Supplementary Material for:

BOP-Mediated One-Pot Synthesis of \boldsymbol{C}_{5}-Symmetric Macrocyclic Pyridone Pentamers with High Cation-Binding Affinities \dagger
Zhiyun Du, ${ }^{\text {a,b }}$ Changliang Ren, ${ }^{\mathbf{b}}$ Ruijuan Ye, ${ }^{\text {b }}$ Jie Shen, ${ }^{\text {b }}$ Victor Maurizot, ${ }^{\text {c }}$ Yujin Lu, ${ }^{\text {a }}$ Jian Wang, ${ }^{\text {b }}$ and Huaqiang Zeng*,b
${ }^{a}$ Faculty of Chemical Engineering and Light Industry, Guang Dong University of Technology, Guang Dong, China 510006
${ }^{b}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
${ }^{c}$ CNAB - UMR5084, Université de Bordeaux, UMR CNRS 5248, Institute Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac Cedex, France

General Remarks. S2
Scheme S1. Synthetic Routes That Affords Monomeric Building Blocks 1a-6a S3
Synthetic Procedure \& Characterization. S4
Scheme S2. Synthetic Routes That Affords Pentamers 1-6 S9
Synthetic Procedure \& Characterization S10
Scheme S3. Synthetic Routes That Affords Dimer 2f. S13
Synthetic Procedure \& Characterization. S14
Scheme S4. One Pot Reaction of $\mathbf{2 f}$ and 5a that Affords Pentamers 5, 7 and $\mathbf{8}$. S16
Figure S1. Image of TLC plate of the products from the reaciton in Scheme S5. S17
Figure S2. ESI Mass Spectra of products from the reaction in Scheme S5 S17
${ }^{1} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ NMR Spectra for $\mathbf{1 - 6}$ and Other Intermediates. S18

General Remarks

All the reagents were obtained from commercial suppliers and used as received unless otherwise noted. Aqueous solutions were prepared from distilled water. The organic solutions from all liquid extractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for a minimum of 15 minutes before filtration. Reactions were monitored by thin-layer chromatography (TLC) on silica gel pre-coated glass plate $(0.225 \mathrm{~mm}$ thickness, 60F-254, E. Merck). Flash column chromatography was performed using pre-coated 0.2 mm silica plates from Selecto Scientific. Chemical yields refer to pure isolated substances. Mass spectra were obtained using the Instrumentation includes Finnigan MAT95XL-T and Micromass VG7035. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker ACF300 (300 MHz) and ACF500 (500 MHz) spectrometers. In addition, key compounds were characterized by X-ray Diffraction. The solvent signal of CDCl_{3} was referenced at $\delta=7.26 \mathrm{ppm}$, and DMSO- d_{6} at 2.50 ppm . Coupling constants (J values) are reported in Hertz (Hz). ${ }^{1} \mathrm{H}$ NMR data are recorded in the order: chemical shift value, multiplicity (s, singlet; d , doublet; t , triplet; q , quartet; m , multiplet; br, broad), number of protons that gave rise to the signal and coupling constant, where applicable. ${ }^{13} \mathrm{C}$ spectra were proton-decoupled and recorded on Bruker ACF300 $(300 \mathrm{MHz})$ and ACF500 spectrometers $(500 \mathrm{MHz})$. The solvent, CDCl_{3} was referenced at 77 ppm and DMS0- d_{6} at $39.5 \mathrm{ppm} . \mathrm{CDCl}_{3}(99.8 \%$ deuterated) was purchased from Aldrich and used without further purification.

Scheme S1: Synthetic route that affords monomeric building blocks 1a-6a

1b: $\mathrm{R}=$ iso-butyl
2b: $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
3b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
4b: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
5b: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$
6b: $\mathrm{R}=\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

1c: $\mathrm{R}=$ iso-butyl
2c: $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
3c: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
4c: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
5c: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$
6c: $\mathrm{R}=\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

1a: $\mathrm{R}=$ iso-butyl
2a: $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
3a: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
4a: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
5a: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$
6a: $\mathrm{R}=\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

Experimental Procedures and Compound Characterizations for Scheme S1 Preparation of monomeric building blocks 1a-6a

For synthesis of 6d, see: Zheng, S. J.; Thompson, J. D.; Tontcheva, A.; Khan, S. I.; Rubin, Y. Org. Lett., 2005, 7, 1861.

6d

A mixture of diethyl 1,3-acetonedicarboxylate ($0.2 \mathrm{~mol}, 40 \mathrm{~mL}$), triethyl orthoformate $(0.4 \mathrm{~mol}, 60 \mathrm{~mL})$ and urea $(0.3 \mathrm{~mol}, 18.00 \mathrm{~g})$ in 100 mL of xylene was heated to reflux for 4 hours. After all the urea was dissolved and light yellow precipitate formed, the formed ethanol was removed in vacuo, and then the reaction mixture was allowed to reflux for another 1 hour. After cooling, the precipitate was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$, dried under vacuum to give the pure compound $\mathbf{6 d}$. Yield: $35.85 \mathrm{~g}, 75 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 11.18(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl 1-benzyl-4-oxo-1,4-dihydropyridine-3,5-dicarboxylate (6e)

6e

Compound 6d ($23.90 \mathrm{~g}, 100.0 \mathrm{mmol}$) was dissolved in DMF (350 mL), to which anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(20.85 \mathrm{~g}, 150.0 \mathrm{mmol})$ and benzyl bromide $(14.25 \mathrm{~mL}, 120.0 \mathrm{mmol})$ were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 10 hours. The reaction mixture was then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$, washed with water ($3 \times 400 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in vacuo gave the crude product, which was then washed with ethyl acetate (50 mL) to give the pure product 6 e as a pale yellow solid. Yield: $26.27 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.04(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.05,164.54,144.72,133.59,129.38$, $129.18,127.53,123.04,61.13,60.79,14.08$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{1} \mathrm{Na}\right): m / z$ 352.1155, found: $m / z 352.1154$.

1-benzyl-5-(ethoxycarbonyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (6f)

Compound $6 \mathbf{e}(13.16 \mathrm{~g}, 40.0 \mathrm{mmol})$ was dissolved in ethanol (200 mL),
 to which $0.2 \mathrm{M} \mathrm{KOH}(200 \mathrm{~mL}, 40.0 \mathrm{mmol})$ was added dropwise using a dropping funnel at room temperature. The mixture was allowed to stir at room temperature for overnight. Then ethanol was removed in vacuo and the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$. The precipitated crude product was collected by filtration and dried in the oven, which was subjected to column purification $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 50\right)$ to yield the pure product $\mathbf{6 f}$ as a white solid. Yield: $5.54 \mathrm{~g}, 46 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.37(\mathrm{~s}$, $1 \mathrm{H}), 8.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}$, $2 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.33,165.52$, $162.95,146.62,145.95,132.67,129.85,129.75,127.95,121.36,119.49,61.99,61.93,14.15 .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.97,166.13,153.65,152.37,140.68,133.22,131.95,129.64,127.76,126.05$, 113.01, 81.95, 67.08, 62.80, 28.16. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{1} \mathrm{Na}\right): m / z 324.0842$, found: $m / z 324.0845$.

Ethyl 1-benzyl-5-(tert-butoxycarbonylamino)-4-oxo-1,4-dihydropyridine-3-carboxylate (6b)

6b Compound $6 \mathbf{f}(7.53 \mathrm{~g}, 25.0 \mathrm{mmol})$ was dissolved in THF/DMF ($75 \mathrm{~mL} / 50$ mL) with an installation of balloon on top of the round bottom flask. This solution was cooled to $0^{\circ} \mathrm{C}$ using an ice bath. 4 -methylmorpholin (3.00 mL , 30.0 mmol) and ethyl chloroformate ($3.00 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was injected to the cooled solution. The mixture was allowed to stir for 25 minutes. Then sodium azide ($2.44 \mathrm{~g}, 37.5 \mathrm{mmol}$) dissolved in minimal amount of water was injected into the cooled solution. 30 minutes later, THF was removed in vacuo at $28^{\circ} \mathrm{C}$. The mixture was then dissolved in $200 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water (3 x 300 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo and the residue was dissolved in toluene (150 $\mathrm{mL})$, to which t-butanol ($3.45 \mathrm{~mL}, 37.5 \mathrm{mmol}$) was added. The reaction was allowed to stirat $90^{\circ} \mathrm{C}$ for 30 hours. The yellow precipitate was removed by filtration and removal of toluene in vacuo gave the crude product, which was subjected to column purification $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 100\right)$ to yield the pure product $\mathbf{6 b}$ as a pale yellow solid. Yield: $4.34 \mathrm{~g}, 47 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.15$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.23,165.11,152.77$, $141.87,134.12,133.32,129.40,129.13,127.39,123.50,113.82,81.03,61.84,61.02,28.20,14.29$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}\right): ~ m / z ~ 395.1577$, found: $m / z 395.1575$.

Ethyl 5-(tert-butoxycarbonylamino)-1-isobutyl-4-oxo-1,4-dihydropyridine-3-carboxylate (1b)

1b

Compound $\mathbf{6 b}(1.86 \mathrm{~g}, 5.00 \mathrm{mmol})$ was reduced by catalytic hydrogenation in THF (20 mL) at $50{ }^{\circ} \mathrm{C}$, using $\mathrm{Pd} / \mathrm{C}(186 \mathrm{mg}, 10 \%)$ as the catalyst for 6 hours. The reaction solvent was then removed in vacuo to give a white product 6 g mixed with Pd / C, which was directly used in the next step without further purification. DMF $(20 \mathrm{~mL})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}$, 10.00 mmol) and iso-butylbromide ($0.65 \mathrm{~mL}, 6.00 \mathrm{mmol}$) was added to $\mathbf{6 g}$ $(5.00 \mathrm{mmol})$. The mixture was heated under $80^{\circ} \mathrm{C}$ for 18 hrs . The reaction mixture was then filtered and the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water ($3 \times 100 \mathrm{~mL}$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in vacuo gave the crude product, which was subjected to column purification $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 100\right)$ to yield the pure product $\mathbf{1 b}$ as a pale yellow oil. Yield: $1.15 \mathrm{~g}, 68 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{dt}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.11$, $165.12,152.78,141.85,133.03,123.13,113.24,80.89,65.81,60.83,29.57,28.16,19.38,14.24$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}\right): \quad m / z 361.1734$, found: $m / z 361.1731$.

5-amino-1-isobutyl-4-oxo-1,4-dihydropyridine-3-carboxylic acid (1a)

1a

Compound $\mathbf{1 b}(1.01 \mathrm{~g}, 3.00 \mathrm{mmol})$ was dissolved in ethanol (30 mL), to which concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(3.0 \mathrm{~mL})$ was slowly added to the solution. The reaction was allowed to stir at room temperature for 12 hours. Then the reaction mixture was neutralized using saturated aquous solution of NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{~mL})$. Combination of the organic layer and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give the pure product $\mathbf{1 c}$, which was directly used in the next step without further purification.

Compound 1c (3.00 mmol) was dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} / 10 \mathrm{~mL})$ to which $1.0 \mathrm{M} \mathrm{NaOH}(6.00$ $\mathrm{mL}, 6.00 \mathrm{mmol})$ was added. The mixture was heated under $65^{\circ} \mathrm{C}$ for 6 hours. Then $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added to the solution, which was then neutralized by addition of $1 \mathrm{M} \mathrm{AcOH}(6.50 \mathrm{~mL})$. Dioxane was removed in vacuo and the precipitate was collected by filtration and dried in the oven to give the crude product which was then recrystallized from diethyl ether to give the pure product $\mathbf{1 a}$ as a pink solid. Yield: $517 \mathrm{mg}, 82 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.60(\mathrm{br}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{br}, 2 \mathrm{H}), 2.13(\mathrm{td}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.96$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.51,167.36,139.47,138.43,119.34,111.58,66.30,29.85$, 19.49. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}\right): m / z$ 233.0897, found: $m / z 233.0892$.

Monomers 2a, 3a and 6a were prepared from 2c, 3c and $\mathbf{6 c}$ via intermediates $\mathbf{2 b}, \mathbf{3 b}$ and $\mathbf{6 b}$ that were prepared from $\mathbf{6 g}$ by alkylation in the same way as $\mathbf{1 a}$ described above.

Ethyl 5-(tert-butoxycarbonylamino)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (2b)

found: $m / z 417.2353$.

Yield: $1.50 \mathrm{~g}, 76 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-$ $1.23(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.16,165.28,152.90,141.59,133.25,123.01,113.45,81.01,60.98$, $58.85,31.61,30.63,28.98,28.93,28.23,26.15,22.53,14.33,14.00$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}\right): m / z 417.2360$,

5-amino-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylic acid (2a)

Yield: $519 \mathrm{mg}, 65 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$,
$3.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.90(\mathrm{t}, J=$
$6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.34,167.37$,

Ethyl 5-(tert-butoxycarbonylamino)-1-(2-ethoxyethyl)-4-oxo-1,4-dihydropyridine-3-carboxylate (3b)

3b
377.1683, found: $m / z 377.1698$.

Yield: $1.40 \mathrm{~g}, 79 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (t, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.39(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.25,164.66,152.65,142.51,132.70$, 123.46, 113.17, 80.77, 68.49, 66.77, 60.56, 58.25, 28.10, 14.76, 14.21. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$

5-amino-1-(2-ethoxyethyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (3a)

Yield: $461 \mathrm{mg}, 68 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.55$ ($\mathrm{s}, 1 \mathrm{H}$), $8.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.19 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.71$, $167.43,139.17,138.85,120.06,111.89,68.66,67.09,58.94,14.88$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}_{2}\right)$: m/z 225.0881, found: $m / z 225.0875$.

5-amino-1-benzyl-4-oxo-1,4-dihydropyridine-3-carboxylic acid (6a)

$4 b$ and $\mathbf{5 b}$ was prepares from $6 g$ in the same way as $\mathbf{1 b}$ was prepared from $\mathbf{6 g}$.

Ethyl-5-(tert-butoxycarbonylamino)-1-(2-(2-methoxyethoxy)ethyl)-4-oxo-1,4-dihydropyridine-3carboxylate (4b)

Yield: $1.59 \mathrm{~g}, 83 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ ($\mathrm{s}, 1 \mathrm{H}$), 8.04 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.88,164.20,152.21,142.20,132.25$, $123.18,112.75,80.40,71.36,70.36,69.08,60.16,58.50,57.78,27.72$,
13.85. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Na}\right): m / z 407.1789$, found: $m / z 407.1801$.

Ethyl 5-(tert-butoxycarbonylamino)-1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-4-oxo-1,4-dihydro pyridine-3-carboxylate (5b)

Yield: $1.61 \mathrm{~g}, 75 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.08$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 6 \mathrm{H}), 3.39(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.97,164.48,152.40,142.31,132.47$, $123.20,112.94,80.56,71.49,70.68,70.25,70.22,69.19,60.39,58.56$, 57.98, 27.87, 13.99. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Na}\right): m / z 451.2051$, found: $m / z 451.2071$.

5-amino-1-(2-(2-methoxyethoxy)ethyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (4a)
Compound $\mathbf{4 b}(1.15 \mathrm{~g}, 3.00 \mathrm{mmol})$ was dissolved in ethanol (30

4a $\mathrm{mL})$, to which concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(3.0 \mathrm{~mL})$ was slowly added to the solution. The reaction was allowed to stir at room temperature for 18 hours. Then the reaction mixture was neutralized using saturated aquous solution of NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{x} 50 \mathrm{~mL})$. Combination of the organic layer and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give the pure product $4 \mathbf{c}$, which was directly used in the next step without further purification. Compound $4 \mathbf{c}$ was dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} / 10 \mathrm{~mL})$ to which $1.0 \mathrm{M} \mathrm{NaOH}(6.00 \mathrm{~mL}, 6.00$ mmol) was added. The reaction was allowed to stir for 12 hours, which was then neutralized by addition of $\mathrm{AcOH}(1.00 \mathrm{~mL})$. All of the solvent was removed in vacuo and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added. Collecting the solution by filtration and removal of the solvent in vacuo gave the crude product which was crystallized in diethyl ether to give the pure product $\mathbf{4 a}$ as a pink solid. Yield: $361 \mathrm{mg}, 47 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} /\right.$ DMSO- $\left._{6}=4 / 1\right) \delta 8.15(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{\mathrm{d}}^{6}=4 / 1\right) \delta 169.66,166.93,139.05,137.55,119.84,110.73,71.13$, 70.02, 68.95, 58.31, 57.92. HRMS-ESI: calculated for [M-H] $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{2}\right): m / z$ 255.0986, found: m / z 255.0984 .
$\mathbf{5 a}$ was prepared from $\mathbf{5 b}$ in the same way as $\mathbf{4 a}$ was prepared from $\mathbf{4 b}$ described above.

5-amino-1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid(5a)

5a Yield: $477 \mathrm{mg}, 53 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.74(\mathrm{~s}, 1 \mathrm{H})$, $8.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{br}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 8 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.57,167.49,139.45,138.35$, 120.47 , 111.78, 71.92, 70.67, 70.59, 70.46, 69.64, 58.82, 58.55. HRMS-ESI: calculated for $[M-H]^{-}\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{2}\right)$: m/z 299.1249, found: $m / z 299.1256$.

Scheme S2: Synthetic route that affords pentamers 1-6

1a: $\mathrm{R}=$ iso-butyl
2a: $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
3a: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
4a: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
6a: $\mathrm{R}=\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

1: $\mathrm{R}=$ iso-butyl
2: $\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
3: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
4: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
5: $\mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$
6: $\mathrm{R}=\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

Experimental Procedures and Compound Characterizations for Scheme S2 One-pot preparation of Pentamers 1-6:

Pentamer 1

Compound 1a ($42.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and BOP ($176.8 \mathrm{mg}, 0.4$ mmol) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ to which DIEA ($0.14 \mathrm{ml}, 0.80 \mathrm{mmol}$) was added and the reaction mixture was allowed to stirred continuously for 30 hours at room temperature. Removal of the solvent in vacuo gave the crude product, which was then washed with MeOH ($3 \times 3 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ to yield the pure product 1 as a white solid. Yield: $9.6 \mathrm{mg}, 25 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\left.d_{6}, 110^{\circ} \mathrm{C}\right) \delta 13.42(\mathrm{~s}, 5 \mathrm{H}), 8.97(\mathrm{~s}, 5 \mathrm{H}), 8.47(\mathrm{~s}, 5 \mathrm{H})$, $4.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 10 \mathrm{H}), 2.18(\mathrm{td}, J=13.8,6.9 \mathrm{~Hz}, 5 \mathrm{H})$, 1.01 (d, $J=6.6 \mathrm{~Hz}, 30 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, $\left.110^{\circ} \mathrm{C}\right) \delta 167.83,161.94,140.75,131.45,126.39,113.92,64.25,28.46,18.37$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 999.4125, found: m / z 999.4138.

Pentamer 2

Compound 2a ($53.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and BOP (176.8 mg , $0.4 \mathrm{mmol})$ were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ to which DIEA ($0.14 \mathrm{ml}, 0.80 \mathrm{mmol}$) was added and the reaction mixture was allowed to stirred continuously for 30 hours at room temperature. Removal of the solvent in vacuo gave the crude product, which was recrystallized from $\mathrm{MeOH}(20 \mathrm{~mL})$ to yield the pure product $\mathbf{2}$ as a white solid. Yield: $8.9 \mathrm{mg}, 18 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1 / 5,110^{\circ} \mathrm{C}\right) \delta 13.39(\mathrm{~s}, 5 \mathrm{H}), 8.93(\mathrm{~s}, 5 \mathrm{H})$, $8.41(\mathrm{~s}, 5 \mathrm{H}), 4.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 10 \mathrm{H}), 1.97-1.86(\mathrm{~m}$, $10 \mathrm{H}), 1.49-1.27(\mathrm{~m}, 50 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{-}=1 / 2,110\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 167.31,160.92,139.27,131.22,125.25,113.88,57.67,30.44,29.10,27.89,27.74,25.19,21.14$, 12.61. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{70} \mathrm{H}_{100} \mathrm{O}_{10} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 1279.7255, found: m / z 1279.7275.

Pentamers 4, $\mathbf{5}$ and were prepared in the same way as $\mathbf{2}$ described above.

Pentamer 4

Yield: $4.8 \quad \mathrm{mg}, \quad 10 \% . \quad{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(500 \quad \mathrm{MHz}$, $\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,110^{\circ} \mathrm{C}$) $\delta 13.29$ (s, 5 H), 8.94 ($\mathrm{s}, 5 \mathrm{H}$), $8.42(\mathrm{~s}, 5 \mathrm{H}), 4.37(\mathrm{t}, J=4.7 \mathrm{~Hz}, 10 \mathrm{H}), 3.90(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $10 \mathrm{H}), 3.62(\mathrm{t}, J=4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.48(\mathrm{t}, J=4.8 \mathrm{~Hz}, 10 \mathrm{H})$, 3.27 (s, 15H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1 / 9$, $\left.110^{\circ} \mathrm{C}\right) \delta 167.95,161.76,140.80,131.50,126.41,114.19$, 70.73, 69.39, 68.71, 57.36, 57.32. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{55} \mathrm{H}_{70} \mathrm{O}_{20} \mathrm{~N}_{10} \mathrm{~K}\right)$: m / z 1229.4399, found: m / z 1229.4388.

Pentamer 5

Yield: $9.0 \mathrm{mg}, \quad 16 \% .{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,110^{\circ} \mathrm{C}$) $\delta 13.09(\mathrm{~s}, 5 \mathrm{H}), 8.77$ (s , $5 \mathrm{H}), 8.26(\mathrm{~s}, 5 \mathrm{H}), 4.32(\mathrm{t}, J=4.7 \mathrm{~Hz}, 10 \mathrm{H}), 3.98(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.71(\mathrm{t}, J=4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.64(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.58(\mathrm{t}, J=4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.47(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.28(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9, \quad 110^{\circ} \mathrm{C}\right) \delta \quad 167.67, \quad 161.22$, $140.33,131.25,126.22,113.98,70.86,69.67,69.33$, 69.25, 68.75, 57.39, 57.31. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{65} \mathrm{H}_{90} \mathrm{O}_{25} \mathrm{~N}_{10} \mathrm{~K}\right): m / z 1449.5710$, found: m / z 1449.5750.

Pentamers $\mathbf{3}$ and $\mathbf{6}$ were prepared in the same way as $\mathbf{1}$ described above.

Pentamer 3

Yield: $\quad 5.0 \quad \mathrm{mg}, \quad 12 \% . \quad{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad(500 \quad \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,110^{\circ} \mathrm{C}\right) \delta 13.21(\mathrm{~s}, 5 \mathrm{H}), 8.91(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 5 \mathrm{H}), 8.39(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 5 \mathrm{H}), 4.35(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $10 \mathrm{H}), 3.86(\mathrm{t}, J=4.8 \mathrm{~Hz}, 10 \mathrm{H}), 3.56(\mathrm{q}, J=6.9 \mathrm{~Hz}, 10 \mathrm{H})$, 1.17 (t, $J=6.9 \mathrm{~Hz}, 15 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,110^{\circ} \mathrm{C}\right) \delta 167.82,161.63,140.68$, 131.39, 126.36, 114.06, 67.81, 65.21, 57.33, 13.84. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{15} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 1079.3871, found: $m / z 1079.3912$.

Pentamer 6

Yield: $4.3 \mathrm{mg}, 10 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 110^{\circ} \mathrm{C}$) $\delta 13.43(\mathrm{~s}, 5 \mathrm{H}), 8.99(\mathrm{~s}, 5 \mathrm{H}), 8.70(\mathrm{~s}, 5 \mathrm{H}), 7.46-7.38(\mathrm{~m}$, 25 H), $5.43(\mathrm{~s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}, $\left.110^{\circ} \mathrm{C}\right) \delta 167.81,161.59,140.60,134.57,131.56,128.24$, 127.80, 127.48, 126.00, 114.10, 60.25. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{65} \mathrm{H}_{50} \mathrm{O}_{10} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 1169.3343, found: $m / z 1169.3350$.

Scheme S3: Synthetic route that affords dimer $2 f$

Experimental Procedures and Compound Characterizations for Scheme S4 Preparation of Dimer $2 f$

5-(tert-butoxycarbonylamino)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylic acid (2d)

Compound 2b ($3.15 \mathrm{~g}, 8.0 \mathrm{mmol}$) was dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}$ (40 $\mathrm{mL} / 10 \mathrm{~mL})$, to which $1.0 \mathrm{M} \mathrm{NaOH}(16.0 \mathrm{~mL}, 16.0 \mathrm{mmol})$ was added. The mixture was allowed to stir at room temperature for 10 hours. Then $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ was added to the solution, which was then neutralized by addition of $1 \mathrm{M} \mathrm{AcOH}(20.0 \mathrm{~mL})$. Dioxane was removed in vacuo and the crude product was dissolved in $150 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water (3 x 200 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give a pure product $\mathbf{2 d}$ as a brown solid. Yield: 2.69 g , $92 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.94(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.77,166.30,152.48,140.42,131.82,125.70,112.76$, 81.91, 59.72, 31.59, 30.74, 28.93, 28.88, 28.16, 26.12, 22.52, 13.99. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}\right): m / z$ 389.2074, found: m / z 389.2032.

ethyl 5-(5-(tert-butoxycarbonylamino)-1-octyl-4-ox0-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-ox0-1,4-dihydropyridine-3-carboxylate (2e)

Compound 2b ($1.97 \mathrm{~g}, 5.0 \mathrm{mmol}$) was dissolved in ethanol (70 mL), to which concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(5.0 \mathrm{~mL})$ was slowly added to the solution. The reaction was allowed to stir at room temperature for 12 hours. Then the reaction mixture was neutralized using saturated aqueous solution of NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 60 \mathrm{~mL})$. Combination of the organic layer and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give the pure product $\mathbf{2 c}$, which was directly used in the next step without further purification. Compound 2d $(1.83 \mathrm{~g}, 5.0 \mathrm{mmol})$, compound $\mathbf{2 c}(5.0 \mathrm{mmol})$, HBTU $(2.13 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $\mathrm{HoBt}(0.73 \mathrm{~g}, 5.5$ mmol) were dissolved in DMF (30 mL), to which DIEA ($1.75 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added to the solution. The reaction was allowed to stir at room temperature for 24 hours. Then DMF was removed in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with water $(3 \times 300 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give the crude product, which was subjected to column purification $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 100\right)$ to yield the pure product 2 e as a colorless oil.. Yield: $2.76 \mathrm{~g}, 86 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.90(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 11 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 20 \mathrm{H})$, $0.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.92,167.60,165.86,163.22,152.78,142.28$, $139.72,133.68,132.50,126.05,123.59,114.82,114.61,80.94,60.82,59.09,58.51,38.47,31.52,31.51$, 30.57, 30.46, 28.87, 28.84, 28.83, 28.12, 28.07, 26.07, 22.42, 14.28, 13.86. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{~N}_{4} \mathrm{Na}\right): m / z 665.3885$, found: $m / z 665.3869$.

5-(5-amino-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine

-3-carboxylic acid (2f)

Compound 2e ($1.29 \mathrm{~g}, 2.00 \mathrm{mmol}$) was dissolved in ethanol (25 mL), to which concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$

$2 f$
$(3.0 \mathrm{~mL})$ was slowly added to the solution. The reaction was allowed to stir at room temperature for 12 hours. Then the reaction mixture was neutralized using saturated aquous solution of NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. Combination of the organic layer and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give the pure product $\mathbf{2 g}$, which was directly used in the next step without further purification. Compound $\mathbf{2 g}(2.00 \mathrm{mmol})$ was dissolved in dioxane $/ \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} / 10$ $\mathrm{mL})$ to which $1.0 \mathrm{M} \mathrm{NaOH}(4.0 \mathrm{~mL}, 4.00 \mathrm{mmol})$ was added. The mixture was heated under $65^{\circ} \mathrm{C}$ for 6 hours. Then $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added to the solution, which was then neutralized by addition of 1 M AcOH (4.5 mL). Dioxane was removed in vacuo and the precipitate was collected by filtration and dried in the oven to give the crude product which was subjected to column purification $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 40\right)$ to yield the pure product 2 f as a pale yellow solid. Yield: $494 \mathrm{mg}, 48 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.46(\mathrm{~s}, 1 \mathrm{H}), 13.35(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, 4.39 (br, 2H), 3.99 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 20 \mathrm{H})$, $0.88-0.81(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.71,168.99,166.68,164.40,140.72,137.54$, $132.18,128.47,117.86,113.34,112.83,104.95,59.54,58.90,31.56,31.54,30.65,30.49,28.91,28.90$, 28.88, 28.87, 26.11, 26.08, 22.47, 22.46, 13.95. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{Na}\right)$: m / z 537.3047, found: $m / z 537.3034$.

Scheme S4: One-pot reaction of 2f and 5a that affords pentamers 5, $\mathbf{7}$ and $\mathbf{8}$

Compound $2 \mathbf{f}(51.5 \mathrm{mg}, 0.1 \mathrm{mmol}), 5 \mathrm{a}(90.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ and BOP ($353.6 \mathrm{mg}, 0.8 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$, to which DIEA ($0.28 \mathrm{ml}, 1.60 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir for 30 hours at room temperature. Removal of the solvent in vacuo gave the crude product, which was recrystallized from $\mathrm{MeOH}(30 \mathrm{~mL})$ to yield the mixture of pentamer $\mathbf{5}, 7$ and $\mathbf{8}$, which were separated by the preparative TLC plate to give the pure pentamer $\mathbf{5}(2.8 \mathrm{mg}$, $\left.1.98 \times 10^{-3} \mathrm{mmol}\right)$, pentamer $7\left(10.3 \mathrm{mg}, 7.67 \times 10^{-3} \mathrm{mmol}\right)$ and pentamer $8\left(6.7 \mathrm{mg}, 5.25 \times 10^{-3} \mathrm{mmol}\right)$ as white solids. The molar ratio of produced pentamers 5:7:8 $=$ 2:8:5

Pentamer 7

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=3 / 7$, $\left.85^{\circ} \mathrm{C}\right) \delta 12.85(\mathrm{~s}, 5 \mathrm{H}), 8.85=4-8.69(\mathrm{~m}, 5 \mathrm{H})$, $8.36-8.24(\mathrm{~m}, 5 \mathrm{H}), 4.38(\mathrm{~s}, 6 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H})$, 3.97 ($\mathrm{s}, 6 \mathrm{H}$), $3.70(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{~s}$, $6 \mathrm{H}), 3.45(\mathrm{t}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.25(\mathrm{~s}, 9 \mathrm{H}), 1.95$ $(\mathrm{s}, 4 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 20 \mathrm{H}), 0.92-0.89(\mathrm{~m}$, $6 \mathrm{H})$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}$ $\left(\mathrm{C}_{67} \mathrm{H}_{94} \mathrm{O}_{19} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 1381.6328, found: m / z 1381.6315.

Pentamer 8

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=3 / 7,85^{\circ} \mathrm{C}$) $\delta 12.88$ $(\mathrm{s}, 5 \mathrm{H}), 8.77-8.66(\mathrm{~m}, 5 \mathrm{H}), 8.29-8.18(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{~s}$, $2 \mathrm{H}), 4.16(\mathrm{~s}, 8 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.34$ (m, 40H), 0.91 (t, $J=6.2 \mathrm{~Hz}, 12 \mathrm{H}$). HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{K}]^{+}\left(\mathrm{C}_{69} \mathrm{H}_{98} \mathrm{O}_{12} \mathrm{~N}_{10} \mathrm{~K}\right): m / z$ 1313.6946, found: m / z 1313.6977.

2: $R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=C_{8} H_{17}$
5: $R_{1}=R_{2}=R_{3}=R_{4}=R_{5}=\left(C H_{2} C H_{2} O\right)_{2} C H_{3}$
7: $R_{1}=R_{2}=C_{8} H_{17}, R_{3}=R_{4}=R_{5}=\left(\mathrm{CH}_{2} C H_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$
8: $R_{1}=R_{2}=R_{3}=R_{4}=C_{8} H_{17}, R_{5}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{3}$

Figure S1. Structures of pentamers 2, 5, $\mathbf{7}$ and $\mathbf{8}$ containing monomeric units of 2a and 5a in varying ratios. Using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 10, \mathrm{v} / \mathrm{v})$ as the eluent, pentamers 5, $\mathbf{7}$ and $\mathbf{8}$ can be well separated in TLC plate. Lane $3=$ macrocylization reaction products obtained by reacting $\mathbf{2 f}$ and 5a in a molar ratio of 1:3 and after recrystallizing the reaction mixture from MeOH .

Figure S2. ESI spectrum of macrocylization reaction mixture containing pentamers 5, 7 and $\mathbf{8}$ produced by reacting $\mathbf{2 f}$ and $5 \mathbf{5}$ in a molar ratio of $1: 3$ (Scheme S5). The crude product was recrystallized from MeOH before subjecting to ESI analysis.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR Spectra of Major Compounds

