Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Catalytic Crosslinked Microparticles Self-Assembled from Enzyme-

Nanoparticle Complexes

Youngdo Jeong, Bradley Duncan, Myoung-Hwan Park, Chaekyu Kim and Vincent M.

Rotello*

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA

E-mail: rotello@chem.umass.edu

Supporting Information

Materials and instruments

Lipase (candida rugosa lipase), dicyclopentadiene (DCPD), ruthenium-based 1st

generation Grubbs' catalyst and Nile red were purchased from Sigma-Aldrich.

Trichlorobenzene (TCB) was purchased from Fluka Chemicals. Compat-Able Protein Assay

Kits and Coomassie blue (Bradford protein assay kit) were purchased from Thermo Fisher

Scientific Inc. 8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt (OPTS) was

purchased from Markergene Technology Inc.

Zeta potential values were measured using a MALVERN Zetasizer Nano ZS

instrument. Each sample was scanned three times and an average value was reported. Optical

and fluorescence microscopy images were taken using an Olympus IX51 instrument and

enzymatic activity assays were performed by plate fluorescence reader (SpectraMax M5).

Confocal pictures were obtained on a Zeiss LSM 510 Meta microscope using 63X objective.

Nanoparticle preparation

Positively charged gold nanoparticles (AuNPs) were synthesized according to

previous reports. In brief, pentanethiol-coated AuNPs with a core diameter of 2 nm were

synthesized using the Brust-Schiffrin two-phase method.² A Murray place-exchange reaction

was used to obtain the quaternary ammonium functionalized AuNPs.³ Oleic acid coated iron

oxide nanoparticles with a core diameter of 10 nm were synthesized through the thermal

-1-

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

decomposition of Fe(CO)₅ in organic solvents and subsequent oxidation in air. [4]

Enzyme-immobilized microparticle (MP) preparation

0.72 µM of AuNPs functionalized with trimethylammonium tetraethylene glycol

ligands were mixed with 0.36 µM of lipase in 200 µL of 5 mM phosphate buffer (pH 7.4).

The oil phase was prepared through mixing 90 µL DCPD, 8 µL TCB and 2 µL of 5% Grubbs'

catalyst in toluene. Immediately after preparing the oil phase, 5 µL of the oil phase was added

to the mixture of lipase and AuNPs. After adding the oil phase, the solution was mechanically

agitated via amalgamator. After 2 h, enzyme-immobilzed MPs were purified using a

membrane bag.

Enzyme immobilization yield (enzyme quantification method):

The immobilization yield of the lipases was calculated by measuring the amount of

residual enzymes in the solution of MPs using a Bradford protein assay. Free nanoparticles

and any interfering substances were first removed using Compat-Able Protein Assay Kit and

the calibration with a standard sample was carried out.

Enzyme activity assay

Enzyme activity assays in a 5 mM buffer solution were performed using OPTS as a

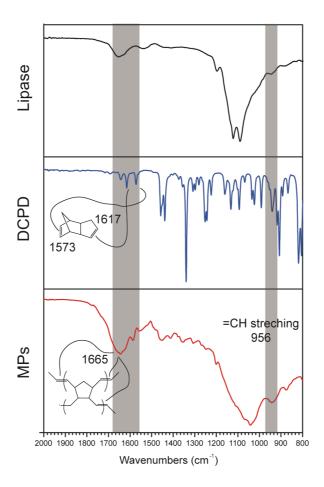
substrate and fluorescence of products were analyzed over time using plate fluorescence

reader ($\lambda_{\rm ex}/\lambda_{\rm em}$: 460/510 nm). The molarity of the OPTS was 0.2 M and calculated ionic

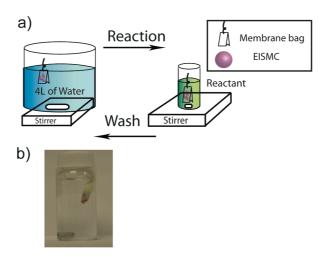
strength was 1.2 M, 6-fold higher than that of 100 mM phosphate buffer. 4-nitrophenyl

acetate was used as the substrate for enzyme activity assays in the mixture of acetone and

water and the absorbance of products was observed at 450 nm. Washing processes were


performed before the repeated reuse of biocatalysts as shown in Figure S2. The MPs and

- 2 -


Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

enzyme-immobilized MCs in 100 μ L water phase were washed by 4 L of water for 4 hour using 0.2 μ m pore-sized membrane bag.

Figure S1. IR spectrum of enzyme-immobilized MPs, DCPD and lipase

Figure S2. a) Schematic illustration of the repeated washing processes and enzyme activity assays of MPs for recycling test b) picture of 0.2 μm pore size membrane bag including the MPs

¹ M.-H. Park, Y. Ofir, B. Samanta, P. Arumugam, O. R. Miranda, V. M. Rotello, *Adv. Mater.* 2008, **20**, 4185.

A. G. Kanaras, F. S. Kamounah, K. Schaumburg, C. J. Kiely, M. Brust, *Chem. Commun.* 2002, 2294.

A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 1999, 33, 27.

⁴ T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, *J. Am. Chem. Soc.* 2001, **123**, 12798.