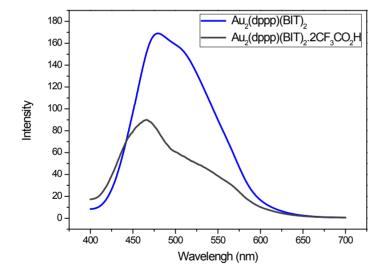


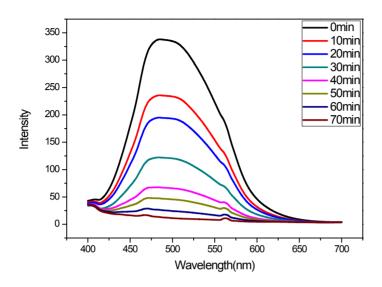

S5. ¹³C NMR spectrum of 1a (top) and 1b (down) in CDCl₃/CD₃OD

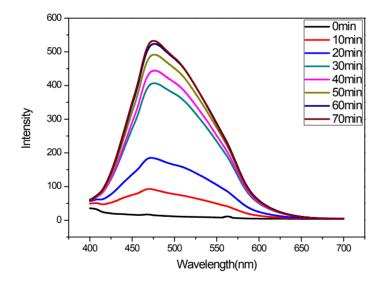


S6. ³¹P NMR spectrum of 1a (top) and 1b (down) in CDCl₃/CD₃OD

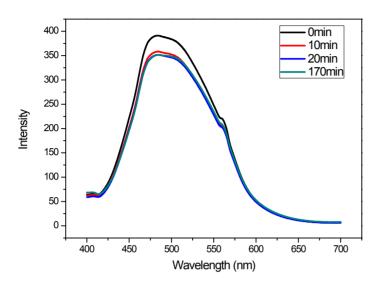


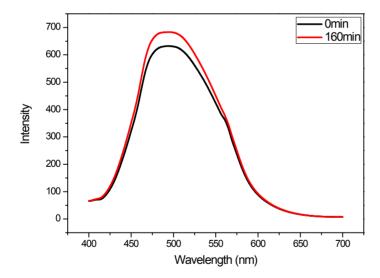

S7. ¹⁹F NMR spectrum of 1a in CDCl₃/CD₃OD


S8. Emission spectra of 1a and 1b in solid state at RT



S9. Emission spectra of 1a and 1b in solid state at 77K




S10. Time-dependent emission spectra of 1a in CF₃CO₂H (top) and NEt₃ (down) chamber at RT

S11. Time-dependent emission spectra of 1a in HCl (top) and NEt $_3$ (down) chamber at RT

