5

30

Photoreactive Gold(I) Macrocycles with Diphosphine and trans, trans-Muconate Ligands

Mohammad Hedayetullah Mir,^{1,2} Jun Xiang Ong,¹ Goutam Kumar Kole,¹ Geok Kheng Tan,¹ Michael J. McGlinchey,^{3,*} Yuyang Wu^{4,*} and Jagadese J. Vittal^{1,5,*}

¹Department of Chemistry, National University of Singapore, Singapore 117543

²Current address: Department of Chemistry, Aliah University, Kolkata 700091, India

³School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

⁴ Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 602208, USA

⁵Department of Chemistry, Gyeongsang National University, Jinju 660-701, S. Korea

Electronic Supplementary Information

- 15 **Synthesis of Complexes:** All reactions were performed under pure dry nitrogen or argon using standard Schlenk techniques and apparatus used were wrapped with aluminum foil as the gold compounds are light sensitive. Au₂(μ-dppm)Cl₂ and Au₂(μ-dppe)Cl₂ were prepared according to standard literature procedures. ^{6c}
- 20 **1:** Silver trifluoroacetate (0.044 g, 0.2 mmol) was added to a suspension of Au₂(dppm)Cl₂ (0.085 g, 0.1 mmol) in THF (10 mL). The mixture was stirred for 1h and then filtered through Celite to remove AgCl. An aqueous solution of the Na₂muco acid obtained by neutralizing H₂muco (0.014 g, 0.1 mmol) with 0.5 M NaOH in H₂O (4 mL) was added to the resulting filtrate. After stirring for 2 h, the white solid product was collected by filtration, washed with THF and diethyl ether 25 and dried under vacuum. The residue was then recrystallized from C₂H₄Cl₂/MeOH (2:1). Yield: 38.1%. NMR in d₆-DMSO: δ(¹H) 7.35-7.78 (m, 40H, Ph), 4.61 (t, 4H), 6.07 (m, 4H), 7.02 (m, 4H); δ(³¹P) 26.4 (s); IR(KBr)/cm⁻¹: v(C=O) 1618, v(P-C_{Ph}) 1102. Elemental analysis (%) calcd. for C₆₄H₆₀Au₄O₁₀P₄: C: 40.5, H: 2.83; Found: C: 40.34, H: 2.77. FAB mass: m/z = 1837.3 (calcd 1836.8)
- **2:** Compound **2** was obtained similar to **1**, but $Au_2(dppe)Cl_2$ was used instead of $Au_2(dppm)Cl_2$. The residue was recrystallized from $CH_2Cl_2/MeOH$ (1:1). Yield: 56.5%. NMR in d₆-DMSO: $\delta(^1H)$ 7.53-7.89 (m, 40H, Ph), 2.90 (d, 8H), 6.07 (m, 4H), 7.00 (m, 4H); $\delta(^{31}P)$ 24.3 (s); $IR(KBr)/cm^{-1}$: v(C=O) 1622, $v(P-C_{Ph})$ 1104. Elemental analysis (%) calcd. for 35 $C_{67}H_{64}Au_4Cl_4O_9P_4$: C: 41.2, H: 3.00; Found: C: 41.69, H: 3.05. FAB mass: m/z = 1865.5 (calcd 1864.9)

UV irradiation of complexes: Photodimerization reactions were carried out using fibre optics of MAX-150 xenon light source (150 W) of 100% intensity and wave length range 280-350 nm.

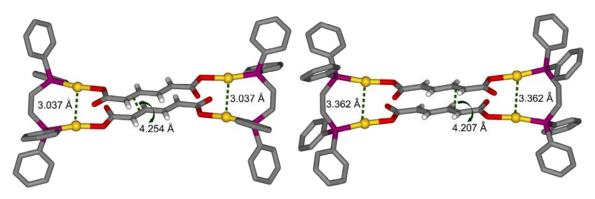
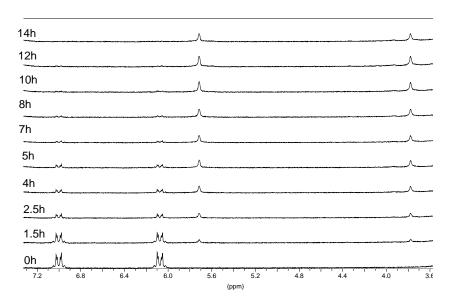
1: 5-10 mg of compound 1 was packed between two Pyrex glass slides and was irradiated under 5 UV irradiation for 1h on each side of the glass slide respectively. For photodimerization in solution, 5 mg of compound 1 was dissolved in d₆-DMSO and the NMR tube was irradiated under UV irradiation for 1h. NMR in d₆-DMSO: $\delta(^{1}\text{H})$ 7.38-7.73 (m, 40H, Ph), 4.59 (t, 4H), 3.78 (s, 4H), 5.75 (s, 4H); $\delta(^{31}\text{P})$ 27.2 (s).

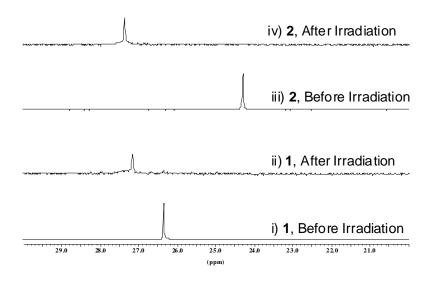
10 **2:** Compound **2** was irradiated similar to **1** to obtain the photodimerized product. NMR in d₆-DMSO: $\delta(^{1}\text{H})$ 7.55-7.86 (m, 40H, Ph), 2.87 (d, 8H), 3.78 (s, 4H), 5.71 (s, 4H); $\delta(^{31}\text{P})$ 27.4 (s).

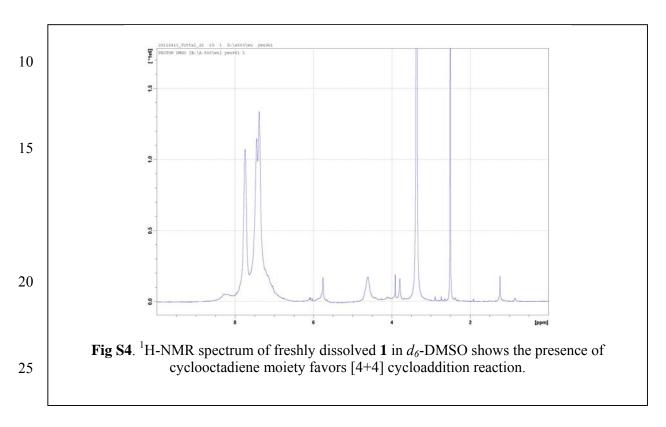
Crystal Data: 1, C₆₄H₆₀Au₄O₁₀P₄ (for. wt. 1900.87). Monoclinic space group $P2_1/c$, a = 11.2747(10), b = 17.2947(14), c = 16.2187(14) Å, $\beta = 103.224(2)^\circ$, V = 3078.7(5) Å³, Z = 2, $15 \rho_{\text{calcd}} = 2.051 \text{ g.cm}^{-3}$, $\mu = 9.663 \text{ mm}^{-1}$, T = 223(2) K, R1 = 0.0432, wR2 = 0.0885, GOF = 0.987 for 7054 total reflections of which 5412 reflections have $I > 2\sigma(I)$, Mo_{kα}-Ray ($\lambda = 71,073$ pm) and R(int) = 0.0598. Each formula unit has two MeOH in the lattice. **CCDC:836596.**

2, $C_{67}H_{64}Au_4Cl_4O_9P_4$ (for. wt. 2066.73). Triclinic space group $P\bar{\imath}$, a=13.1309(8), b=20.14.7191(8), c=18.2436(11)Å, $\alpha=80.685(1)$, $\beta=81.181(1)$ $\gamma=87.496(1)$ °, V=3437.8(3) Å³, Z=2, $\rho_{calcd}=1.997$ g.cm⁻³, $\mu=8.811$ mm⁻¹, T=223(2) K, R1=0.0547, wR2=0.1412, GOF=0.978 for 15638 total reflections of which 12074 reflections have $I>2\sigma(I)$, $Mo_{k\alpha}$ -Ray ($\lambda=71.073$ pm) and R(int)=0.0404. The molecule crystallized with two CH_2Cl_2 and one MeOH. Of these one of the CH_2Cl_2 was disordered with two CH_2Cl fragments pivoted on an un-disordered Cl4. 25 The occupancy was refined to 0.48(3). Distance contraints were applied to this with the option 'dfix'. **CCDC:836597.**

5


Fig S1. Molecular structures of the two independent units of 2 (left and right). The hydrogen atoms and solvents are omitted for clarity.


Fig S2. Stack plots of ¹H NMR during the progress of photodimerization reaction of complex **2** irradiated at room temperature. Only selected region 3.6-7.2 is shown for the clarity.

The ³¹P NMR spectra were also recorded. The singlet peak at 26.4 ppm for **1** is shifted slightly to 10 27.2 ppm and 24.3 ppm for **2** is shifted to 27.4 ppm upon dimerization. This is consistent with the formation of the highly symmetrical cyclooctadiene complex which corroborates with the ¹H NMR data.

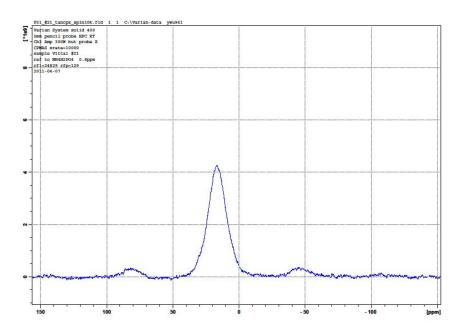

5

Fig S3. ³¹P NMR spectra of complex **1** in d_6 -DMSO i) before and ii) after irradiation and **2** in d_6 -DMSO iii) before and iv) after irradiation under UV lamp.

We have recorded solid state ¹H, ¹³C and ³¹P-NMR spectra of **1** to shed further lights on the 30 mechanism of formation of [4+4] products. While ¹H and ¹³C were too broad to give any useful information, ³¹P-NMR (given below) spectrum gave a single line indicating the formation of a symmetrical compound, i.e., [4+4] product. The spectrum is given below.

Fig. S5. Solid state ³¹P-NMR spectrum of the sample **1** after irradiation. The presence of single peak confirms that it is [4+4] product.