

Electronic Supplementary Information

Ti/Pd-Promoted Catalyzed intramolecular Michael-type addition of allylic carboxylates to activated alkenes

Alba Millán, Ana Martín-Lasanta, Delia Miguel, Luis Álvarez de Cienfuegos, Juan M. Cuerva

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Avda. Severo Ochoa s/n, 18071-Granada, Spain

jmcuerva@ugr.es, lac@ugr.es, dmalvarez@ugr.es

Index

General Information	S2
Optimization of the reaction conditions for the Pd ⁰ -Ti ^{III} -promoted Michael-type addition of allylic carboxylates to activated alkenes	S3
Influence of the phosphorous ligand and the palladium complex in the Pd ⁰ -Ti ^{III} -promoted Michael-type addition of allylic carboxylates to activated alkenes.....	S4
Synthesis of the precursors for the cyclizations 1,3-19	S5
General procedure for Pd ⁰ -Ti ^{III} catalyzed intramolecular Michael-type addition of allylic carboxylates to activated alkenes	S23
Characterization data for synthesized compounds 2, 20-33	S23
Copies of ¹ H-NMR and ¹³ C-NMR of the precursors 1,3-19 and cyclization products 2, 20-33	S30

General Information

All intramolecular cyclization reactions were assembled under argon atmosphere in oven-dried glassware with magnetic stirring. For the reactions employing titanocene all solvents and additives were rigorously deoxygenated prior to use. THF was previously distilled and dried over sodium. All commercially available reagents and solvents used in extraction and purification, ether, hexane and ethyl acetate, were obtained from standard chemical suppliers and used without further purification. TLC was performed on aluminium-backed plates coated with silica gel 60 (230-240 mesh) with F_{254} indicator. The spots were visualized with UV light (254 nm) and/or staining with Ce/Mo reagent or phosphomolybdic acid solution and subsequent heating.

¹H NMR Spectra were measured at room temperature. ¹H NMR spectra were recorded at 300, 400 or 500 MHz. The ratio of isomers was determined by integration of the allylic proton in ¹H-NMR spectra in C₆D₆ or CDCl₃. In case of mixture of isomers, the protons and carbons are assigned to the major or minor isomer when it is possible. When nothing is said the two isomers appear together and therefore the number of protons/carbons specified corresponds to both of them. Chemical shifts are reported in ppm using residual solvent peak as reference (CHCl₃: δ 7.26). Data are reported as follows: chemical shift, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, quint: quintuplet; m: multiplet, dd: doublet of doublets, dt: doublet of triplets, dq: doublet of quartets, td: triplet of doublets, bs: broad singlet), coupling constant (J in Hz) and integration. ¹³C-NMR spectra were recorded at 75, 100 or 126 MHz using broadband proton decoupling and chemical shifts are reported in ppm using residual solvent peaks as reference (CDCl₃: δ 77.16). Carbon multiplicities were assigned by DEPT techniques. The stereochemistry of the cyclization products was assigned using the Beckwith-Houk rules for radical cyclizations and the described ¹³C NMR for the *trans* isomer of a very closely related derivative of **2**¹

High resolution mass spectra (HRMS) were recorded on a Micromass AutoSpec using EI at 70eV.

The following known compounds were isolated as pure samples and showed NMR spectra identical to reported data: (**Z**)-**I**², (**E**)-**I**³, **II**⁴, (**Z**)-BrCH₂CH=CHCH₂CO₂Et⁵, **VII**³, **IX**⁶, *trans*-4-acetoxy-1-bromo-2-methyl-2-butene⁷, **XV**⁸, carbonate **XIX**⁹.

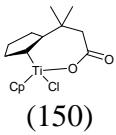
¹ M. Terakado, K. Murai, M. Miyazawa, K. Yamamoto, *Tetrahedron*, 1994, **19**, 5705-5718

² A. G. Campaña, N. Fuentes, E. Gómez-Bengoa, C. Mateo, J. E. Oltra, A. M. Echavarren, J. M. Cuerva, *J. Org. Chem.*, 2007, **72**, 8127-8130.

³ A. G. Campaña, B. Bazdi, N. Fuentes, R. Robles, J. M. Cuerva, J. E. Oltra, S. Porcel, A. M. Echavarren, *Angew. Chem. Int. Ed.*, 2008, **47**, 7515-7519.

⁴ C. Fernández-Rivas, M. Méndez, C. Nieto-Oberhuber, A. M. Echavarren, *J. Org. Chem.*, 2002, **67**, 5197-5201.

⁵ W. Oppolzer, A. Fürstner, *Helv. Chim. Acta.*, 1993, **69**, 2369-2337.


⁶ R. E. Estévez, J. Justicia, B. Bazdi, N. Fuentes, M. Paradas, D. Choquesillo-Lazarte, J. M. García-Ruiz, R. Robles, A. Gansäuer, J. M. Cuerva, J. E. Oltra, *Chem. Eur. J.*, 2009, **15**, 2774-2791.

⁷ K. Sato, S. Inoue, S. Ota, Y. Fujita, *J. Org. Chem.*, 1972, **37**, 462-466.

⁸ C. Fernández-Rivas, M. Méndez, C. Nieto-Oberhuber, A. M. Echavarren, *J. Org. Chem.* 2002, **67**, 5197-5201.

⁹ B. M. Trost, J. I. Luengo, *J. Am. Chem. Soc* 1988, **110**, 8239-8241.

Optimization of the reaction conditions for the Pd⁰-Ti^{III}-promoted Michael-type addition of allylic carboxylates to activated alkenes

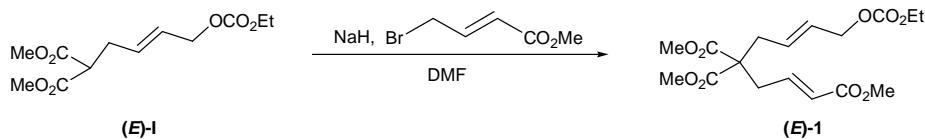
Entry	Ti catalyst (mol%)	Ligand (mol%)	Pd catalyst (mol%)	Mn (mol%)	TMSCl (mol%)	2,4,6-Collidine (mol%)	Yield (cis:trans)
1	(<i>t</i> BuCp) ₂ TiCl ₂ (150)	PPh ₃ (40)	PdCl ₂ (20)	800	-	-	54 (4:1)
2		PPh ₃ (40)	PdCl ₂ (20)	800	-	-	62 (4:1)
3	-	PPh ₃ (40)	PdCl ₂ (20)	800	400	-	62 (4:1)
4	Cp ₂ TiCl ₂ (40)	-	PdCl ₂ (20)	800	400	700	0
5	Cp ₂ TiCl ₂ (40)	PPh ₃ (40)	-	800	400	700	0
6	Cp ₂ TiCl ₂ (40)	PPh ₃ (40)	PdCl ₂ (20)	-	400	700	0
7	-	PPh ₃ (40)	PdCl ₂ (20)	800	-	-	0
8	Cp ₂ TiCl ₂ (40)	PPh ₃ (40)	PdCl ₂ (20)	800	400	-	71 (4:1)
9	-	-	Pd(PPh ₃) ₄ (20)	-	-	-	0

Influence of the phosphorous ligand and the palladium complex in the $Pd^0\text{-Ti}^{III}$ -promoted Michael-type addition of allylic carboxylates to activated alkenes.

Chemical reaction scheme showing the Michael-type addition of allylic carboxylate (z)-1 to an alkene. The product is a bicyclic compound with two isomers: 2-trans and 2-cis. The 2-trans isomer has the allylic substituent in a trans-like orientation, while the 2-cis isomer has it in a cis-like orientation. The reaction is catalyzed by $[Ti]/[Pd]$.

Entry	Ligand (mol %)	Pd catalyst (mol %)	Yield, ($2_{cis}:2_{trans}$)
1	PCy ₃ (40)	PdCl ₂ (20)	--
2	P(C ₆ F ₅) ₃ (40)	PdCl ₂ (20)	--
3	—	[Pd ₂ (dba) ₃]dba (20)	<5%
4	dppm (40)	PdCl ₂ (20)	--
5	<i>o</i> -Tolylphosphine (40)	PdCl ₂ (20)	<5%
6	(2-MeOC ₆ H ₄) ₃ PPh ₃ (40)	PdCl ₂ (20)	--
7	dppe (40)	PdCl ₂ (20)	--
8	P(OPh) ₃ (40)	PdCl ₂ (20)	<5%
9	—	Pd(PPh ₃) ₄ (20)	51, (4:1)

Synthesis of compound (Z)-1:

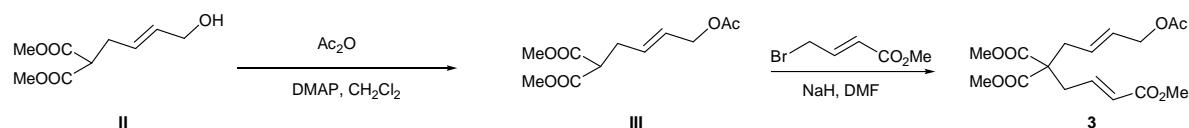

Methyl 4-bromocrotonate (230mg, 1.1 mmol) was added to a mixture of NaH (44 mg, 1.1 mmol) and dimethylmalonate derivative (Z)-I² (274 mg, 1 mmol) in DMF (10 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give a 6:1 mixture (253 mg, 68 %) of the Z- and E- isomers of the carbonate as a colourless oil. Data of the major isomer (Z)-1:

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 6.76 (dt, *J* = 15.4, 7.6 Hz, 1H), 5.91 – 5.81 (m, 1H), 5.74 – 5.60 (m, 1H), 5.50 (ddd, *J* = 11.1, 8.5, 4.5 Hz, 1H), 4.63 (d, *J* = 6.8 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.72 (s, *J* = 3.3 Hz, 6H), 3.70 (s, *J* = 3.3 Hz, 3H), 2.76 (d, *J* = 7.7 Hz, 2H), 2.70 (d, *J* = 7.7 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 170.5 (2xC), 166.2 (C), 155.1 (C), 142.4 (CH), 127.8 (CH), 127.6 (CH), 125.1 (CH), 64.2 (CH₂), 63.1 (CH₂), 57.3 (C), 52.9 (2xCH₃), 51.7 (CH₃), 35.8 (CH₂), 31.3 (CH₂), 14.4 (CH₃).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₇H₂₄O₉ [M]⁺: 372.1420; found: 372.1403.

Synthesis of compound (E)-1:


Methyl 4-bromocrotonate (979mg, 5.5 mmol) was added to a mixture of NaH (219 mg, 5.5 mmol) and dimethylmalonate derivative (E)-I² (1 g, 3.7 mmol) in DMF (25 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give a 6:1 mixture (936 mg, 68%) of the E- and Z- isomers of the carbonate as a colourless oil. Data of the major isomer (E)-1:

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 6.75 (dt, *J* = 15.3, 7.6 Hz, 1H), 5.85 (d, *J* = 15.6 Hz, 1H), 5.72 – 5.52 (m, 2H), 4.53 (d, *J* = 4.9 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 6H), 3.70 (s, 3H), 2.79 – 2.67 (m, 2H), 2.64 (d, *J* = 5.9 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 170.4 (2xC), 166.2 (C), 154.9 (C), 142.4 (CH), 129.2 (CH), 128.7 (CH), 124.9 (CH), 67.5 (CH₂), 64.0 (CH₂), 57.3 (C), 52.7 (2xCH₃), 51.6 (CH₃), 36.0 (CH₂), 35.6 (CH₂), 14.3 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{17}H_{24}O_9$ [M] $^+$: 372.1420; found: 372.1418.

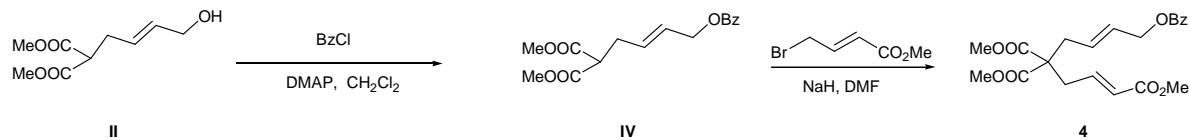
Synthesis of compound 3:

Compound III: Ac₂O (102 mg, 1 mmol) was added to a solution of compound **II** (202 mg, 1 mmol) and DMAP (121 mg, 1 mmol) in CH₂Cl₂ (15 mL). The mixture was stirred for 1 h and then solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **III** (232 mg, 95%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 5.72 - 5.64 (m, 2H), 4.48 (d, J = 4.9 Hz, 2H), 3.73 (s, 6H), 3.44 (t, J = 7.5 Hz, 1H), 2.69 - 2.60 (m, 2H), 2.04 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 169.2 (3xC), 130.8 (CH), 127.4 (CH), 64.6 (CH₂), 52.7 (2xCH₃), 51.4 (CH), 31.6 (CH₂), 21.1 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{11}H_{17}O_6$ [M+1] $^+$: 245.1025; found: 245.1017


Compound 3: Methyl 4-bromocrotonate (220 mg, 1.23 mmol) was added to a mixture of NaH (49 mg, 1.23 mmol) and **III** (200 mg, 0.82 mmol) in DMF (15 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give a 7:1 mixture (221 mg, 79%) of the *E*- and *Z*- isomers of the carbonate as a colourless oil. Data of the major isomer **3**:

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 6.73 (dt, J = 15.3, 7.6 Hz, 1H), 5.84 (d, J = 15.5 Hz, 1H), 5.68 - 5.49 (m, 2H), 4.46 (d, J = 4.2 Hz, 2H), 3.70 (bs, 9H), 2.72 (d, J = 7.2 Hz, 2H), 2.61 (d, J = 5.6 Hz, 2H), 2.02 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.5 (3xC), 166.2 (C), 142.5 (CH), 129.3 (CH), 128.6 (CH), 125.0 (CH), 64.4 (CH₂), 57.3 (C), 52.7 (2xCH₃), 51.6 (CH₃), 36.0 (CH₂), 35.6 (CH₂), 20.9 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{16}H_{22}O_8$ [M] $^+$: 342.1315; found: 342.1304

Synthesis of compound 4:

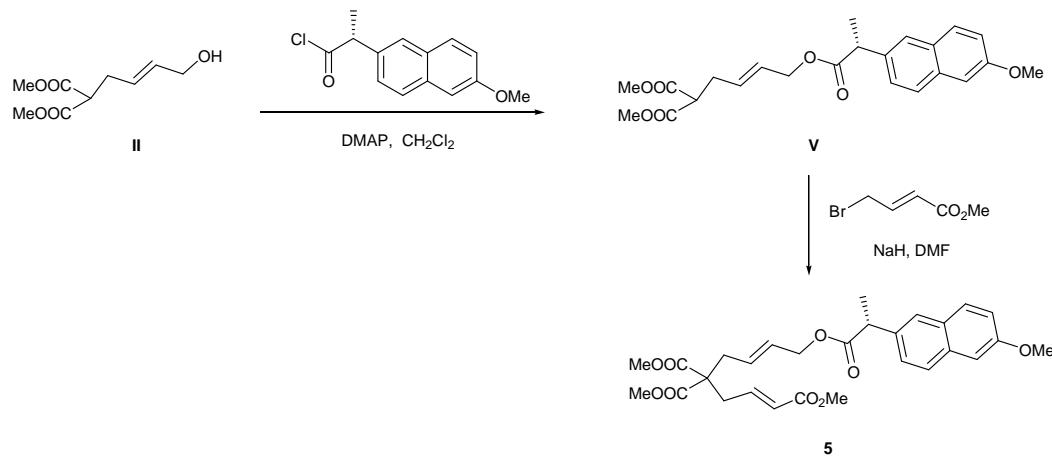
Compound IV: Benzoyl chloride (140 mg, 1 mmol) was added to a solution of compound **II** (202 mg, 1 mmol) and DMAP (122 mg, 1 mmol) in CH₂Cl₂ (15 mL). The mixture was stirred for 1 h and then

solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **IV** (281 mg, 92%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.02 (d, J = 8.4 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 5.80 (m, 2H), 4.74 (d, J = 4.0 Hz, 2H), 3.72 (s, 6H), 3.47 (t, J = 7.5 Hz, 1H), 2.70-2.62 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 169.2 (2xC), 166.3 (C), 133.1 (CH), 130.9 (CH), 130.3 (C), 129.7 (2xCH), 128.5 (2xCH), 127.5 (CH), 65.0 (CH₂), 52.6 (2xCH₃), 51.4 (CH), 31.6 (CH₂).

HRMS (EI, 70eV) m/z calcd. for C₁₆H₁₈O₆ [M]⁺: 306.1103; found: 306.1103.


Compound 4: Methyl 4-bromocrotonate (220 mg, 1.23 mmol) was added to a mixture of NaH (49 mg, 1.23 mmol) and **IV** (250 mg, 0.82 mmol) in DMF (15 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give a 12:1 mixture (248 mg, 75%) of the *E*- and *Z*- isomers in the carbonate as a colourless oil. Data of the major isomer **4**:

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.96 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 6.72 (dt, J = 15.3, 7.6 Hz, 1H), 5.82 (d, J = 15.5 Hz, 1H), 5.76 - 5.56 (m, 2H), 4.68 (d, J = 4.2 Hz, 2H), 3.65 (bs, 9H), 2.72 (d, J = 7.2 Hz, 2H), 2.62 (d, J = 5.6 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.3 (3xC), 165.9 (C), 142.3 (CH), 132.8 (CH), 130.1 (C), 129.4 (2xCH), 129.1 (CH), 128.6 (CH), 128.3 (2xCH), 124.8 (CH), 64.7 (CH₂), 57.1 (C), 52.5 (2xCH₃), 51.3 (CH₃), 35.9 (CH₂), 35.5 (CH₂).

HRMS (EI, 70eV) m/z calcd. for C₂₁H₂₄O₈ [M]⁺: 404.1471; found: 404.1455.

Synthesis of compound **5**:

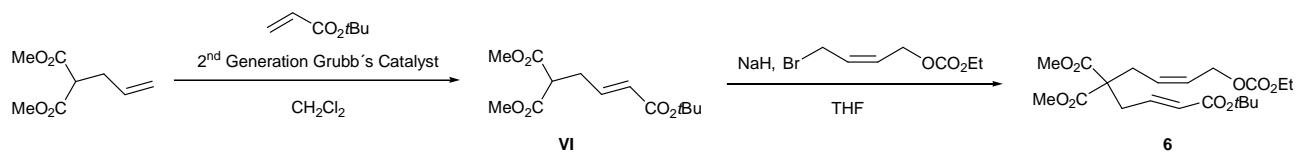
Compound V: (R)-2-(6-Methoxynaphthalen-2-yl)propanoyl chloride (248 mg, 1mmol) was added to a solution of compound **II** (202 mg, 1 mmol) and DMAP (122 mg, 1 mmol) in CH₂Cl₂(15mL). The

mixture was stirred for 3h and then solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **V** (364 mg, 88%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.68 (m, 2H), 7.41 (d, J = 1.7 Hz, 1H), 7.38 (d, J = 1.7 Hz, 1H), 7.15 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 3.8 Hz, 1H), 5.59 (m, 2H), 4.55 - 4.40 (m, 2H), 3.90 (s, 3H), 3.84 (q, J = 7.1 Hz, 1H), 3.68 (s, 6H), 3.36 (t, J = 7.6 Hz, 1H), 2.63 - 2.54 (m, 2H), 1.57 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 174.3 (C), 169.1 (2xC), 157.7 (C), 135.7 (C), 133.8 (C), 130.5 (CH), 129.3 (CH), 129.0 (C), 127.3 (CH), 127.2 (CH), 126.3 (CH), 126.0 (CH), 119.1 (CH), 105.7 (CH), 64.8 (CH₂), 55.4 (CH₃), 52.5 (2xCH₃), 51.3 (CH), 45.8 (CH), 31.5 (CH₂), 18.6 (CH₃).

HRMS (EI, 70eV) *m/z* calcd. for C₂₃H₂₆O₇ [M]⁺: 414.1679; found: 414.1681.


Compound 5: Methyl 4-bromocrotonate (193 mg, 1.08 mmol) was added to a mixture of NaH (43 mg, 1.08 mmol) and **V** (300 mg, 0.72 mmol) in DMF (15 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **5** (225 mg, 61%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.66 (m, 2H), 7.41 (d, J = 1.8 Hz, 1H), 7.38 (d, J = 1.8 Hz, 1H), 7.14 (d, J = 2.4 Hz, 1H), 7.11 (d, J = 2.2 Hz, 1H), 6.71 (m, 1H), 5.78 (d, J = 15.5 Hz, 1H), 5.66 - 5.41 (m, 2H), 4.50 (d, J = 5.7 Hz, 2H), 3.90 (s, 3H), 3.85 (q, J = 7.1 Hz, 1H), 3.71 (s, 3H), 3.66 (s, 3H), 3.65 (s, 3H), 2.63 (d, J = 6.9 Hz, 2H), 2.58 (d, J = 6.8 Hz, 2H), 1.57 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 174.2 (C), 170.4 (2xC), 166.2 (C), 157.7 (C), 142.4 (CH), 135.6 (C), 133.7 (C), 129.3 (CH), 129.1 (CH), 128.9 (C), 128.3 (CH), 127.2 (CH), 126.2 (CH), 126.0 (CH), 124.8 (CH), 119.0 (CH), 105.6 (CH), 64.6 (CH₂), 57.3 (C), 55.3 (CH₃), 52.6 (2xCH₃), 51.6 (CH), 45.5 (CH₃), 35.9 (CH₂), 35.4 (CH₂), 18.5 (CH₃).

HRMS (EI, 70eV) *m/z* calcd. for C₂₈H₃₂O₉ [M]⁺: 512.2046; found: 512.2042.

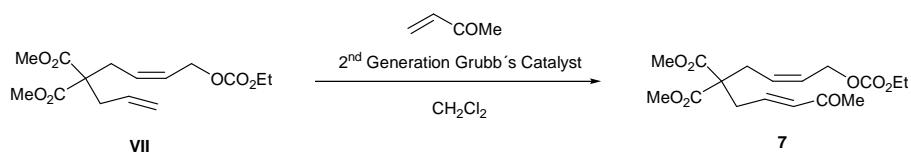
Synthesis of compound **6**:

Compound VI: *Tert*-butylacrylate (0.192 g, 1.5 mmol) was added to a solution of Grubbs' 2nd generation catalyst (21 mg, 0.025 mmol) and allyldimethylmalonate (86 mg, 0.5 mmol) in CH₂Cl₂ (5 ml) and the mixture was stirred under reflux for 24h. The solvent was removed and the residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **VI** (106 mg, 78 %) as a colourless oil.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 6.71 (dt, J = 15.2, 7.1 Hz, 1H), 5.77 (d, J = 15.6 Hz, 1H), 3.71 (s, 6H), 3.47 (t, J = 7.4 Hz, 1H), 2.73 (dd, J = 10.4, 4.0 Hz, 2H), 1.43 (d, J = 6.3 Hz, 9H).

¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 168.8 (2xC), 165.4 (C), 142.3 (CH), 125.7 (CH), 80.5 (C), 52.8 (2xCH₃), 50.5 (CH), 31.0 (CH₂), 28.1 (3xCH₃)

HRMS (EI, 70 eV) *m/z* calcd. for C₁₃H₂₁O₆ [M+1]⁺: 273.1338; found: 273.1344.

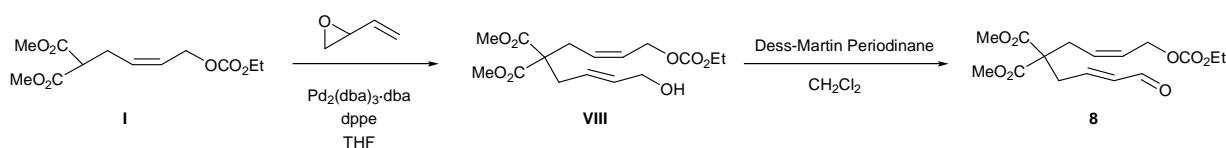

Compound 6: A sample of (Z)-BrCH₂CH=CHCH₂CO₂Et⁵ (120 mg, 0.54 mmol) was added to a mixture of NaH (22 mg, 0.54 mmol) and **VI** (98 mg, 0.36 mmol) in DMF (5 mL) at 0°C. The resulting solution was stirred at room temperature for 16h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **6** (132 mg, 89 %) as a colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 6.63 (dtd, *J* = 12.1, 7.7, 4.4 Hz, 1H), 5.79 (d, *J* = 15.5 Hz, 1H), 5.73 – 5.64 (m, 1H), 5.56 – 5.47 (m, 1H), 4.64 (d, *J* = 6.8 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.73 (s, *J* = 3.7 Hz, 6H), 2.75 (d, *J* = 7.7 Hz, 2H), 2.70 (d, *J* = 7.8 Hz, 2H), 1.46 (s, 9H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 170.6 (2xC), 165.2 (C), 155.2 (C), 140.7 (CH), 128.0 (CH), 127.5 (CH), 127.3 (CH), 80.6 (C), 64.2 (CH₂), 63.2 (CH₂), 57.3 (C), 52.9 (CH₃), 52.8 (CH₃), 35.7 (CH₂), 31.3 (CH₂), 28.2 (3x CH₃), 14.4 (CH₃)

HRMS (EI, 70 eV) *m/z* calcd. for C₂₀H₃₁O₉ [M+1]⁺: 415.1958; found: 415.1960.

Synthesis of compound 7:


Compound 7: Methyl vinyl ketone (0.43 g, 5.2 mmol) was added to a solution of the Grubbs' 2nd generation catalyst ((210 mg, 0.25 mmol)) and the allyldimethylmalonate derivative **VII**³ (300 mg, 1.74 mmol) in CH₂Cl₂ (10 mL) and the mixture was stirred under reflux for 24h. The solvent was removed and the residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **7** (353 mg, 95 %) as a colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 6.68 – 6.58 (m, 1H), 6.09 (d, *J* = 15.9 Hz, 1H), 5.73 – 5.59 (m, 2H), 4.55 (d, *J* = 5.6 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 6H), 2.75 (dd, *J* = 7.6, 0.9 Hz, 2H), 2.66 (d, *J* = 6.6 Hz, 2H), 2.23 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 198.1 (C), 170.6 (2xC), 155.1 (C), 141.4 (CH), 134.7 (CH), 129.3 (CH), 128.9 (CH), 67.6 (CH₂), 64.2 (CH₂), 57.5 (C), 52.9 (2xCH₃), 36.4 (CH₂), 36.2 (CH₂), 27.2 (CH₃), 14.4 (CH₃)

HRMS (EI, 70 eV) *m/z* calcd. for C₁₄H₁₈O₅ [M-C₃H₆O₃]⁺: 266.1154; found: 266.1150.

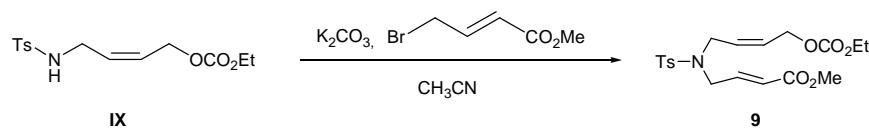
Synthesis of compound 8:

Compound VII: Butadiene monoxide (0.02 mL, 0.38 mmol) was added to a solution of the dimethylmalonate derivative **I** (100 mg, 0.38 mmol), $\text{Pd}_2(\text{dba})_3 \cdot \text{dba}$ (3 mg, 0.019 mmol) and dppe (8 mg, 0.019 mmol) in THF (10 mL). The resulting mixture was stirred at room temperature for 16 h and then solvent was removed. The residue was filtered through a short silica pad to give **VIII** (71 mg, 54 %) as a colourless oil.

$^1\text{H-NMR}$ (400 MHz, CDCl_3): δ (ppm) = 5.77 – 5.49 (m, 4H), 4.54 (d, J = 4.2 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.08 (d, J = 5.6 Hz, 2H), 3.71 (s, 6H), 2.64 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H).

$^{13}\text{C-NMR}$ (101 MHz, CDCl_3): δ (ppm) = 171.2 (2xC), 155.2 (C), 134.6 (CH), 130.1 (CH), 128.4 (CH), 125.2 (CH), 67.8 (CH_2), 64.2 (CH_2), 63.1 (CH_2), 58.0 (C), 52.8 (CH_3), 52.7 (CH_3), 35.8 (CH_2), 35.7 (CH_2), 14.5 (CH_3).

HRMS (EI, 70 eV) m/z calcd. for $\text{C}_{14}\text{H}_{21}\text{O}_6$ [$\text{M}-\text{CO}_2\text{Me}$] $^+$: 285.1338; found: 285.1341.


Compound 8: Dess-Martin periodinane (DMP) (148 mg, 0.35 mmol) was added to a solution of **VIII** (100 mg, 0.29 mmol) in CH_2Cl_2 (20 mL). The resulting mixture was stirred for 3 h at room temperature and then washed with saturated aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ and NaHCO_3 in 1:1 proportion, dried over anhydrous Na_2SO_4 and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give a 8:1 mixture (84 mg, 85 %) of the *Z*- and *E*-isomers in the carbonate as a colourless oil. Data of the major isomer **8**:

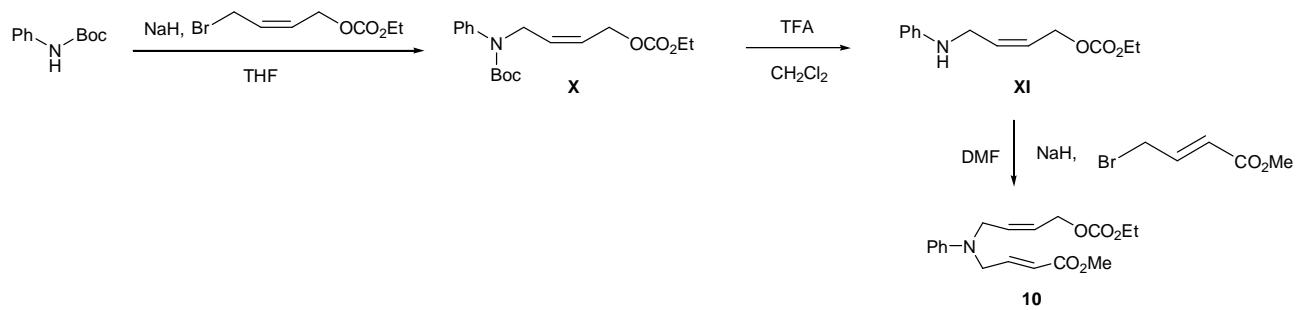
$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ (ppm) = 9.49 (d, J = 7.8 Hz, 1H), 6.77 – 6.65 (m, 1H), 6.13 (d, J = 7.8 Hz, 1H), 5.66 (dd, J = 10.5, 6.1 Hz, 2H), 4.54 (d, J = 5.6 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.73 (s, 6H), 2.85 (d, J = 7.4 Hz, 2H), 2.67 (d, J = 6.8 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H).

$^{13}\text{C-NMR}$ (126 MHz, CDCl_3): δ (ppm) = 193.4 (C), 170.4 (2xC), 155.9 (C), 151.4 (CH), 136.1 (CH), 129.1 (CH), 129.0 (CH), 67.5 (CH_2), 64.2 (CH_2), 57.4 (C), 53.0 (CH_3), 52.9 (CH_3), 36.6 (CH_2), 36.3 (CH_2), 14.4 (CH_3).

HRMS (EI, 70 eV) m/z calcd. for $\text{C}_{13}\text{H}_{17}\text{O}_5$ [$\text{M}-\text{OCO}_2\text{Et}$] $^+$: 253.1076; found: 253.1071.

Synthesis of compound 9:

In a round-bottom flask methyl 4-bromocrotonate (230mg, 1.1 mmol), the tosyl amide derivative **IX**⁶ (341 mg, 1 mmol), K_2CO_3 (152 mg, 1.1 mmol) and CH_3CN (10 mL) were placed. The resulting


mixture was stirred under reflux for 3 h. Then K_2CO_3 was filtered and the solvent was removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **9** (298 mg, 68 %) as a colourless oil.

1H -NMR (300 MHz, $CDCl_3$): δ (ppm) = 7.69 (dt, J = 8.3, 2.1 Hz, 2H), 7.30 (dd, J = 8.5, 2.5 Hz, 2H), 6.73 (dt, J = 15.6, 5.8 Hz, 1H), 5.93 (dt, J = 15.6, 1.7 Hz, 1H), 5.75 – 5.45 (m, 2H), 4.56 (dd, J = 7.0, 1.4 Hz, 2H), 4.23 – 4.12 (m, 2H), 3.91 (dd, J = 5.7, 1.7 Hz, 2H), 3.87 (d, J = 1.4 Hz, 2H), 3.71 (s, 3H), 2.42 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H).

^{13}C -NMR (75 MHz, $CDCl_3$): δ (ppm) = 166.1 (C), 143.9 (C), 142.8 (C), 136.7 (C), 130.0 (2xCH), 129.9 (CH), 127.6 (CH), 127.4 (2xCH), 127.3 (CH), 123.7 (CH), 64.3 (CH₂), 62.5 (CH₂), 51.8 (CH₃), 48.2 (CH₂), 44.8 (CH₂), 21.6 (CH₃), 14.3 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{19}H_{26}NO_7S$ [M+1]⁺: 412.1430; found: 412.1430.

*Synthesis of compound **10**:*

Compound X: A sample of (Z)-BrCH₂CH=CHCH₂CO₂Et (1 g, 4.5 mmol) was added to a mixture of NaH (270 mg, 6.8 mmol) and *N*-Boc aniline (878 mg, 4.5 mmol) in DMF (20 mL) at 0°C. The resulting solution was stirred at 60°C for 15 h. Then the mixture was diluted with EtOAc, washed with HCl (10%), dried over anhydrous Na_2SO_4 , and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 1:9) to give **X** (1 g, 70 %) as a colorless oil.

1H -NMR (300 MHz, $CDCl_3$): δ (ppm) = 7.34 – 7.28 (m, 2H), 7.24 – 7.16 (m, 3H), 5.99 – 5.85 (m, 1H), 5.80 – 5.64 (m, 1H), 4.62 (dd, J = 6.0, 1.0 Hz, 2H), 4.28 – 4.15 (m, 4H), 1.46 (s, 9H), 1.32 (t, J = 7.1 Hz, 3H).

^{13}C -NMR (75 MHz, $CDCl_3$): δ (ppm) = 155.2 (C), 154.6 (C), 142.9 (C), 131.7 (CH), 128.9 (3xCH), 126.7 (CH), 126.1 (CH), 125.9 (CH), 80.7 (C), 67.6 (CH₂), 64.2 (CH₂), 51.9 (CH₂), 28.5 (3xCH₃), 14.5 (CH₃).

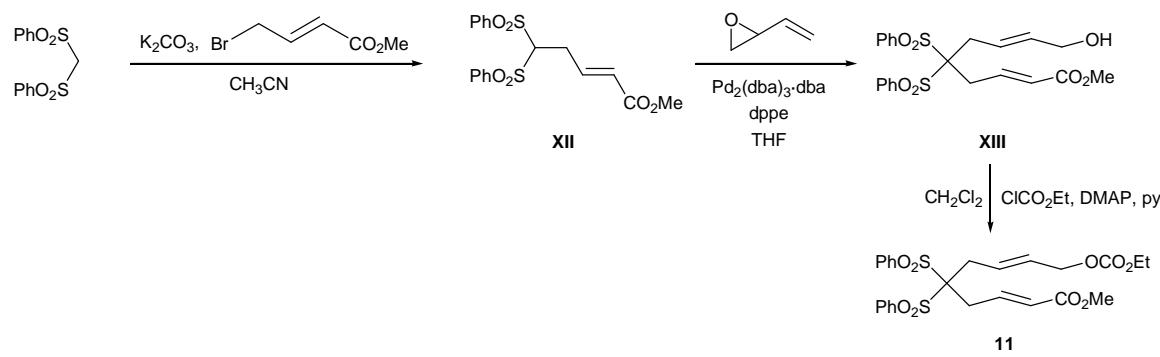
HRMS (EI, 70 eV) m/z calcd. for $C_{18}H_{25}NO_5$ [M]⁺: 335.1733; found: 335.1733.

Compound XI: An excess of trifluoroacetic acid (TFA) was added to a solution of **X** (502 mg, 1.5 mmol) in CH_2Cl_2 (15 mL). The resulting mixture was stirred at room temperature for 2 h and then the solvent was removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **XI** (318 mg, 90%) as a colourless oil.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 7.21 – 7.15 (m, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H), 5.98 – 5.90 (m, 1H), 5.89 – 5.80 (m, 1H), 4.62 (d, J = 5.9 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.79 (d, J = 5.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H).

¹³C-NMR (101 MHz, CDCl₃) δ (ppm) = 155.1 (C), 132.8 (CH), 129.3 (2xCH), 128.8 (C), 125.3 (CH), 117.8 (CH), 113.1 (2xCH), 67.6 (CH₂), 64.1 (CH₂), 45.3 (CH₂), 14.4 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for C₁₃H₁₇NO₃ [M]⁺: 235.1208; found: 235.1210


Compound 10: Methyl 4-bromocrotonate (314mg, 1.5 mmol) was added to a mixture of NaH (60 mg, 1.5 mmol) and **XI** (235 mg, 1 mmol) in DMF (10 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc: Hexane, 4:6) to give **10** (111 mg, 33 %) as a colourless oil.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 7.21 (t, J = 7.2 Hz, 2H), 6.97 (d, J = 14.4 Hz, 1H), 6.74 (t, J = 7.2 Hz, 1H), 6.67 (d, J = 7.8 Hz, 2H), 5.96 (d, J = 16.2 Hz, 1H), 5.80 – 5.68 (m, 2H), 4.72 (d, J = 3.7 Hz, 2H), 4.26 – 4.18 (m, 2H), 4.08 – 4.01 (m, 4H), 3.72 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).

¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 166.7 (C), 155.2 (C), 144.9 (C), 132.1 (CH), 129.5 (3xCH), 125.8 (CH), 121.9 (CH), 117.6 (CH), 112.9 (2xCH), 64.3 (CH₂), 63.0 (CH₂), 51.9 (CH₂), 51.7 (CH₃), 48.0 (CH₂), 14.4 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for C₁₈H₂₃NO₅ [M]⁺: 333.1576; found: 335.1575.

Synthesis of compound **11**:

Compound XII: In a round-bottom flask methyl 4-bromocrotonate (230mg, 1.1 mmol), bis(phenylsulfonyl)methane (296 mg, 1 mmol), K₂CO₃ (152 mg, 1.1 mmol) and CH₃CN (10 mL) were placed. The resulting mixture was stirred under reflux for 3 h. Then K₂CO₃ was filtered and the solvent was removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 3:7) to give **XII** (276mg, 70 %) as a colourless oil.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 7.85 (d, J = 7.4 Hz, 4H), 7.61 (t, J = 7.3 Hz, 2H), 7.49 (t, J = 7.5 Hz, 4H), 6.71 (dt, J = 14.3, 7.0 Hz, 1H), 5.69 (d, J = 15.5 Hz, 1H), 4.53 (t, J = 5.9 Hz, 1H), 3.61 (s, 3H), 3.00 (t, J = 6.4 Hz, 2H).

¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 165.9 (C), 141.7 (CH), 137.6 (2xC), 134.9 (2xCH), 129.7 (4xCH), 129.3 (4xCH), 124.4 (CH), 82.3 (CH), 51.7 (CH₃), 28.3 (CH₂).

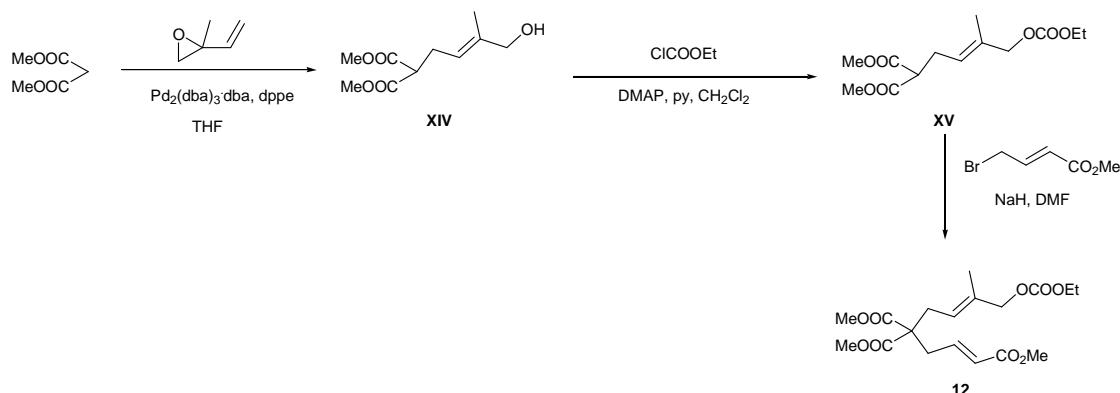
HRMS (EI, 70 eV) m/z calcd. for C₁₈H₁₈O₆S₂ [M⁺]: 394.0545; found: 394.0537.

Compound XIII: Butadiene monoxide (35mg, 0.5mmol) was added to a solution of **XII** (197mg, 0.5mmol), Pd₂(dba)₃·dba (4mg, 0.025mmol) and dppe (10mg, 0.025mmol) in THF (10mL). The resulting mixture was stirred at room temperature for 16 h and then solvent was removed. The residue was filtered through a short silica pad to give **XIII** (47mg, 63%) as a white foam.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 7.95 (d, J = 7.8 Hz, 4H), 7.64 (t, J = 7.4 Hz, 2H), 7.51 (t, J = 7.5 Hz, 4H), 7.00 – 6.89 (m, 1H), 5.80 (d, J = 15.7 Hz, 1H), 5.74 (t, J = 6.5 Hz, 1H), 5.68 (dd, J = 9.5, 4.7 Hz, 1H), 4.00 (d, J = 4.6 Hz, 2H), 3.64 (s, 3H), 3.04 (d, J = 6.9 Hz, 2H), 2.94 (d, J = 6.2 Hz, 2H), 2.18 (s, 1H).

¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 166.0 (C), 140.3 (CH), 136.4 (2xC), 136.2 (CH), 135.0 (2xCH), 131.5 (4xCH), 128.8 (4xCH), 125.5 (CH), 122.3 (CH), 89.6 (C), 62.8 (CH₂), 51.8 (CH₃), 32.9 (CH₂), 32.4 (CH₂).

HRMS (EI, 70 eV) m/z calcd. for C₂₂H₂₅O₇S₂ [M+1]⁺: 465.1042; found: 465.1044.


Compound 11: Ethyl chloroformate (31 mg, 0.29 mmol) was added to a solution of **XIII** (122 mg, 0.26 mmol), dimethylaminopyridine (DMAP) (10 mg, 0.08 mmol), pyridine (62 mg, 0.8 mmol) in CH₂Cl₂ (5 mL), and it was stirred at room temperature for 16 h. Then the mixture was diluted with CH₂Cl₂, washed with HCl (10%), NaOH (10%) and brine and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc: Hexane, 4:6) to give **11** (85 mg, 55%) as a colorless foam.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 8.03 (d, J = 8.3 Hz, 4H), 7.72 (t, J = 7.1 Hz, 2H), 7.60 (t, J = 7.8 Hz, 4H), 7.05 – 6.95 (m, 1H), 5.98 – 5.90 (m, 1H), 5.88 (d, J = 15.5 Hz, 1H), 5.75 – 5.67 (m, 1H), 4.55 (d, J = 6.1 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.11 (d, J = 6.9 Hz, 2H), 3.02 (d, J = 6.7 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H).

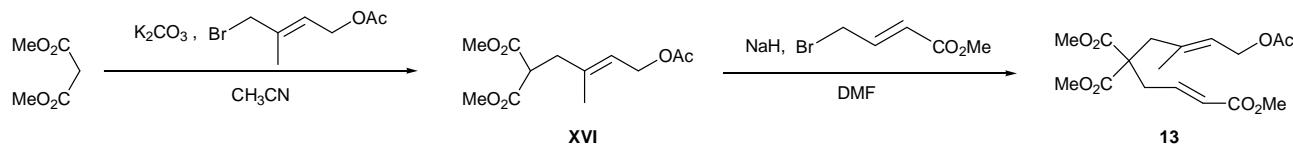
¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 165.8 (C), 155.0 (C), 139.9 (CH), 136.5 (2xC), 135.1 (2xCH), 131.7 (4xCH), 130.4 (CH), 128.9 (4xCH), 126.7 (CH), 125.9 (CH), 89.6 (C), 67.3 (CH₂), 64.3 (CH₂), 51.8 (CH₃), 33.1 (CH₂), 32.6 (CH₂), 14.4 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for C₂₅H₂₈O₉S₂ [M]⁺: 536.1175; found: 536.1176.

Synthesis of compound 12:

Compound XIV: Isoprene monoxide (191 mg, 2.27 mmol) was added to a solution dimethylmalonate (300 mg, 2.27 mmol), Pd₂(dba)₃·dba (20 mg, 0.11 mmol) and dppe (44 mg, 0.11 mmol) in THF (10 mL). The resulting mixture was stirred at room temperature for 3 h and then solvent was removed. The residue was filtered through a short silica pad to give **XIV** (476 mg, 97%) as colourless oil. Its spectroscopic data were identical to the reported compound.⁸

Compound XV: Ethyl chloroformate (285 mg, 2.64 mmol) was added to a solution of **II** (476 mg, 2.20 mmol), dimethylaminopyridine (DMAP) (81 mg, 0.66 mmol), pyridine (521 mg, 6.6 mmol) in CH₂Cl₂, and it was stirred at room temperature for 16 h. Then the mixture was diluted with CH₂Cl₂, washed with HCl (10%), NaOH (10%) and brine and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 4:6) to give **XV** (628 mg, 99%) as a colourless oil. Its spectroscopic data were identical to the reported compound.⁸


Compound 12: Methyl 4-bromocrotonate (585 mg, 3.27 mmol) was added to a mixture of NaH (131 mg, 3.27 mmol) and **XV** (628 mg, 2.18 mmol) in DMF (15 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with HCl (10%) and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 4:6) to give **12** (513 mg, 61%, 3:2 mixture of isomers) as a yellow oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 6.81 - 6.73 (m, 2H), 5.87 (dd, *J* = 3.9, 2.5 Hz, 1H, major isomer), 5.84 (dd, *J* = 3.9, 2.5 Hz, 1H, minor isomer), 5.33 (dd, *J* = 8.1, 6.8 Hz, 1H, minor isomer), 5.25 (dd, *J* = 8.1, 6.8 Hz, 1H, major isomer), 4.59 (s, 2H, major isomer), 4.48 (s, 2H, minor isomer), 4.20 (q, *J* = 7.1 Hz, 4H), 3.73 (s, 12H), 3.71 (s, 6H), 2.76 (d, *J* = 7.7 Hz, 4H), 2.70 (d, *J* = 7.8 Hz, 2H, major isomer), 2.66 (d, *J* = 7.1 Hz, 2H, minor isomer), 1.78 (s, 3H, major isomer), 1.67 (s, 3H, minor isomer), 1.31 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 170.8 (2xC), 166.3 (C), 155.3 (C), 142.7 (CH), 134.4 (C), 125.0 (CH), 123.6 (CH, major isomer), 122.5 (CH, minor isomer), 72.9 (CH₂), 65.9 (CH₂, major isomer), 64.2 (CH₂, minor isomer), 57.5 (C), 52.9 (2xCH₃), 51.7 (CH₃), 35.7(CH₂), 31.6 (CH₂), 21.7 (CH₃), 14.4 (CH₃).

HRMS (EI, 70eV) *m/z* calcd. for C₁₈H₂₆O₉ [M]⁺: 386.1577; found: 386.1581.

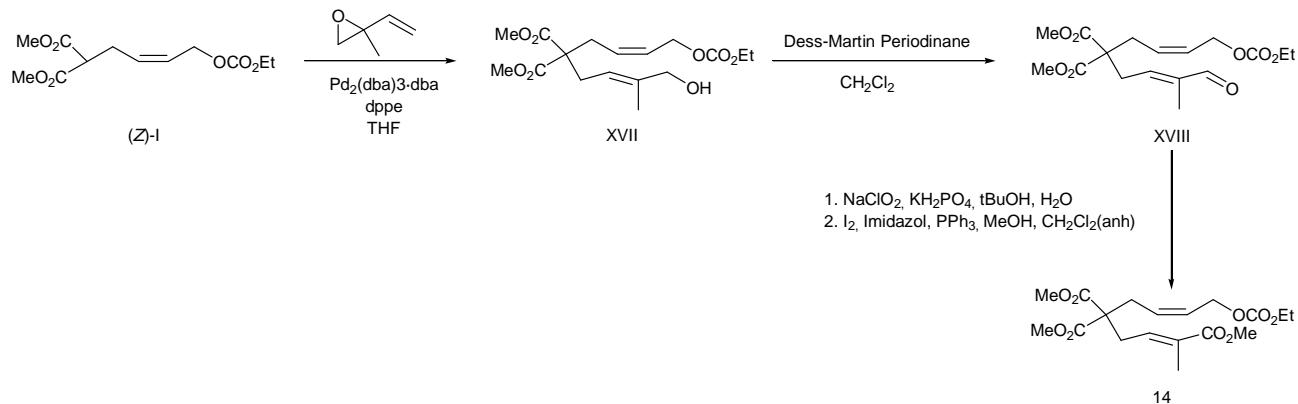
Synthesis of compound 13:

Compound XVI: In a round-bottom flask dimethylmalonate (660 mg, 5 mmol), K_2CO_3 (760 mg, 5.5 mmol), *trans*-4-acetoxy-1-bromo-2-methyl-2-butene⁷ (1.13 g, 5.5 mmol), and CH_3CN (15 mL) were placed. The resulting mixture was stirred under reflux for 16 h. Then K_2CO_3 was filtered and the solvent was removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **XVI** (894mg, 69 %) as a colourless oil.

¹H-NMR (400 MHz, CDCl_3): δ (ppm) = 5.34 (t, J = 6.3 Hz, 1H), 4.50 (d, J = 6.9 Hz, 2H), 3.69 (s, 6H), 3.55 (t, J = 7.9 Hz, 1H), 2.60 (d, J = 7.7 Hz, 2H), 1.99 (s, 3H), 1.68 (s, 3H).

¹³C-NMR (101 MHz, CDCl_3): δ (ppm) = 170.9 (C), 169.3 (2xC), 137.6 (C), 121.4 (CH), 60.9 (CH₂), 52.6 (2xCH₃), 50.3 (CH), 38.3 (CH₂), 21.0 (CH₃), 16.3 (CH₃).

A good quality mass spectra could not be obtained.


Compound 13: Methyl 4-bromocrotonate (107mg, 0.6 mmol) was added to a mixture of NaH (30 mg, 0.75 mmol) and **XVI** (125 mg, 0.5 mmol) in DMF (5 mL) at 0°C. The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with EtOAc, washed with aqueous NH_4Cl , dried over anhydrous Na_2SO_4 , and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give **13** (90 mg, 50%) as a colourless oil.

¹H-NMR (500 MHz, CDCl_3): δ (ppm) = 6.78 (tt, J = 15.4, 7.6 Hz, 1H), 5.87 (t, J = 15.9 Hz, 1H), 5.43 – 5.33 (m, 1H), 4.55 (d, J = 6.8 Hz, 2H), 3.72 (s, 6H), 3.72 (s, 3H), 2.75 (dd, J = 7.6, 1.2 Hz, 2H), 2.72 (d, J = 6.0 Hz, 2H), 2.04 (s, 3H), 1.62 (s, 3H)

¹³C-NMR (126 MHz, CDCl_3): δ (ppm) = 171.0 (2xC), 166.3 (C), 142.9 (CH), 136.0 (C), 125.0 (CH), 124.9 (CH), 124.2 (C), 61.0 (CH₂), 57.3 (C), 52.8 (2xCH₃), 51.7 (CH₃), 42.8 (CH₂), 35.7 (CH₂), 21.0 (CH₃), 17.2 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $\text{C}_{17}\text{H}_{24}\text{O}_8$ [M]⁺: 356.1471; found: 356.1462.

Synthesis of compound 14:

Compound XVII: Isoprene monoxide (0.04 mL, 0.38 mmol) was added to a solution of the dimethylmalonate derivative (**Z**)-**I** (100 mg, 0.038 mmol), $\text{Pd}_2(\text{dba})_3\cdot\text{dba}$ (6 mg, 0.1 mmol) and dppe (16 mg, 0.038 mmol) in THF (10 mL) and the mixture was stirred at room temperature for 16 h. The solvent was removed and the residue was submitted to flash chromatography (EtOAc: Hexane₁) to give **XVII** (105 mg, 79 %) as a colourless oil.

¹H-NMR (400 MHz, CDCl₃): δ (ppm) = 5.74 – 5.58 (m, 2H), 5.11 (t, *J* = 8.3 Hz, 1H), 4.53 (d, *J* = 4.8 Hz, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 4.07 (d, *J* = 2.3 Hz, 2H), 3.71 (s, 6H), 2.68 – 2.56 (m, 4H), 1.79 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C-NMR (101 MHz, CDCl₃): δ (ppm) = 171.3 (C), 154.9 (C), 139 (C), 129.9 (CH), 128.1 (CH), 120.5 (CH), 120.4 (CH), 67.6 (CH₂), 64.0 (CH₂), 61.2 (CH₂), 57.8 (C), 52.6 (CH₃), 52.6 (CH₃), 35.8 (CH₂), 31.0 (CH₂), 21.7 (CH₃), 14.2 (CH₃).

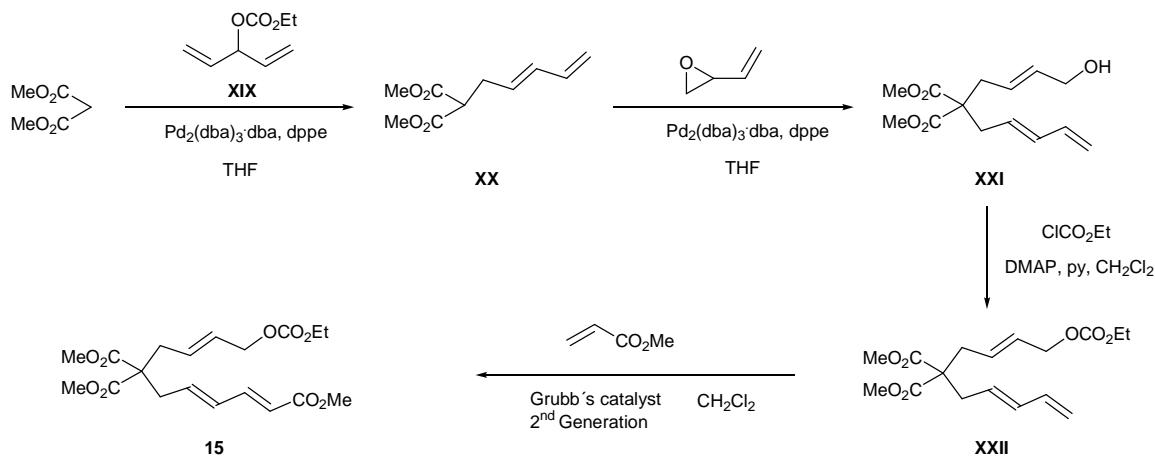
HRMS (EI, 70 eV) *m/z* calcd. for C₁₄H₂₁O₅ [M-OCO₂Et]⁺: 269.1389; found: 269.1361.

Compound XVIII: Dess-Martin periodinane (DMP) (77 mg, 0.17 mmol) was added to a solution of XVII (29 mg, 0.08 mmol) in CH_2Cl_2 (5 mL). The resulting mixture was stirred for 3 h at room temperature and then washed with saturated aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ and NaHCO_3 in 1:1 proportion, dried over anhydrous Na_2SO_4 and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane,) to give XVIII (20 mg, 69 %) as a colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 9.39 (s, 1H), 6.35 (t, *J* = 7.3 Hz, 1H), 5.66 (m, 2H), 4.54 (d, *J* = 4.7 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 6H), 2.90 (d, *J* = 7.3 Hz, 2H), 2.69 (d, *J* = 5.8 Hz, 2H), 1.74 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 193.4 (CH), 170.4 (2xC), 155.0 (C), 151.4 (CH), 136.1 (CH), 129.1 (CH), 129.0 (CH), 67.5 (CH₂), 64.2 (CH₂), 57.4 (C), 52.9 (2xCH₃), 36.6 (CH₂), 36.3 (CH₂), 29.8 (CH₃), 14.4 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{15}H_{21}O_6$ [M-CO₂Me]⁺: 297.1338; found: 297.1347.


Compound 14: Sodium chlorite (660 mg, 7.25 mmol) and potassium dihydrogen phosphate (720 mg, 5.28 mmol) were added to a solution of **XVIII** (190 mg, 0.55 mmol) in water (4 mL) and *t*-butanol (10 mL). The resulting solution was stirred at room temperature for 16 h. Then the mixture was diluted with diethyl ether, washed with water, dried over anhydrous Na₂SO₄, and the solvent removed. In a separated flask equipped with a magnetic stir bar, a solution of iodine (183 mg, 1.05 mmol) in dry CH₂Cl₂ (10 mL) and triphenylphosphine (275 mg, 1.5 mmol) was prepared. Then, imidazole (160 mg, 3.3 mmol) was added and a white solid appeared. Subsequently, the carboxylic acid without further purification (160 mg, 0.7 mmol) and dissolved in dry CH₂Cl₂ (5 mL) was added and then dry MeOH (1 mL). The resulting mixture was stirred at room temperature for 16 h. Then the mixture was diluted with CH₂Cl₂, washed with 2 N HCl, dried over anhydrous Na₂SO₄, and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane,) to give **14** (148 mg, 70%) as a colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 6.53 (t, *J* = 7.4 Hz, 1H), 5.70 – 5.62 (m, 1H), 5.51 – 5.43 (m, 1H), 4.58 (d, *J* = 6.8 Hz, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.68 (s, 6H), 3.67 (s, 3H), 2.73 (d, *J* = 7.5 Hz, 2H), 2.68 (d, *J* = 7.7 Hz, 2H), 1.78 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 170.7 (2xC), 167.9 (C), 155.0 (C), 134.8 (CH), 131.1 (C), 128.0 (CH), 127.4 (CH), 64.0 (CH₂), 63.0 (CH₂), 57.1 (C), 52.8 (2xCH₃), 51.9 (CH₃), 32.0 (CH₂), 31.2 (CH₂), 14.3 (CH₃), 12.6 (CH₃).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₈H₂₆O₉ [M]⁺: 386.1577; found: 386.1575.

Synthesis of compound 15:

Compound XX: Carbonate **XIX** (590 mg, 3.79 mmol) was added to a solution of dimethylmalonate (500 mg, 2.27 mmol), Pd₂(dba)₃·dba (33 mg, 0.19 mmol) and dppe (75 mg, 0.19 mmol) in THF (10 mL). The resulting mixture was stirred at room temperature for 3 h and then solvent was removed. The

residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **XX** (549 mg, 73%) as a colourless oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 6.34 – 6.20 (m, 1H), 6.17 – 6.01 (m, 1H), 5.62 (dt, J = 14.9, 7.3 Hz, 1H), 5.13 (dd, J = 16.7, 1.6 Hz, 1H), 5.02 (dd, J = 10.1, 1.6 Hz, 1H), 3.73 (s, 6H), 3.44 (t, J = 7.6 Hz, 1H), 2.66 (dd, J = 13.8, 7.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 169.7 (2xC), 137.0 (CH), 134.3 (CH), 129.8 (CH), 117.1 (CH₂), 53.0 (2xCH₃), 52.1 (CH), 32.3 (CH₂).

LRMS (EI, 70 eV) m/z calcd. for C₆H₉O₄ [M-C₄H₅]⁺: 145.05; found: 145.03. A good HRMS could not be obtained.

Compound XXI: Butadiene monoxide (176 mg, 2.52 mmol) was added to a solution of compound **XX** (500 mg, 2.52 mmol), Pd₂(dba)₃·dba (22 mg, 0.13 mmol) and dppe (50 mg, 0.13 mmol) in THF (10 mL). The resulting mixture was stirred at room temperature for 16 h and then solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 4:6) to give **XXI** (506 mg, 75%) as colourless oil.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 6.26 (dt, J = 17.0, 10.3 Hz, 1H), 6.12 – 6.03 (m, 1H), 5.75 – 5.64 (m, 1H), 5.51 (ddt, J = 18.1, 15.2, 7.5 Hz, 2H), 5.12 (dd, J = 16.6, 4.5 Hz, 1H), 5.02 (dd, J = 9.9, 5.3 Hz, 1H), 4.07 (d, J = 5.4 Hz, 2H), 3.70 (s, 6H), 2.64 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 171.1 (2xC), 136.5 (CH), 135.2 (CH), 134.0 (CH), 127.6 (CH), 125.8 (CH), 116.6 (CH₂), 63.2 (CH₂), 58.0 (C), 52.4 (2xCH₃), 35.9 (CH₂), 35.6 (CH₂).

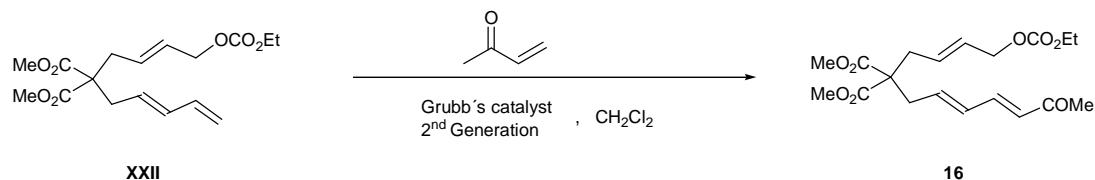
LRMS (EI, 70 eV) m/z calcd. for C₆H₉O₄ [M-C₈H₁₁O]⁺: 145.05; found: 145.04. A good HRMS could not be obtained.

Compound XXII: Ethyl chloroformate (245 mg, 2.27 mmol) was added to a solution of **XXI** (506 mg, 1.89 mmol), dimethylaminopyridine (DMAP) (70 mg, 0.57 mmol) and pyridine (448 mg, 5.67 mmol) in CH₂Cl₂, and it was stirred at room temperature for 16 h. Then the mixture was diluted with CH₂Cl₂, washed with HCl (10%), NaOH (10%) and brine and dried over anhydrous Na₂SO₄. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give **XXII** (513 mg, 80%) as a colourless oil.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 6.23 (dt, J = 16.9, 10.2 Hz, 1H), 6.03 (dd, J = 14.6, 10.7 Hz, 1H), 5.65 – 5.58 (m, 2H), 5.44 (dt, J = 15.1, 7.6 Hz, 1H), 5.09 (d, J = 16.8 Hz, 1H), 4.98 (d, J = 10.1 Hz, 1H), 4.55 – 4.42 (m, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.67 (s, 6H), 2.63 – 2.55 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 171.5 (2xC), 155.5 (C), 137.1 (CH), 135.9 (CH), 130.5 (CH), 128.8 (CH), 128.1 (CH), 117.2 (CH₂), 68.2 (CH₂), 64.6 (CH₂), 58.4 (C), 53.0 (2xCH₃), 36.6 (CH₂), 36.3 (CH₂), 14.9 (CH₃).

HRMS (EI, 70eV) m/z calcd. for C₁₇H₂₄O₇ [M]⁺: 340.1522; found: 340.1527

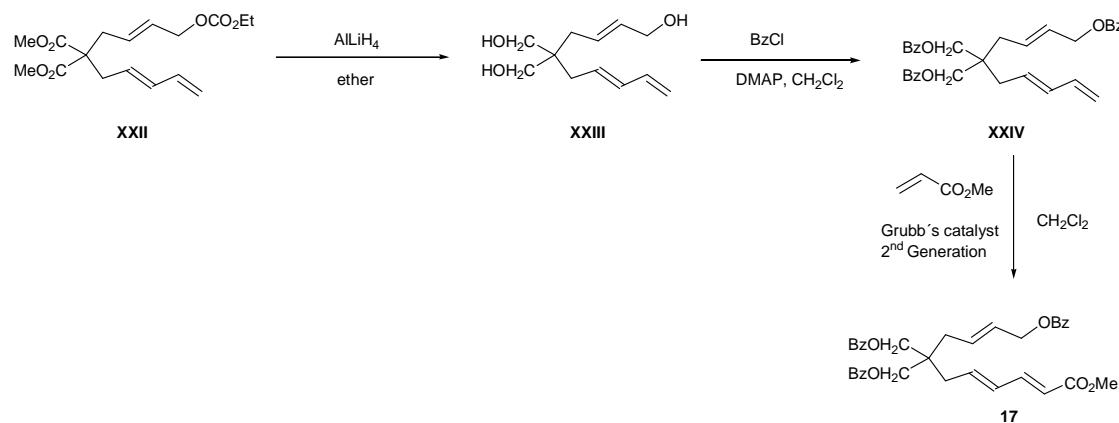

Compound 15: Methylacrylate (163 mg, 1.90 mmol) was added to a deoxygenated solution of Grubb's 2nd generation catalyst (11 mg, 0.03 mmol) and compound **XXII** (215 mg, 0.63 mmol) in dry CH_2Cl_2 (2 mL). The resulting mixture was refluxed for 16 hours and the solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give a 10: 1 mixture (120 mg, 48%) of the *E*- and *Z*- isomers in the carbonate as a colourless oil. Data of the major isomer **15**:

¹H NMR (500 MHz, CDCl_3): δ (ppm) = 7.20 (dd, J = 15.4, 11.0 Hz, 1H), 6.24 - 6.10 (m, 1H), 5.98 - 5.86 (m, 1H), 5.81 (d, J = 15.4 Hz, 1H), 5.70 - 5.57 (m, 2H), 4.53 (d, J = 4.9 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.72 (s, 3H), 3.70 (s, 6H), 2.72 - 2.68 (m, 2H), 2.67 - 2.54 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl_3): δ (ppm) = 170.8 (2xC), 167.5 (C), 155.1 (C), 144.1 (CH), 137.0 (CH), 132.4 (CH), 129.7 (CH), 128.7 (CH), 120.8 (CH), 67.7 (CH₂), 64.2 (CH₂), 57.8 (C), 52.8 (2xCH₃), 51.7 (CH₃), 36.7 (CH₂), 36.2 (CH₂), 14.5 (CH₃).

HRMS (EI, 70eV) m/z calcd. for $\text{C}_{19}\text{H}_{26}\text{O}_9$ [M]⁺: 398.1577; found: 398.1566.

Synthesis of compound 16:


Compound 16: Methylvinylketone (185 mg, 2.65 mmol) was added to a deoxygenated solution of Grubb's 2nd generation catalyst (15 mg, 0.05 mmol) and compound **XXII** (300 mg, 0.88 mmol) in dry CH_2Cl_2 (2 mL). The resulting mixture was refluxed for 16 hours and the solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give a 5:1 mixture (100 mg, 30%) of the *E*- and *Z*- isomers in the carbonate as a colourless oil. Data of the major isomer **16**:

¹H NMR (500 MHz, CDCl_3): δ (ppm) = 7.02 (dd, J = 15.7, 10.7 Hz, 1H), 6.25 - 6.12 (m, 1H), 6.03 (d, J = 15.7 Hz, 1H), 6.03 - 5.91 (m, 1H), 5.65 - 5.59 (m, 2H), 4.52 (d, J = 4.9 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.69 (s, 6H), 2.74 - 2.65 (m, 2H), 2.65 - 2.57 (m, 2H), 2.23 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl_3): δ (ppm) = 198.9 (C), 171.0 (2xC), 155.3 (C), 143.0 (CH), 138.0 (CH), 133.1 (CH), 130.6 (CH), 129.8 (CH), 128.9 (CH), 67.9 (CH₂), 64.4 (CH₂), 58.0 (C), 53.0 (2xCH₃), 37.0 (CH₂), 36.4 (CH₂), 27.5 (CH₃), 14.7 (CH₃).

HRMS (EI, 70eV) m/z calcd. for $\text{C}_{19}\text{H}_{26}\text{O}_8$ [M]⁺: 382.1628; found: 382.1624.

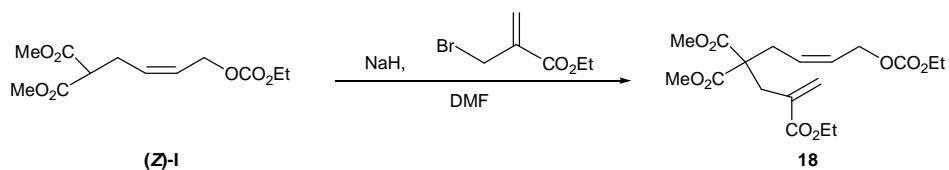
Synthesis of compound 17:

Compound XXIII and XXIV: AlLiH₄ (489 mg, 13.23 mmol) was added to a solution of compound XXII (300 mg, 0.88 mmol) in THF (20 mL). The mixture was stirred at room temperature for 24 h. Then the mixture was diluted with EtOAc, washed with H₂O, dried over anhydrous Na₂SO₄, and the solvent removed. The mixture was filtered through a short silica pad. The crude was diluted in CH₂Cl₂ (15 mL) and DMAP (313 mg, 2.56 mmol) and benzoyl chloride (360 mg, 2.56 mmol) was added. The mixture was stirred at room temperature for 16 h and then the solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give XXIV (113 mg, 25%) as a viscous liquid.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.04 - 7.98 (m, 6H), 7.57 - 7.49 (m, 3H), 7.46 - 7.37 (m, 6H), 6.30 (dt, J = 17.0, 10.2 Hz, 1H), 6.14 (ddd, J = 15.2, 12.3, 7.3 Hz, 1H), 6.02 - 5.88 (m, 1H), 5.88 - 5.68 (m, 2H), 5.08 (d, J = 16.9 Hz, 1H), 5.00 (d, J = 10.1 Hz, 1H), 4.76 (d, J = 6.1 Hz, 2H), 4.33 (s, 4H), 2.37 (d, J = 7.6 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 166.3 (3xC), 136.6 (CH), 135.5 (CH), 133.3 (3xCH), 133.0 (CH), 130.7 (CH), 130.0 (3xC), 129.7 (6xCH), 128.6 (6xCH), 128.0 (CH), 116.6 (CH₂), 66.9 (2xCH₂), 65.2 (CH₂), 41.6 (C), 36.0 (CH₂), 35.8 (CH₂).

HRMS (EI, 70eV) *m/z* calcd. for C₃₃H₃₂O₆[M]⁺: 524.2199; found: 524.2188.

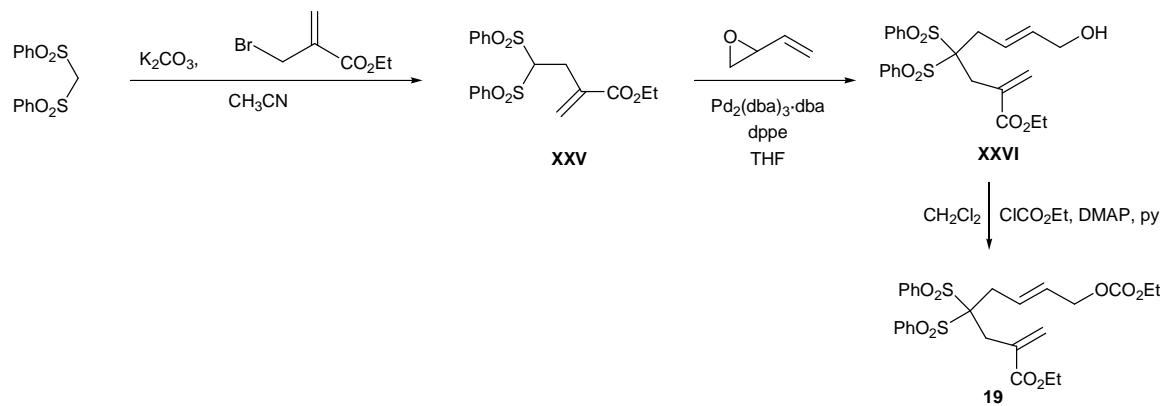

Compound 17: Methacrylate (46 mg, 0.53 mmol) was added to a deoxygenated solution of Grubbs' 2^o generation catalyst (4 mg, 0.05 mmol) and compound XXIV (93 mg, 0.18 mmol) in dry CH₂Cl₂ (2 mL). The resulting mixture was refluxed for 24 hours and the solvent was removed. The residue was submitted to flash chromatography (EtOAc:Hexane, 2:8) to give a 5:1 mixture (43 mg, 42%) of the *E*- and *Z*- isomers in the benzoate as a colourless oil. Data of the major compound 17:

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.01 (d, J = 7.1 Hz, 6H), 7.60 - 7.51 (m, 3H), 7.43 (t, J = 7.5 Hz, 6H), 7.28 - 7.18 (m, 1H), 6.25 - 6.17 (m, 2H), 5.95 - 5.87 (m, 1H), 5.86 - 5.79 (m, 1H), 5.76 (d, J = 15.5 Hz, 1H), 4.77 (d, J = 5.7 Hz, 2H), 4.35 (s, 4H), 3.73 (s, 3H), 2.45 (d, J = 6.6 Hz, 2H), 2.38 (d, J = 7.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 167.4 (C), 166.2 (3xC), 144.1 (CH), 137.4 (CH), 133.4 (3xCH), 132.5 (CH), 130.2 (3xC), 129.7 (6xCH), 129.2 (CH), 129.1 (CH), 128.6 (6xCH), 120.5 (CH), 66.6 (2xCH₂), 65.1 (CH₂), 51.6 (CH₃), 41.8 (C), 36.4 (CH₂), 35.8 (CH₂).

A good quality mass spectra could not be obtained.

Synthesis of compound 18:


Ethyl (2-bromomethyl)acrylate (212 mg, 1.1 mmol) was added to a mixture of NaH (44 mg, 1.1 mmol) and (Z)-I (274 mg, 1 mmol) in DMF (10 mL) at 0°C. The resulting solution was stirred at room temperature for 24 h. Then the mixture was diluted with EtOAc, washed with aqueous NH₄Cl, dried over anhydrous Na₂SO₄, and the solvent removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 2:8) to give 18 (211 mg, 52%) as a colourless oil.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 6.26 (d, *J* = 1.2 Hz, 1H), 5.68 (dt, *J* = 13.4, 6.7 Hz, 1H), 5.61 (s, 1H), 5.63 – 5.56 (m, 1H), 4.64 (d, *J* = 6.6 Hz, 2H), 4.171 (q, *J* = 7.1 Hz, 2H), 4.166 (q, *J* = 7.1 Hz, 2H), 3.69 (s, 6H), 2.97 (d, *J* = 11.9 Hz, 2H), 2.64 (d, *J* = 7.3 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 170.9 (2xC), 166.9 (C), 155.2 (C), 136.1 (C), 129.1 (CH₂), 128.5 (CH), 127.0 (CH), 64.1 (CH₂), 63.3 (CH₂), 61.1 (CH₂), 57.8 (C), 52.6 (2xCH₃), 34.2 (CH₂), 31.1 (CH₂), 14.4 (CH₃), 14.3 (CH₃).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₈H₂₆O₉ [M]⁺: 386.1577; found: 386.1577

Synthesis of compound 19:

Compound XXV: In a round-bottom flask ethyl (2-bromomethyl)acrylate (213 mg, 1.1 mmol), bis(phenylsulfonyl)methane (296 mg, 1 mmol), K₂CO₃ (152 mg, 1.1 mmol) and CH₃CN (10 mL) were

placed. The resulting mixture was stirred under reflux for 5 h. Then K_2CO_3 was filtered and the solvent was removed. The residue was submitted to flash chromatography (EtOAc: Hexane, 3:7) to give **XXV** (320 mg, 79 %) as a colourless oil.

1H -NMR (300 MHz, $CDCl_3$): δ (ppm) = 7.97 – 7.85 (m, 4H), 7.68 (t, J = 7.4 Hz, 2H), 7.55 (t, J = 7.6 Hz, 4H), 6.24 (s, 1H), 5.73 (s, 1H), 5.32 (t, J = 7.0 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.18 (d, J = 7.0 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H).

^{13}C -NMR (75 MHz, $CDCl_3$): δ (ppm) = 138.4 (C), 134.6 (2xCH), 134.1 (C), 132.0 (C), 129.70 (CH₂), 129.67 (4xCH), 129.2 (4xCH), 128.7 (C), 81.2 (CH), 61.2 (CH₂), 29.6 (CH₂), 14.2 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{19}H_{20}O_6S_2$ [M]⁺: 408.0701; found: 408.0703.

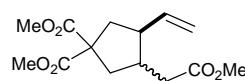
Compound XXVI: Butadiene monoxide (53mg, 0.75mmol) was added to a solution of **XXV** (306 mg, 0.75mmol), $Pd_2(dbu)_3\cdot dba$ (6 mg, 0.0375mmol) and dppe (15 mg, 0.0375mmol) in THF (10mL) and the mixture was stirred at room temperature for 16h. The solvent was removed and the residue was submitted to flash chromatography (EtOAc: Hexane, 4:6) to give **XXVI** (230mg, 64%) as a colourless oil.

1H -NMR (300 MHz, $CDCl_3$): δ (ppm) = 6.26 (d, J = 1.2 Hz, 1H), 5.68 (dt, J = 13.4, 6.7 Hz, 1H), 5.61 (s, 1H), 5.63 – 5.56 (m, 1H), 4.64 (d, J = 6.6 Hz, 2H), 4.171 (q, J = 7.1 Hz, 2H), 4.166 (q, J = 7.1 Hz, 2H), 3.69 (s, 6H), 2.97 (d, J = 11.9 Hz, 2H), 2.64 (d, J = 7.3 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H).

^{13}C -NMR (75 MHz, $CDCl_3$): δ (ppm) = 167.4 (C), 137.3 (2xC), 134.8 (2xCH), 134.5 (CH), 133.7 (C), 132.7 (CH₂), 131.8 (4xCH), 128.8 (4xCH), 124.5 (CH), 90.8 (C), 63.2 (CH₂), 61.5 (CH₂), 33.7 (CH₂), 31.6 (CH₂), 14.1 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{23}H_{26}O_7S_2$ [M]⁺: 478.1120; found: 478.1119.

Compound 19: Ethyl chloroformate (52 mg, 0.48 mmol) was added to a solution of **XXVI** (208 mg, 0.44 mmol), dimethylaminopyridine (DMAP) (16 mg, 0.13 mmol), pyridine (103 mg, 1.3 mmol) in CH_2Cl_2 (10 mL), and it was stirred at room temperature for 16 h. Then the mixture was diluted with CH_2Cl_2 , washed with saturated NH_4Cl and dried over anhydrous Na_2SO_4 . The residue was submitted to flash chromatography (EtOAc: Hexane, 3:7) to give **32** (110 mg, 49%) as a colourless oil.

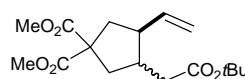

1H -NMR (500 MHz, $CDCl_3$): δ (ppm) = 8.04 (d, J = 7.9 Hz, 4H), 7.71 (t, J = 7.4 Hz, 2H), 7.58 (t, J = 7.8 Hz, 4H), 6.46 (s, 1H), 6.12 (s, 1H), 6.02 – 5.94 (m, 1H), 5.68 – 5.60 (m, 1H), 4.49 (d, J = 6.3 Hz, 2H), 4.20 (q, J = 7.1 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.38 (s, 2H), 3.00 (d, J = 6.4 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H).

^{13}C -NMR (126 MHz, $CDCl_3$): δ (ppm) = 167.1 (C), 155.1 (C), 137.4 (2xC), 134.8 (2xCH), 133.5 (C), 132.6 (CH₂), 131.9 (4xCH), 128.8 (4xCH), 128.7 (CH), 128.6 (CH), 90.7 (C), 67.7 (CH₂), 64.2 (CH₂), 61.4 (CH₂), 33.9 (CH₂), 31.9 (CH₂), 14.4 (CH₃), 14.2 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for $C_{26}H_{30}O_9S_2$ [M]⁺: 550.1331; found: 550.1331.

General procedure for $\text{Pd}^0\text{-Ti}^{\text{III}}$ catalyzed intramolecular Michael-type addition of allylic carboxylates to activated alkenes:

Rigorously deoxygenated THF (10 mL) was added to a mixture of Cp_2TiCl_2 (0.1 mmol), PdCl_2 (0.05 mmol), PPh_3 (0.1 mmol) and Mn dust (2 mmol) under Ar atmosphere, and the suspension was stirred at room temperature until it turned dark green (about 15 min). A solution of the activated alkene (0.25 mmol) and 2,4,6-collidine (1.75 mmol) in THF (2 mL) and Me_3SiCl (1 mmol) was then added. The mixture was stirred at room temperature for 21 h and then diluted with AcOEt , washed with HCl (10%), dried over anhydrous Na_2SO_4 and the solvent removed. The residue was submitted to flash chromatography ($\text{EtOAc}/\text{Hexane}$ mixtures) to give the corresponding products **2**, **20-33**.


2

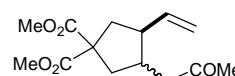
Colourless oil. Yield: 73%. Mixture of isomers \approx 4:1 (*cis*-: *trans*-).

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ (ppm) = 5.58 (ddt, J = 13.3, 8.3, 6.7 Hz, 1H, major isomer), 5.53-5.47 (m, 1H, minor isomer), 5.00 – 4.88 (m, 2H), 3.65 (s, 3H), 3.64 (s, 3H), 3.56 (s, 3H), 2.79 – 2.68 (m, 1H), 2.51 – 2.37 (m, 1H), 2.25 (dd, J = 16.0, 7.0 Hz, 2H), 2.17 – 2.09 (m, 2H), 1.99 – 1.91 (m, 2H).

$^{13}\text{C-NMR}$ (126 MHz, CDCl_3): δ (ppm) = 173.2 (2xC), 172.9 (C), 139.2 (CH, minor isomer), 137.4 (CH, major isomer), 116.5 (CH₂, major isomer), 116.4 (CH₂, minor isomer), 59.0 (C, major isomer), 58.5 (C, minor isomer), 52.94 (CH₃), 52.90 (CH₃), 51.6 (CH₃, major isomer), 50.2 (CH₃, minor isomer), 45.9 (CH, major isomer), 41.5 (CH, minor isomer), 40.5 (CH₂, minor isomer), 40.0 (CH₂, minor isomer), 39.2 (CH₂, major isomer), 39.1 (CH), 38.8 (CH₂, major isomer), 37.6 (CH₂, minor isomer), 35.3 (CH₂, major isomer)

HRMS (EI, 70 eV) m/z calcd. for $\text{C}_{14}\text{H}_{20}\text{O}_6$ [M]⁺: 284.1260; found: 284.1265.

20

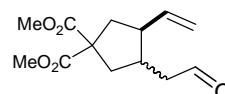

Colourless oil. Yield: 73%. Mixture of isomers \approx 5:1 (*cis*-: *trans*-).

$^1\text{H-NMR}$ (500 MHz, CDCl_3): δ (ppm) = 5.66 (ddd, J = 16.7, 10.6, 8.7 Hz, 1H, major isomer), 5.62 – 5.56 (m, 1H, minor isomer), 5.06 – 4.97 (m, 2H), 3.71 (s, 3H), 3.71 (s, 3H), 2.83 – 2.75 (m, 1H, major isomer), 2.66 – 2.60 (m, 1H, minor isomer), 2.52 (d, J = 7.4 Hz, 1H, minor isomer), 2.50 – 2.47 (m, 2H, major isomer), 2.45 (t, J = 6.5 Hz, 1H), 2.23 (dd, J = 15.9, 6.9 Hz, 1H), 2.17 (dd, J = 14.1, 6.3 Hz, 1H), 2.09 (dd, J = 16.0, 8.0 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.42 (s, 9H, minor isomer), 1.41 (s, 9H, major isomer).

$^{13}\text{C-NMR}$ (126 MHz, CDCl_3): δ (ppm) = 173.1 (C, minor isomer) 173.01 (C, major isomer), 172.97 (C, major isomer), 172.9 (C, minor isomer), 172.1 (C, major isomer), 172.0 (C, minor isomer), 139.4 (CH, minor isomer), 137.6 (CH, major isomer), 116.4 (CH₂), 80.5 (C, minor isomer), 80.4 (C, major isomer),

59.0 (C, major isomer), 58.5 (C, minor isomer), 52.92 (CH₃, major isomer), 52.87 (CH₃, major isomer), 52.85 (2xCH₃, minor isomer), 50.1 (CH, minor isomer), 45.9 (CH, major isomer), 41.7 (CH, minor isomer), 40.5 (CH₂, minor isomer), 39.9 (CH₂, minor isomer), 39.3 (CH, major isomer), 39.2 (CH₂, major isomer), 39.1 (CH₂, minor isomer), 38.9 (CH₂, major isomer), 36.8 (CH₂, major isomer), 28.23 (3xCH₃, minor isomer), 28.21 (3xCH₃, major isomer).

HRMS calcd for C₁₇H₂₇O₆ [M⁺+1]: 327.1808; found: 327.1806.


21

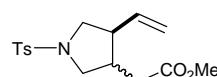
Colourless oil. Yield: 63%. Mixture of isomers \approx 6:1 (*cis*-:*trans*-).

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 5.69 – 5.58 (m, 1H), 5.07 – 4.94 (m, 2H), 3.721 (s, 3H), 3.716 (s, 3H), 2.85 – 2.76 (m, 1H), 2.62 (ddd, J = 19.5, 10.2, 6.1 Hz, 1H), 2.55 (dd, J = 13.9, 7.2 Hz, 1H), 2.50 – 2.41 (m, 2H), 2.33 (dd, J = 17.4, 7.4 Hz, 1H), 2.13 (dd, J = 12.5, 4.9 Hz, 1H), 2.09 (s, 3H), 1.97 (dd, J = 13.7, 9.2 Hz, 1H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 207.7 (C), 173.2 (C), 173.0 (C), 137.9 (CH), 116.3 (CH₂), 58.9 (C), 53.0 (CH₃), 52.9 (CH₃), 45.7 (CH₂), 44.5 (CH₂), 39.3 (CH₂), 38.89 (CH₂), 38.0 (CH₂), 30.6 (CH₃).

A good high resolution mass spectra could not be obtained.

22

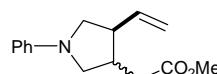

Pale yellow oil. Yield: 26%. Mixture of isomers \approx 3:2 (*cis*-:*trans*-).

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 9.75 (t, J = 2.0 Hz, 1H, minor isomer), 9.74 (t, J = 1.4 Hz, 1H, major isomer), 5.63 (dddd, J = 18.2, 17.2, 10.2, 8.4 Hz, 1H, major isomer), 5.59–5.56 (m, 1H, minor isomer), 5.10 – 4.98 (m, 2H), 3.74 (s, 3H, major isomer), 3.73 (s, 3H, minor isomer), 3.73 (s, 3H), 2.88 – 2.80 (m, 1H, minor isomer), 2.70 – 2.60 (m, 2H), 2.56 (dd, J = 14.2, 7.4 Hz, 1H), 2.53 – 2.46 (m, 2H), 2.38 – 2.29 (m, 1H), 2.21 – 2.14 (m, 1H), 2.04 (ddd, J = 19.4, 13.6, 10.0 Hz, 1H, major isomer), 1.92–1.86 (m, 1H, minor isomer).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 201.5 (C, minor isomer), 201.4 (C, major isomer), 173.0 (2xC, major isomer), 172.9 (C, minor isomer), 172.8 (C, minor isomer), 139.1 (CH, minor isomer), 137.6 (CH, major isomer), 116.9 (CH₂, minor isomer), 116.8 (CH₂, major isomer), 59.0 (C, major isomer), 58.7 (C, minor isomer), 53.03 (2xCH₃, minor isomer), 52.98 (2xCH₃, major isomer), 50.4 (CH, minor isomer), 47.5 (CH₂, minor isomer), 45.9 (CH, major isomer), 45.1 (CH₂, major isomer), 40.4 (CH₂, minor isomer),

40.0 (CH₂, major isomer), 39.5 (CH, minor isomer), 39.3 (CH₂, minor isomer), 38.9 (CH₂, major isomer), 37.1 (CH, major isomer).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₃H₁₈O₅ [M]⁺: 254.1154; found: 254.1155.

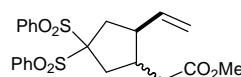

23

Colourless oil. Yield: 67%. Mixture of isomers \approx 3:2 (*cis*-:*trans*-).

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.71 (d, *J* = 8.1 Hz, 4H), 7.32 (d, *J* = 7.7 Hz, 4H), 5.45 (dt, *J* = 18.7, 9.6 Hz, 2H), 5.10 – 4.94 (m, 4H), 3.62 (s, 6H), 3.50 (ddd, *J* = 22.4, 10.0, 7.5 Hz, 1H), 3.38 (dd, *J* = 10.0, 6.6 Hz, 1H), 3.23 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.03 (dd, *J* = 10.0, 7.8 Hz, 1H), 2.94 (dd, *J* = 18.6, 9.0 Hz, 2H), 2.80 (dt, *J* = 13.0, 6.5 Hz, 1H), 2.51 (tt, *J* = 14.3, 7.2 Hz, 1H), 2.43 (s, 6H), 2.31 – 2.22 (m, 2H), 2.15 – 2.03 (m, 2H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 172.4 (C, major isomer), 172.2 (C, minor isomer), 143.64 (C, minor isomer), 143.62 (C, major isomer), 136.0 (CH, minor isomer), 134.5 (CH, major isomer), 134.0 (C, minor isomer), 134.1 (C, major isomer), 129.83 (2xCH, minor isomer), 129.82 (2xCH, major isomer), 127.63 (2xCH, minor isomer), 127.57 (2xCH, major isomer), 118.2 (CH₂, minor isomer), 118.1 (CH₂, major isomer), 53.0 (CH₂, minor isomer), 52.5 (CH₂, major isomer), 51.9 (CH₂, minor isomer), 51.81 (CH₃, minor isomer), 51.79 (CH₃, major isomer), 51.7 (CH₂, major isomer), 48.9 (CH, minor isomer), 45.1 (CH, major isomer), 40.5 (CH, minor isomer), 38.4 (CH, major isomer), 35.9 (CH₂, minor isomer), 33.2 (CH₂, major isomer), 21.64 (CH₃, minor isomer), 21.63 (CH₃, major isomer).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₆H₂₂NO₄S [M+1]⁺: 324.1270; found: 324.1271.


24

Pale orange oil. Yield: 47%. Mixture of isomers \approx 1:1 (*cis*-:*trans*-).

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.25 – 7.20 (m, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.55 (d, *J* = 7.3 Hz, 2H), 5.83 – 5.70 (m, 1H), 5.22 – 5.07 (m, 2H), 3.70 (s, 3H, one isomer), 3.69 (s, 3H, other isomer), 3.51 (ddd, *J* = 12.1, 9.6, 4.5 Hz, 2H), 3.28 (dd, *J* = 9.4, 4.0 Hz, 1H, one isomer), 3.18 – 3.08 (m, 1H), 3.05 (t, *J* = 9.0 Hz, 1H), 2.83 (dt, *J* = 13.8, 6.9 Hz, 1H, one isomer), 2.63 (dt, *J* = 10.6, 5.3 Hz, 1H, other isomer), 2.56 (dt, *J* = 16.7, 8.4 Hz, 1H, one isomer), 2.53 – 2.44 (m, 1H), 2.41 – 2.28 (m, 1H).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 173.2 (C), 172.9 (C), 147.7 (C), 147.5 (C), 137.9 (CH), 136.3 (CH), 129.3 (4xCH), 117.5 (CH₂), 117.2 (CH₂), 116.0 (CH), 115.9 (CH), 111.6 (4xCH), 53.4 (CH₂), 53.0 (CH₂), 52.2 (CH₂), 52.0 (CH₂), 51.8 (2xCH₃), 49.2 (CH), 45.3 (CH), 40.7 (CH), 38.4 (CH), 36.6 (CH₂), 34.1 (CH₂).

HRMS (EI, 70 eV) m/z calcd. for $C_{15}H_{19}NO_2$ [M] $^+$: 245.1416; found: 254.1410

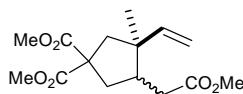
25

Pale yellow solid. Yield: 50%. Mixture of isomers \approx 3:2.

1H -NMR (500 MHz, $CDCl_3$): δ (ppm) = 8.06 (dd, J = 13.3, 4.9 Hz, 4H), 7.75 – 7.68 (m, 2H), 7.60 (tdd, J = 10.7, 6.1, 4.5 Hz, 4H), 5.81 – 5.71 (m, 1H, minor isomer), 5.48 (ddd, J = 17.0, 10.2, 8.5 Hz, 1H, major isomer), 5.09 – 4.98 (m, 2H), 3.65 (s, 3H, minor isomer), 3.64 (s, 3H, major isomer), 3.06–2.96 (m, 1H, minor isomer), 2.86 (dt, J = 21.8, 9.1 Hz, 1H, major isomer), 2.74 – 2.66 (m, 2H), 2.53 (ddd, J = 14.3, 6.8, 4.2 Hz, 1H), 2.47 (dd, J = 15.8, 4.0 Hz, 1H), 2.40 (d, J = 11.4 Hz, 1H), 2.36 – 2.32 (m, 2H), 2.32 – 2.24 (m, 1H), 2.17 – 2.08 (m, 1H), 2.02 – 1.95 (m, 1H).

^{13}C -NMR (126 MHz, $CDCl_3$): δ (ppm) = 172.9 (C), 172.3 (C), 137.6 (CH), 136.6 (CH), 136.3 (C), 136.1 (C), 134.8 (2xCH), 134.7 (CH), 134.6 (CH), 131.6 (2xCH), 131.5 (2xCH), 131.46 (2xCH), 131.45 (2xCH), 129.8 (C), 129.2 (C), 128.94 (2xCH), 128.89 (2xCH), 128.87 (2xCH), 128.8 (2xCH), 118.1 (CH₂), 117.3 (CH₂), 93.8 (C), 91.8 (C), 51.73 (CH₃), 51.71 (CH₃), 49.9 (CH), 46.5 (CH), 41.5 (CH), 39.1 (CH), 38.2 (CH₂), 37.9 (CH₂), 36.9 (CH₂), 36.8 (CH₂), 36.5 (CH₂), 35.0 (CH₂).

HRMS (EI, 70 eV) m/z calcd. for $C_{22}H_{24}O_6S_2$ [M] $^+$: 448.1014; found: 448.1011.

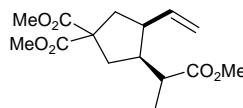

26

Colourless oil. Yield: 68%. Mixture of isomers \approx 5:2.

1H NMR (500 MHz, $CDCl_3$): δ (ppm) = 4.86 (s, 1H, major isomer), 4.79 (s, 1H, minor isomer), 4.76 (s, 1H, minor isomer), 4.69 (s, 1H, major isomer), 3.73 (s, 6H, minor isomer), 3.72 (s, 6H, major isomer), 3.64 (s, 3H, major isomer), 3.63 (s, 3H, minor isomer), 2.72 – 2.58 (m, 2H), 2.54 (dd, J = 14.4, 7.0 Hz, 1H), 2.45 (dd, J = 15.4, 4.3 Hz, 1H, minor isomer), 2.39 (dd, J = 13.4, 6.1 Hz, 1H, major isomer), 2.25 – 2.18 (m, 1H), 2.17 (d, J = 4.4 Hz, 1H), 2.14 (d, J = 4.1 Hz, 1H), 2.04 (dd, J = 16.1, 10.4 Hz, 1H, major isomer), 1.97 – 1.89 (m, 1H, minor isomer), 1.71 (s, 3H, major isomer), 1.67 (s, 3H, minor isomer).

^{13}C NMR (126 MHz, $CDCl_3$): δ (ppm) = 173.7 (C), 173.1 (2xC), 144.0 (C, minor isomer), 143.6 (C, major isomer), 112.9 (CH₂, minor isomer), 111.8 (CH₂, major isomer), 58.3 (C), 53.1 (CH₃, minor isomer), 53.0 (CH₃, major isomer), 51.6 (CH), 48.9 (2xCH₃), 39.9 (CH₂, minor isomer), 39.4 (CH₂, major isomer), 39.1 (CH₂, minor isomer), 38.9 (CH, minor isomer), 37.9 (CH₂, minor isomer), 37.1 (CH, major isomer), 36.1 (CH₂, major isomer), 34.4 (CH₂, major isomer), 23.2 (CH₃).

HRMS (EI, 70eV) (EI, 70 eV) m/z calcd. for $C_{15}H_{22}O_6$ [M] $^+$: 298.1416; found: 298.1412.

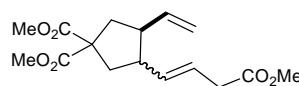

27

Colourless oil. Yield: 35%. Mixture of isomers \approx 3:2.

¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 5.73 (dd, J = 17.4, 10.8 Hz, 1H), 5.06 – 4.94 (m, 2H), 3.72 (s, 6H, minor isomer), 3.72 (s, 6H, major isomer), 3.65 (s, 3H, minor isomer), 3.63 (s, 3H, major isomer), 2.60 – 2.49 (m, 1H), 2.46 (d, J = 14.3 Hz, 1H, minor isomer), 2.35 (d, J = 14.0 Hz, 1H, major isomer), 2.28 (dt, J = 9.0, 3.8 Hz, 1H), 2.25 – 2.03 (m, 4H), 1.13 (s, 3H, minor isomer), 0.88 (s, 3H, major isomer).

¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 173.5 (C), 173.3 (2xC), 173.2 (C), 173.04 (C), 172.97 (C), 145.7 (CH), 141.5 (CH), 113.8 (CH₂), 113.09 (CH₂), 57.9 (C), 57.8 (C), 53.1 (CH₃), 52.9 (CH₃), 51.69 (CH₃), 51.66 (CH₃), 47.6 (2xCH₂), 47.4 (C), 47.3 (C), 46.2 (CH₂), 46.11 (CH), 44.7 (2xCH), 39.4 (CH₂), 38.7 (CH₂), 34.8 (CH₂), 34.1 (CH₂), 24.1 (CH₃), 17.6 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for C₁₅H₂₂O₆ [M]⁺: 298.1416; found: 298.1420.

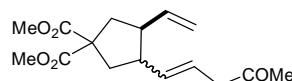

28

Colourless oil. Yield: 64%. Mixture of isomers $>$ 15:1. Only one isomer could be characterized and a C-3, C-7-cis stereochemistry was tentatively assigned. The stereochemistry at C-8 could not be determined.

¹H-NMR (300 MHz, CDCl₃): δ (ppm) = 5.66 (dd, J = 16.6, 10.1 Hz, 1H), 5.04 (d, J = 10.1 Hz, 1H), 5.00 (s, 1H), 3.70 (s, 6H), 3.65 (s, 3H), 2.77 (m, 1H), 2.58 (dd, J = 14.3, 7.3 Hz, 1H), 2.36 – 2.09 (m, 5H), 1.12 (d, J = 6.7 Hz, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ (ppm) = 176.6 (C), 173.0 (C), 172.98 (C), 137.0 (CH), 116.5 (CH₂), 58.8 (C), 53.0 (CH₃), 52.9 (CH₃), 51.6 (CH₃), 46.6 (CH), 45.2 (CH), 40.9 (CH), 39.9 (CH₂), 37.3 (CH₂), 16.0 (CH₃).

HRMS (EI, 70 eV) m/z calcd. for C₁₅H₂₂O₆ [M]⁺: 298.1416; found: 298.1415.

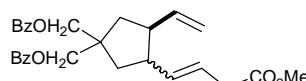

29

Colourless oil. Yield: 80%. Mixture of isomers \approx 2:1.

¹H NMR (500 MHz, CDCl₃): δ (ppm) = 5.73 – 5.60 (m, 1H), 5.59 – 5.48 (m, 1H), 5.48 – 5.38 (m, 1H), 4.99 (m, 2H), 3.73 (s, 6H), 3.67 (s, 3H), 3.03 (d, J = 6.4 Hz, 2H), 2.82 – 2.71 (m, 1H), 2.59 – 2.52 (m, 1H), 2.48 (dd, J = 13.8, 6.8 Hz, 1H), 2.34 – 2.27 (m, 1H), 2.23 – 2.15 (m, 1H), 2.08 – 1.98 (m, 1H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 173.2 (2xC), 173.0 (C), 139.2 (CH, minor isomer), 138.3 (CH, major isomer), 135.0 (CH, minor isomer), 134.3 (CH, major isomer), 123.1 (CH, minor isomer), 122.9 (CH, major isomer) 115.6 (CH₂), 59.2 (C), 53.0 (2xCH₃), 51.9 (CH₃), 49.8 (CH, minor isomer), 48.6 (CH, minor isomer), 47.3 (CH, major isomer), 46.1 (CH, major isomer), 40.4 (CH₂, minor isomer), 40.2 (CH₂, major isomer), 39.2 (CH₂, minor isomer) 39.1 (CH₂, major isomer), 38.0 (CH₂).

HRMS (EI, 70 eV) *m/z* calcd. for C₁₆H₂₂O₆ [M]⁺: 310.1416; found: 310.1420.


30

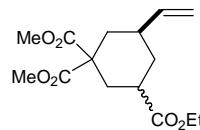
Colourless oil. Yield: 47%. Mixture of isomers \approx 2:1.

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 5.74 - 5.57 (m, 1H), 5.60 - 5.47 (m, 1H), 5.48 - 5.35 (m, 1H), 4.99 (dd, *J* = 15.6, 5.5 Hz, 2H), 3.73 (s, 6H), 3.10 (d, *J* = 6.7 Hz, 2H), 2.78 (dt, *J* = 14.1, 7.0 Hz, 1H), 2.57 - 2.43 (m, 2H), 2.39 - 2.23 (m, 1H), 2.25 - 2.14 (m, 1H), 2.13 (s, 3H), 2.07 - 1.97 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 207.3 (C), 172.9 (2xC), 139.2 (CH, minor isomer), 138.3 (CH, major isomer), 135.6 (CH, minor isomer), 134.7 (CH, major isomer), 123.4 (CH, minor isomer), 123.2 (CH, major isomer), 115.8 (CH₂, minor isomer), 115.6 (CH₂, major isomer), 59.1 (C, major isomer), 58.4 (C, minor isomer), 53.0 (2xCH₃), 49.9 (CH, minor isomer), 48.7 (CH, major isomer), 47.7(CH₂), 47.3 (CH, major isomer), 46.1 (CH, minor isomer), 40.4 (CH₂, minor isomer), 40.2 (CH₂, major isomer), 39.3 (CH₂, major isomer), 38.9, (CH₂, minor isomer) 29.8 (CH₃, major isomer), 29.4 (CH₃, minor isomer).

HRMS (EI, 70eV) calcd. for C₁₆H₂₁O₅ [M-1]⁺: 293.1389; found: 293.1390.

31

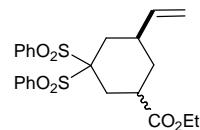

Colourless oil. Yield: 53%. Mixture of isomers \approx 1:1.

¹H NMR (500 MHz, CDCl₃): δ (ppm)= 8.02 (d, *J* = 7.6 Hz, 4H), 7.56 (t, *J* = 7.2 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 4H), 5.84 - 5.75 (m, 1H), 5.75 - 5.63 (m, 1H), 5.60 - 5.52 (m, 1H), 5.07 - 4.96 (m, 2H), 4.41 (s, 4H, minor isomer), 4.34 (s, 4H, major isomer), 3.67 (s, 3H), 3.02 (d, *J* = 18.0 Hz, 2H), 2.93 - 2.83 (m, 1H), 2.47 - 2.31 (m, 1H), 2.05 (m, 1H), 2.00 - 1.90 (m, 1H), 1.79 - 1.69 (m, 1H), 1.64 - 1.47 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ (ppm) = 172.4 (C), 166.7 (2xC), 139.8 (CH, one isomer), 139.1 (CH, other isomer), 135.7 (CH, one isomer), 134.9 (CH, other isomer), 133.2 (2xCH), 130.1 (2xC), 129.7 (4xCH), 128.6 (4xCH), 122.8 (CH, one isomer), 122.7 (CH, other isomer), 115.4 (CH₂), 69.3 (CH₂, one isomer), 68.8 (CH₂, other isomer), 68.7 (CH₂, one isomer), 68.1 (CH₂, other isomer), 51.9 (CH₃), 49.6 (CH, one isomer), 48.3 (CH, other isomer), 47.2 (CH, one isomer), 45.9 (CH, other isomer), 44.6 (C), 39.2

(CH₂, one isomer), 39.0 (CH₂, other isomer), 38.0 (CH₂), 37.9 (CH₂, one isomer), 37.7 (CH₂, other isomer).

HRMS (EI, 70 eV) *m/z* calcd. for C₂₈H₃₀O₆ [M]⁺: 462.2042; found: 462.2030.

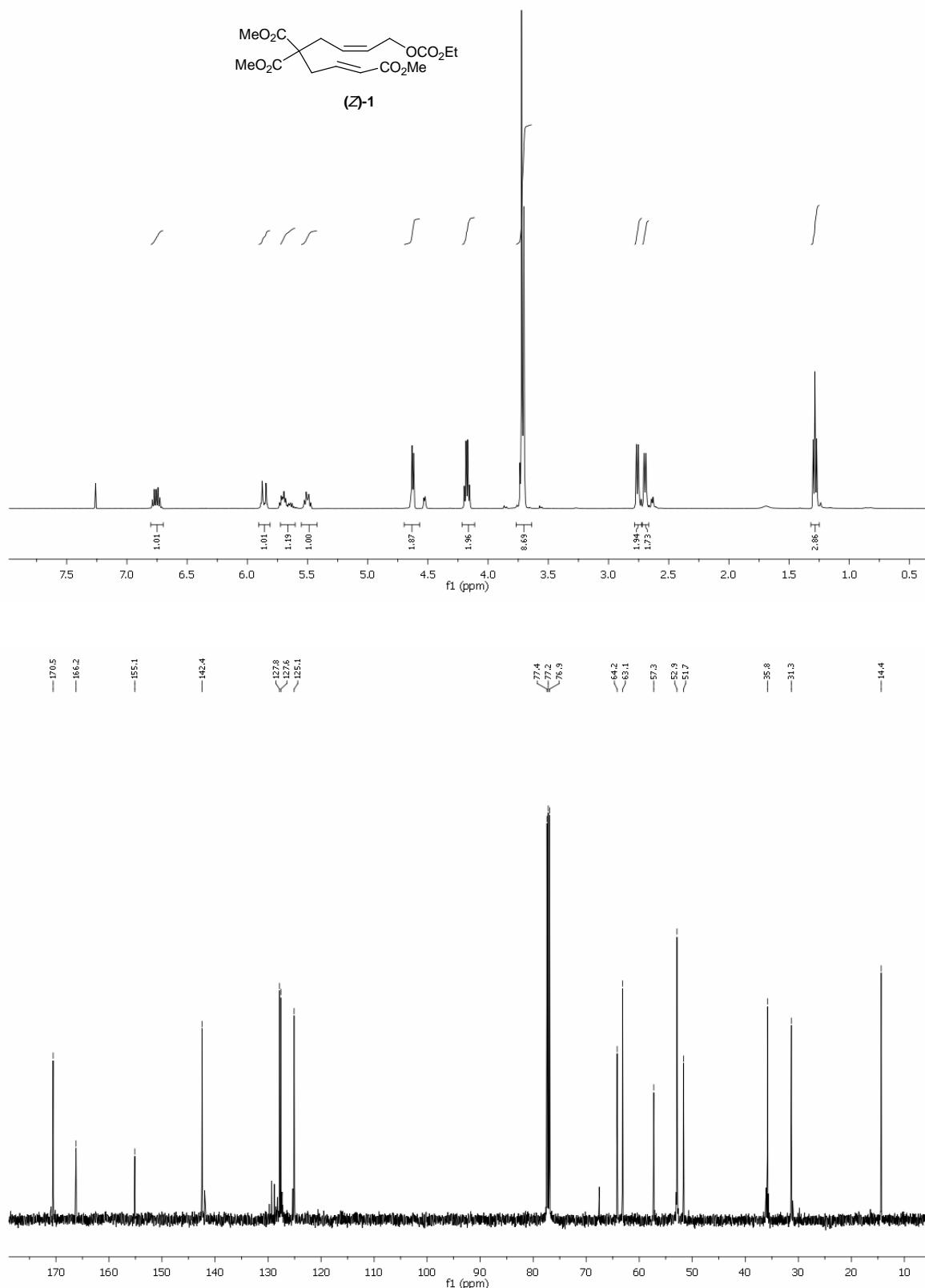

32

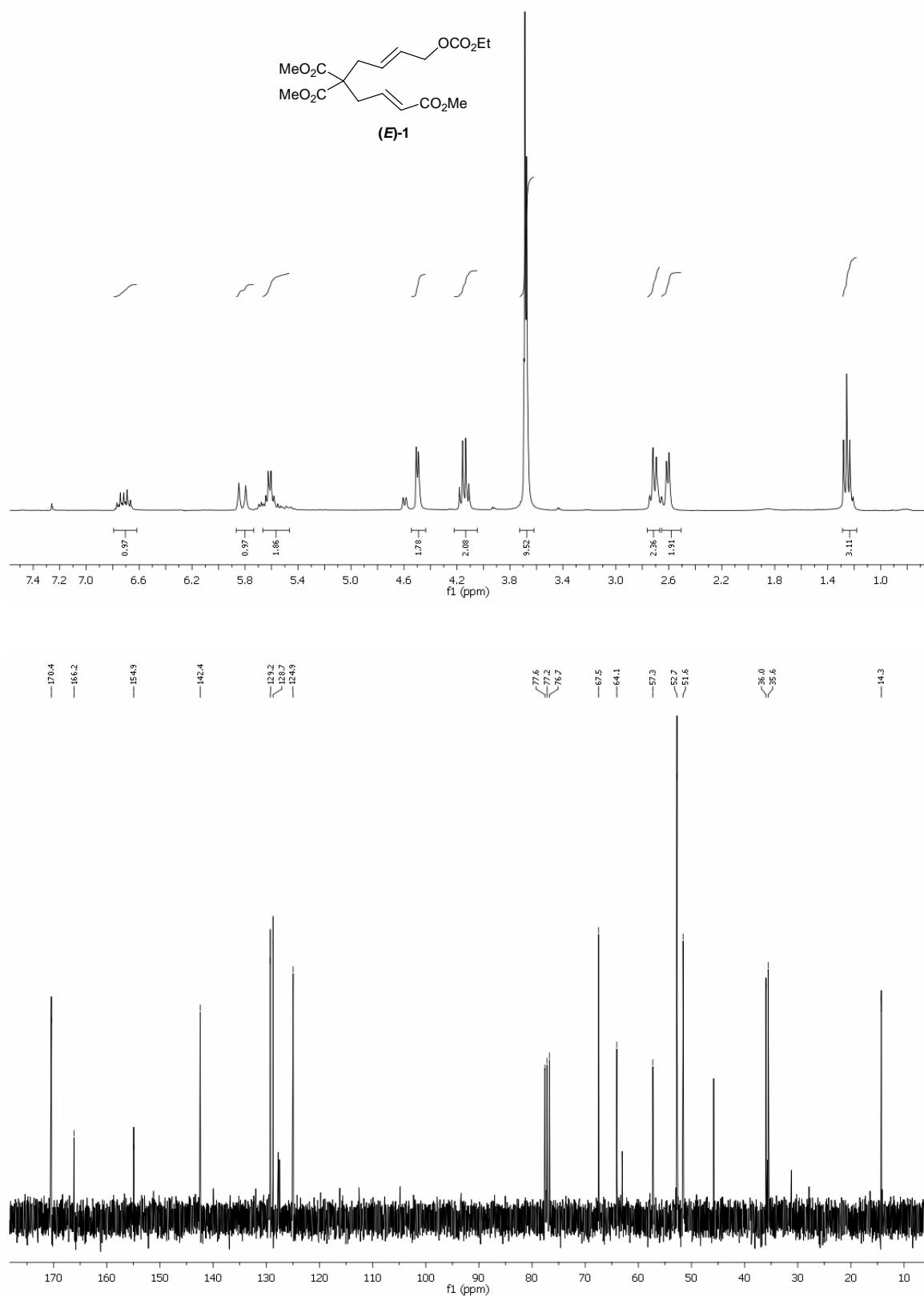
Colourless oil. Yield: 61%. Mixture of isomers \approx 6:1. Data of the major isomer:

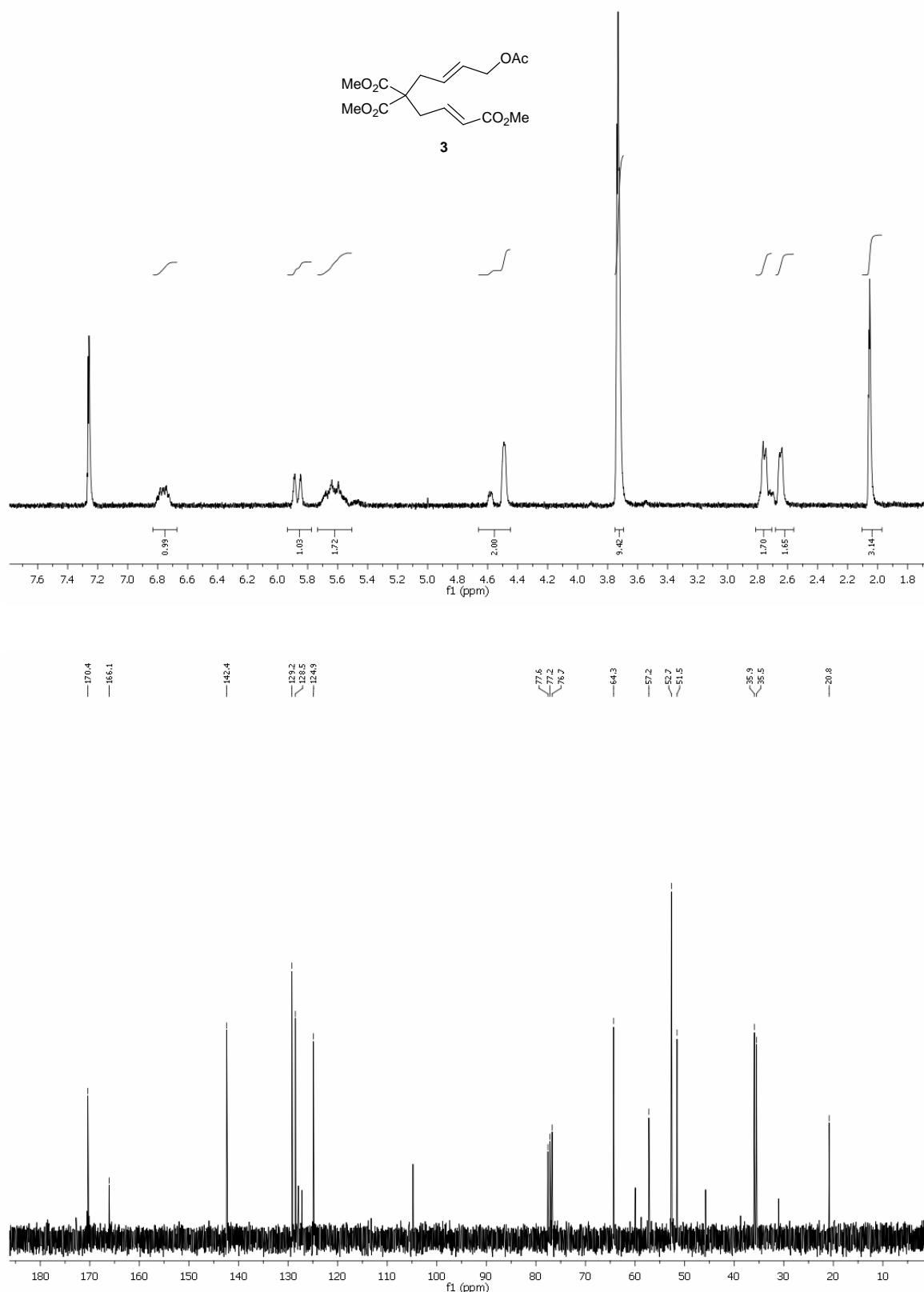
¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 5.72 (ddd, *J* = 23.4, 10.9, 5.7 Hz, 1H), 5.07 – 4.96 (m, 2H), 4.19 – 4.03 (m, 2H), 3.69 (s, 3H), 3.68 (s, *J* = 2.6 Hz, 3H), 2.89 (dq, *J* = 11.8, 6.0 Hz, 1H), 2.68 (dd, *J* = 4.1, 1.7 Hz, 1H), 2.34 – 2.24 (m, 3H), 1.95 – 1.87 (m, 1H), 1.74 (dt, *J* = 19.0, 9.6 Hz, 1H), 1.58 (ddd, *J* = 13.3, 8.3, 4.7 Hz, 1H), 1.25 (td, *J* = 7.1, 2.5 Hz, 3H).

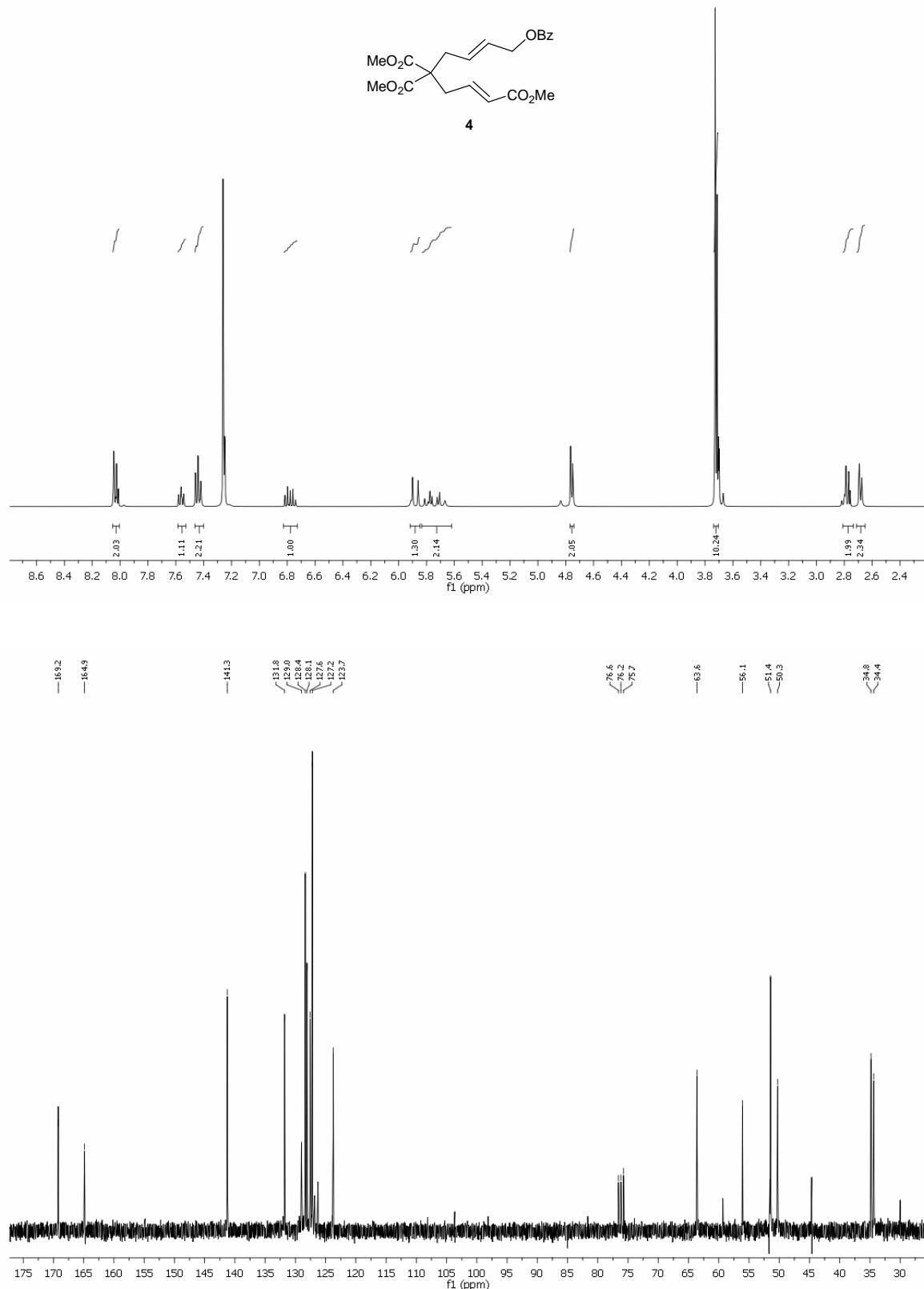
¹³C-NMR (126 MHz, CDCl₃): δ (ppm) = 174.8 (C), 172.3 (C), 171.8 (C), 141.4 (CH), 114.0 (CH₂), 60.6 (CH₂), 52.8 (CH₃), 54.9 (C), 52.70 (CH₃), 52.66 (CH₃), 36.4 (CH), 35.7 (CH₂), 34.0 (CH), 31.7 (CH₂), 31.2 (CH₂), 14.3 (CH₃).

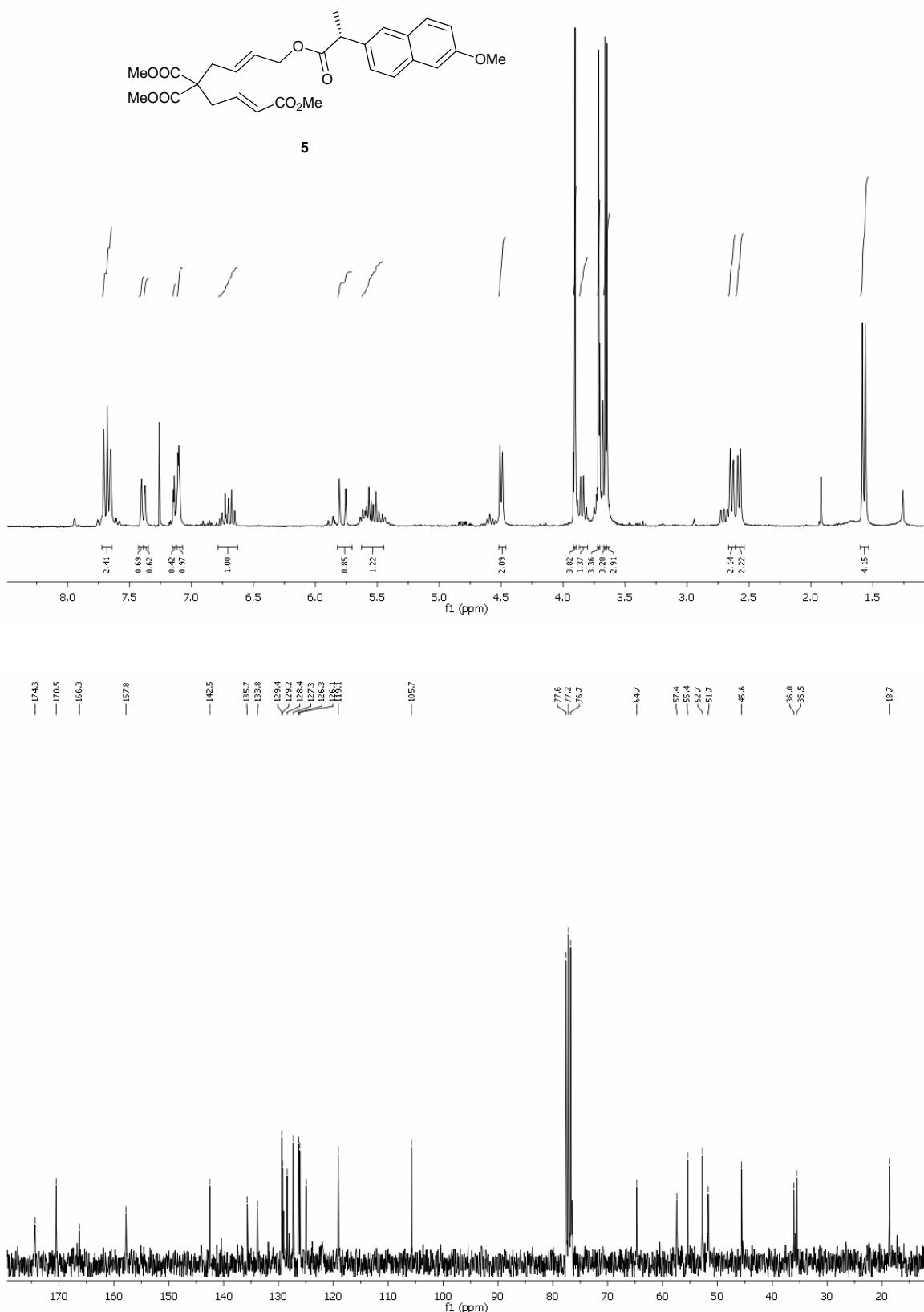
HRMS (EI, 70 eV) *m/z* calcd. for C₁₅H₂₂O₆ [M-CH₂]⁺: 298.1416; found: 298.1408.

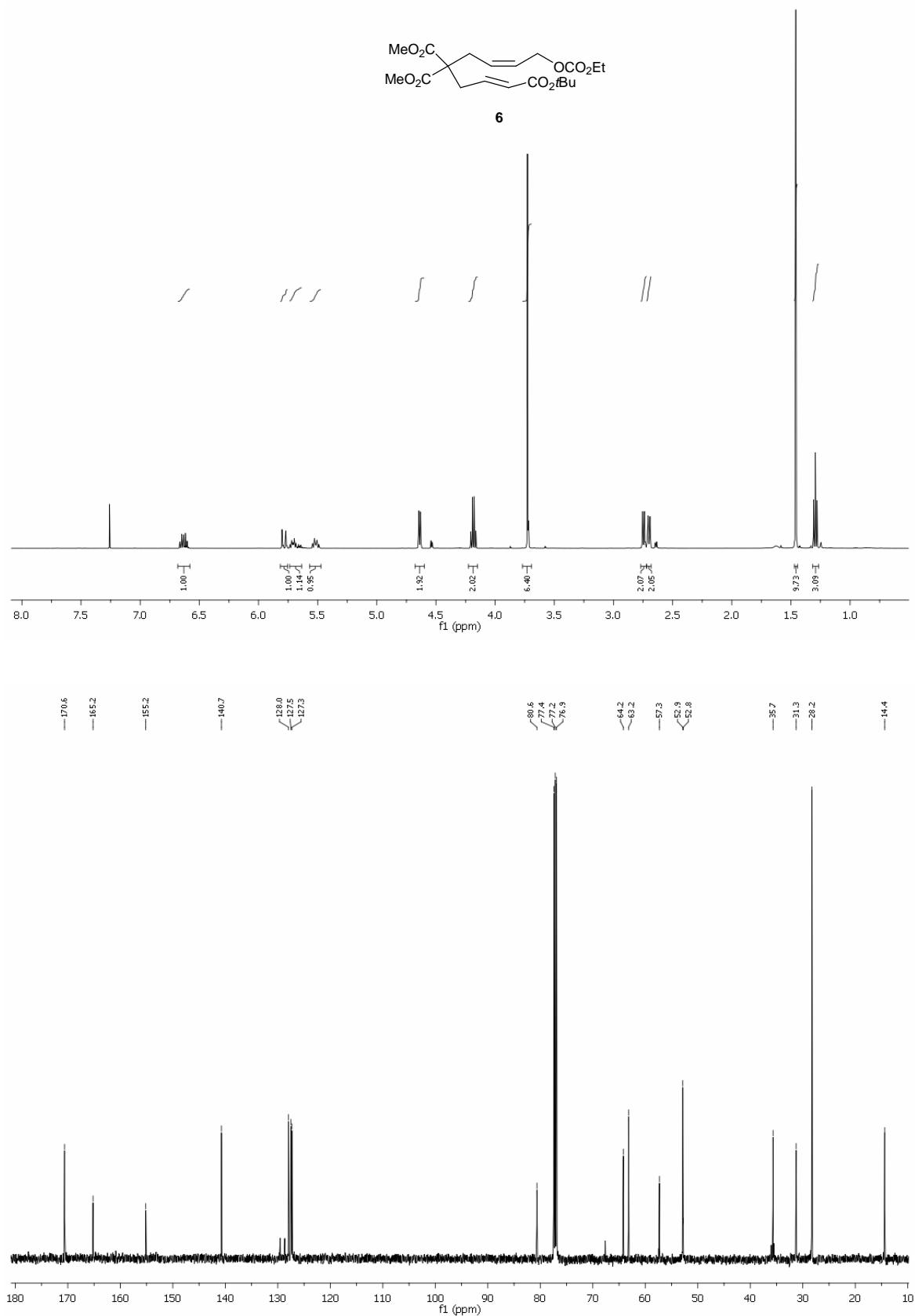

33

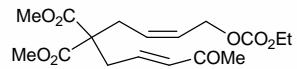

Colourless oil. Yield: 60%. Mixture of isomers \approx 9:1. Data of the major isomer:

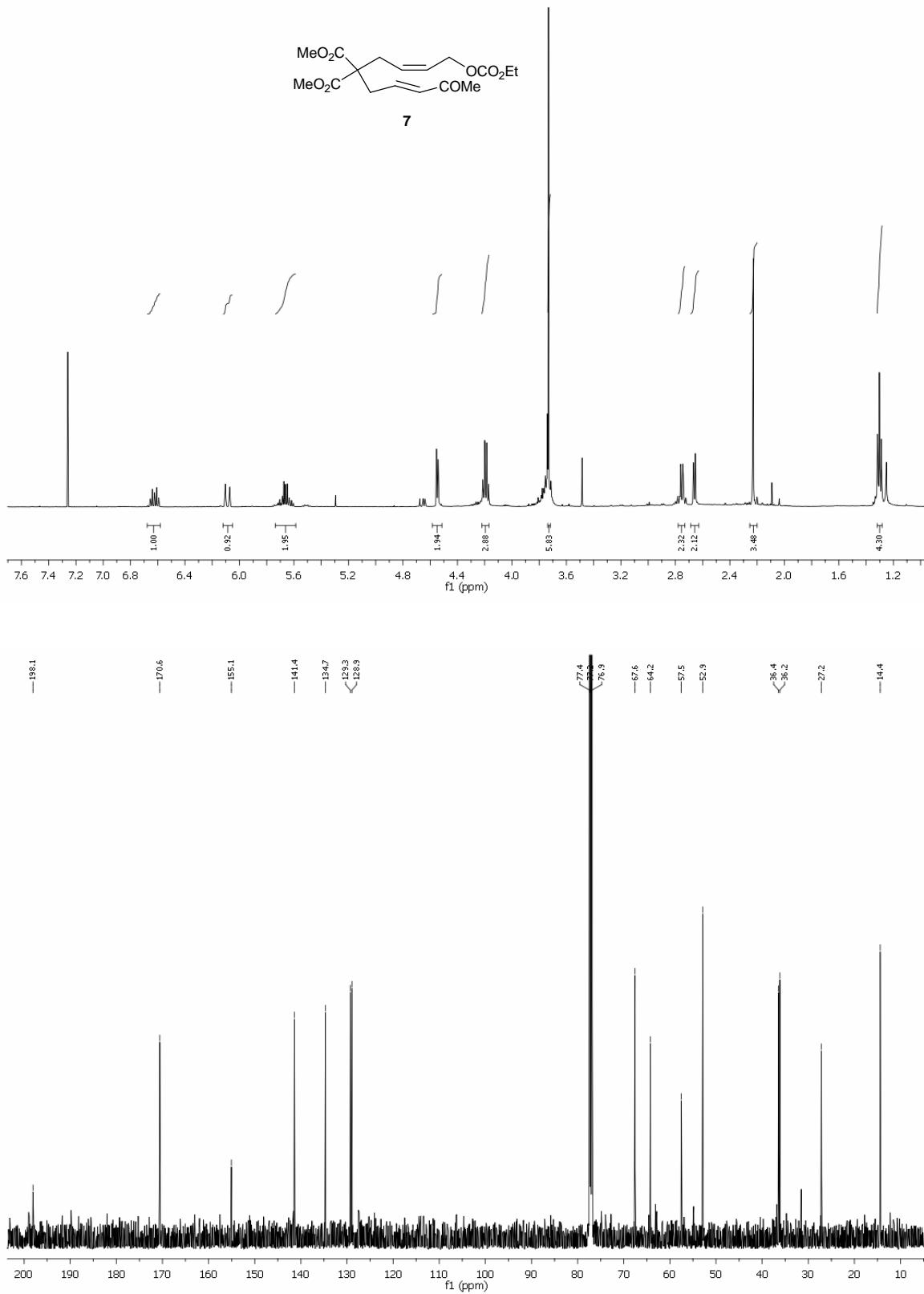

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.05 (m, 4H), 7.77 – 7.67 (m, 2H), 7.65 – 7.52 (m, 4H), 5.70 (ddd, *J* = 16.7, 10.8, 7.0 Hz, 1H), 5.04 – 4.91 (m, 2H), 4.18 (qd, *J* = 7.1, 1.9 Hz, 2H), 3.15 – 3.02 (m, 2H), 2.71-2.47 (ddd, *J* = 20.9, 15.6, 7.4 Hz, 2H), 2.39-1.99 (m, 2H), 1.60-1.49 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

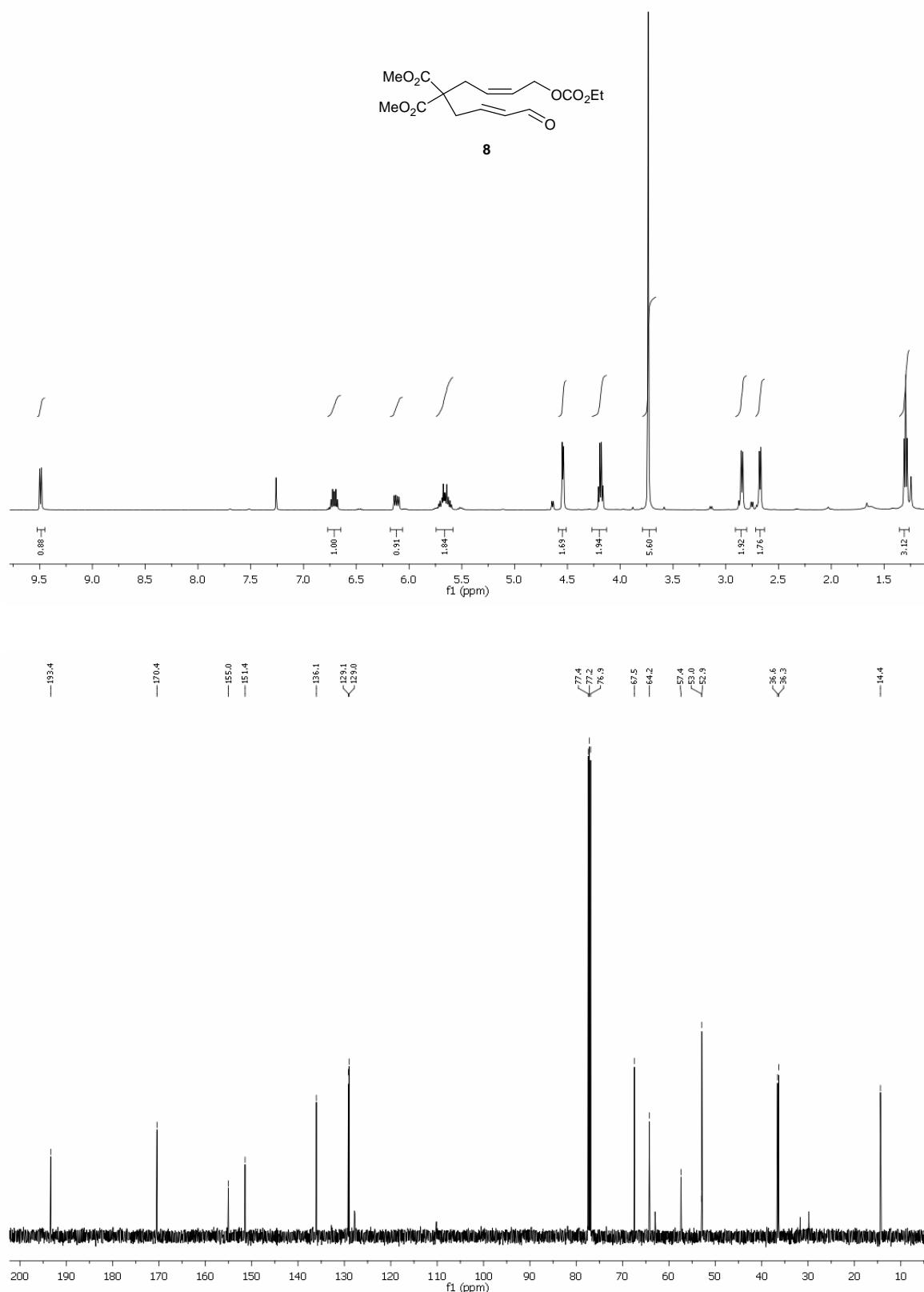

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 174.0 (C), 140.8 (CH), 136.2 (2xC), 134.8 (2xCH), 131.7 (2xCH), 131.5 (2xCH), 128.9 (2xCH), 128.8 (2xCH), 114.9 (CH₂), 87.1 (C), 61.1 (CH₂), 35.6 (CH), 33.2 (CH), 30.1 (CH₂), 29.6 (CH₂), 26.4 (CH₂), 14.3 (CH₃).

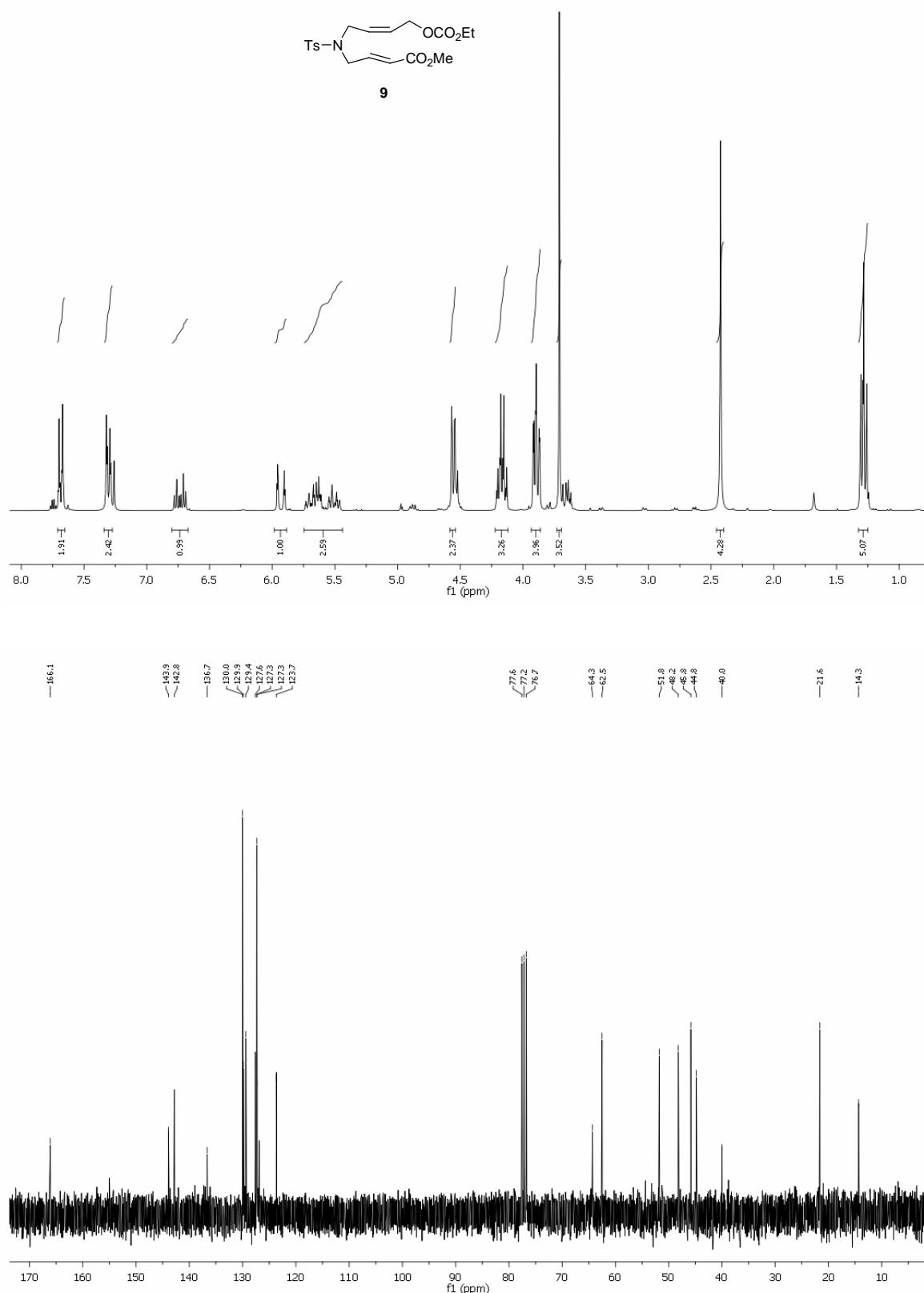

(EI, 70 eV) *m/z* calcd. for C₂₃H₂₇O₆S₂ [M+1]⁺: 463.1249; found: 463.1241.

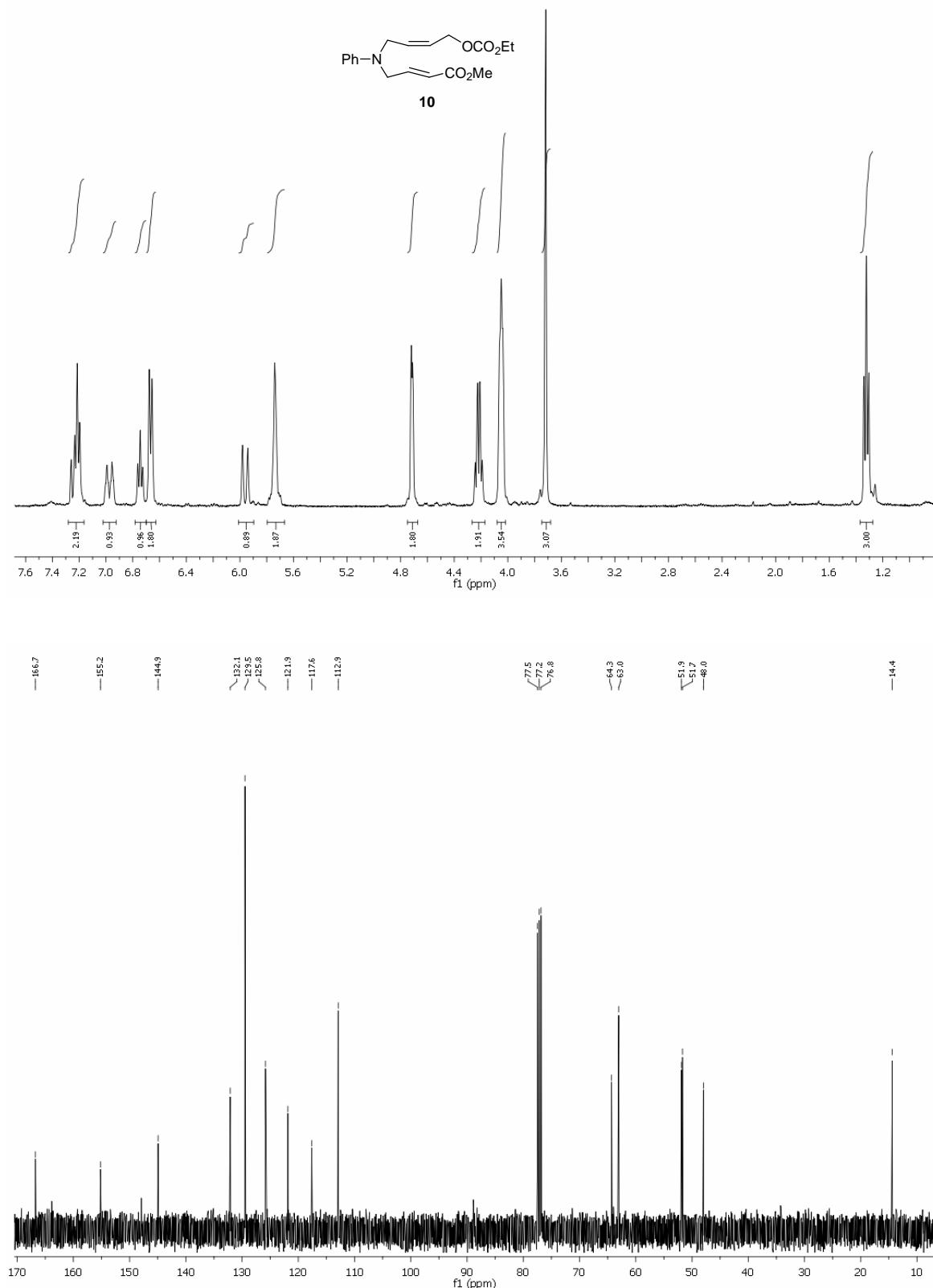


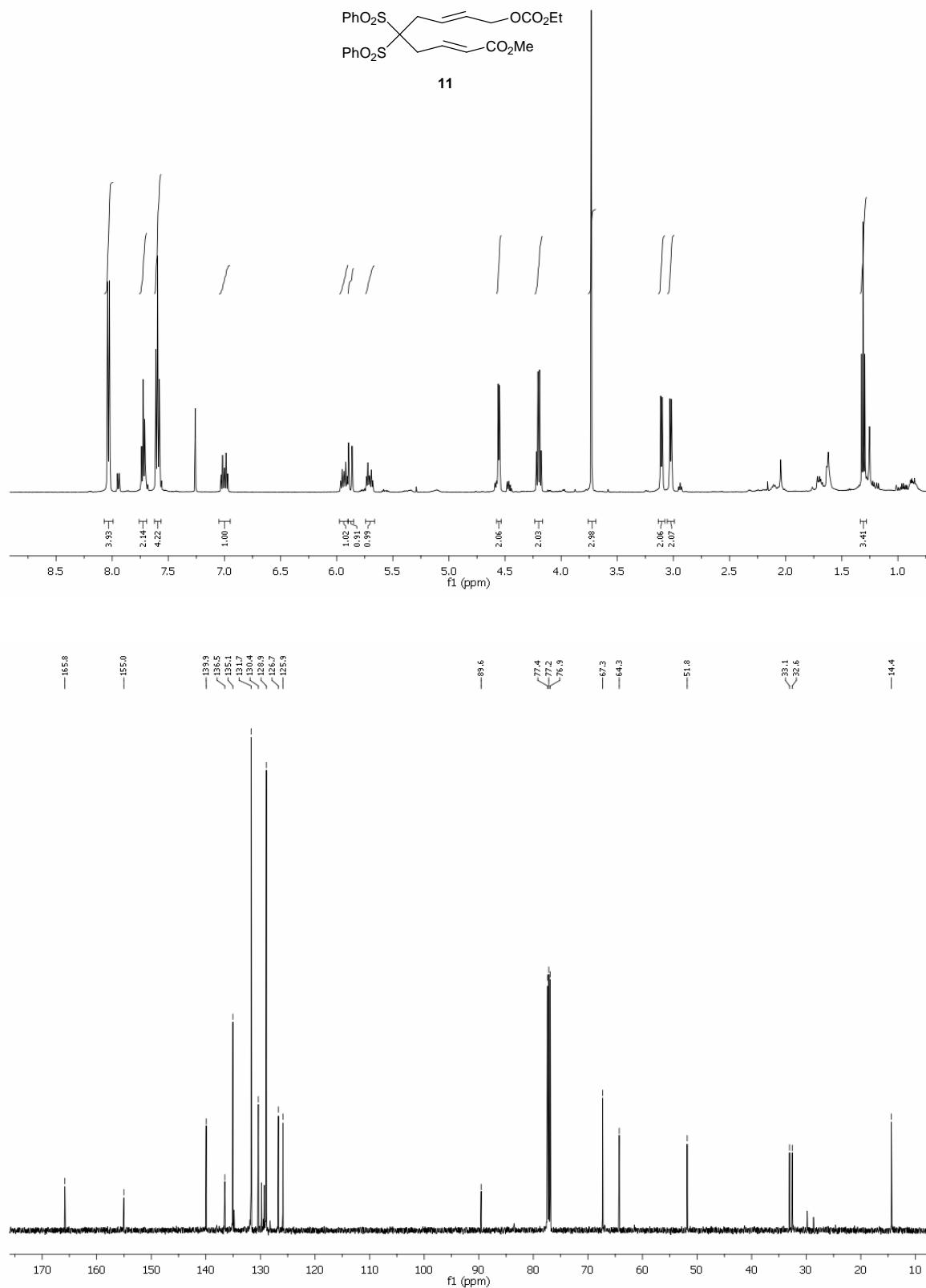


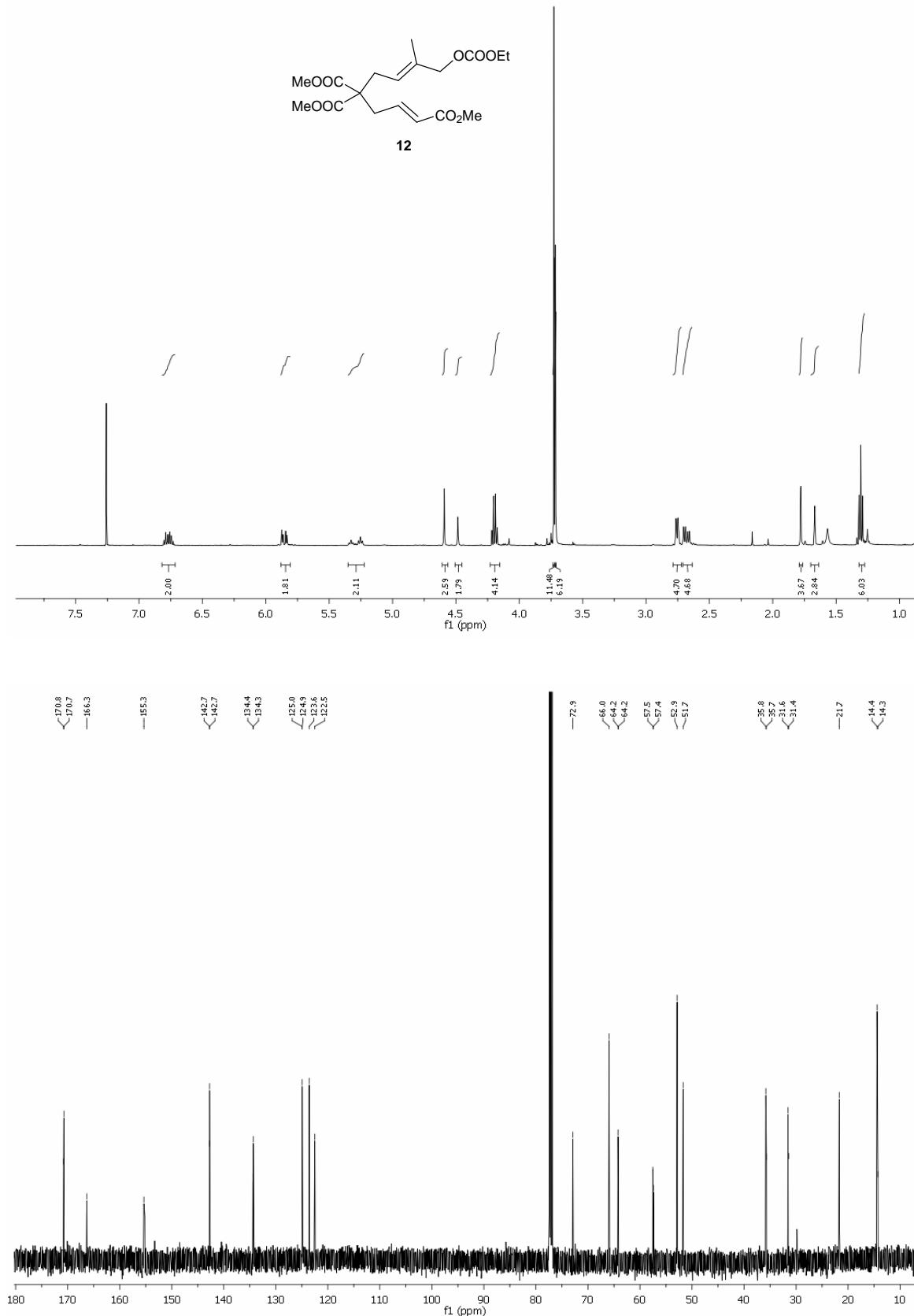


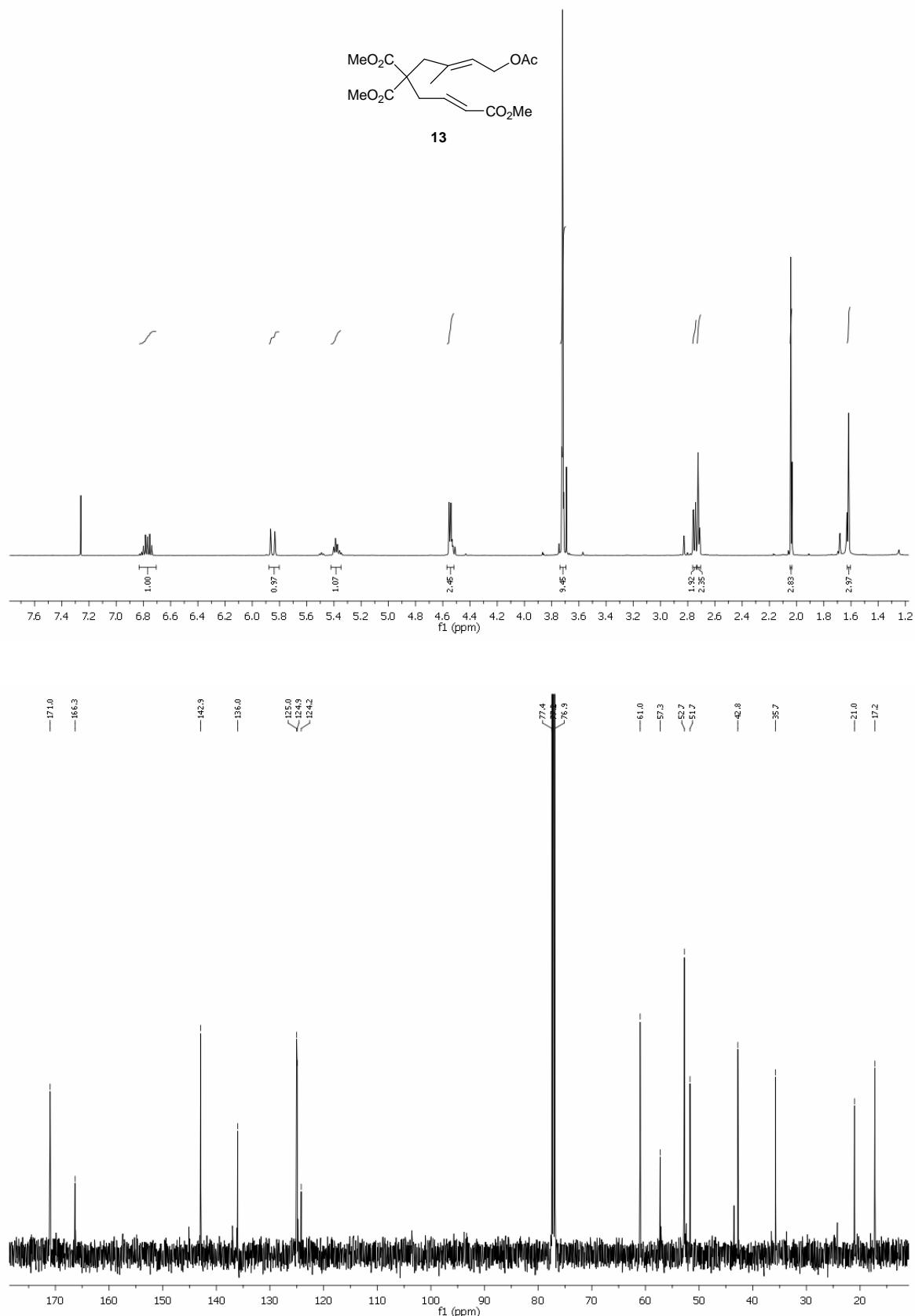


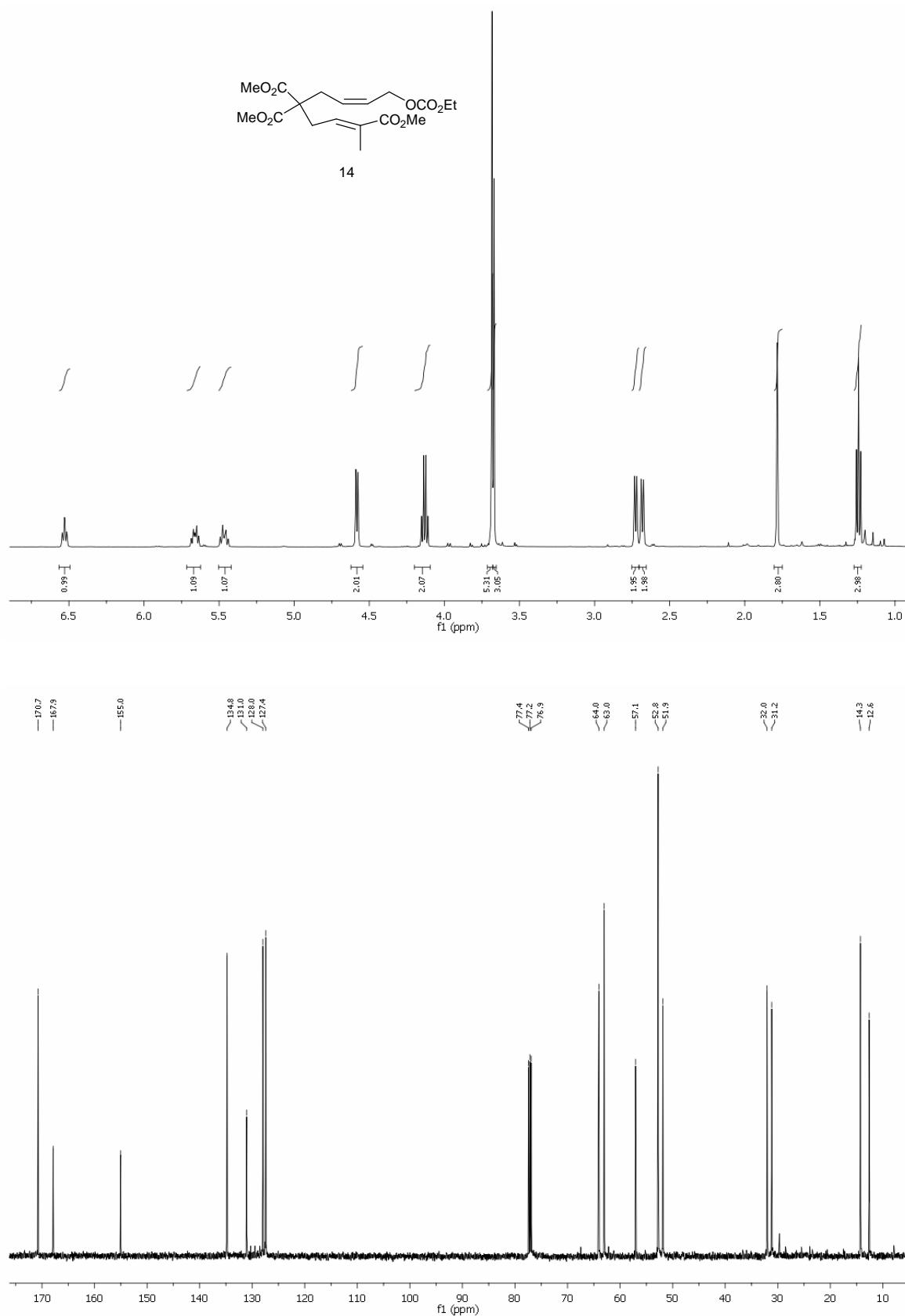


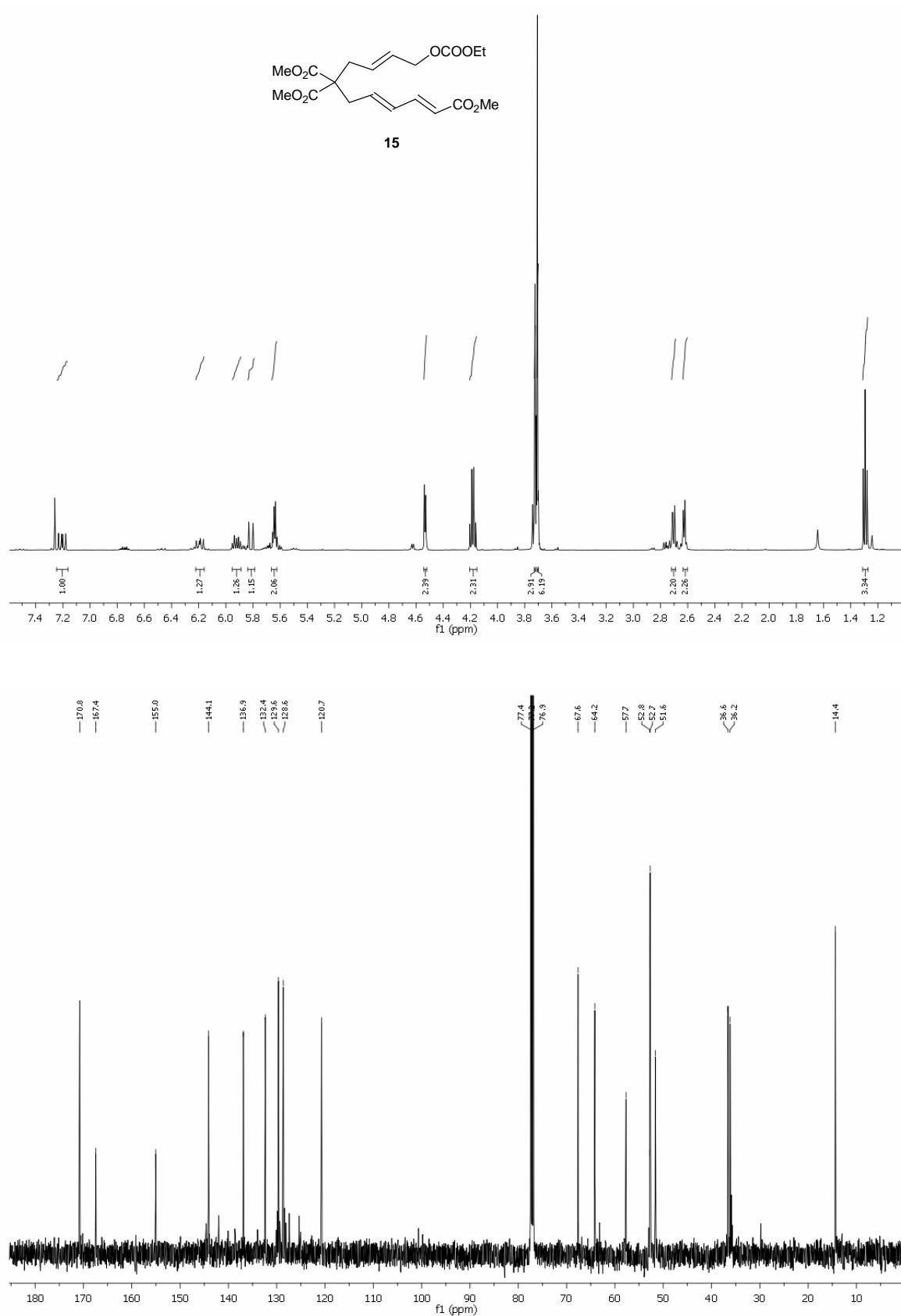


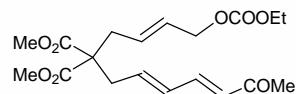

7

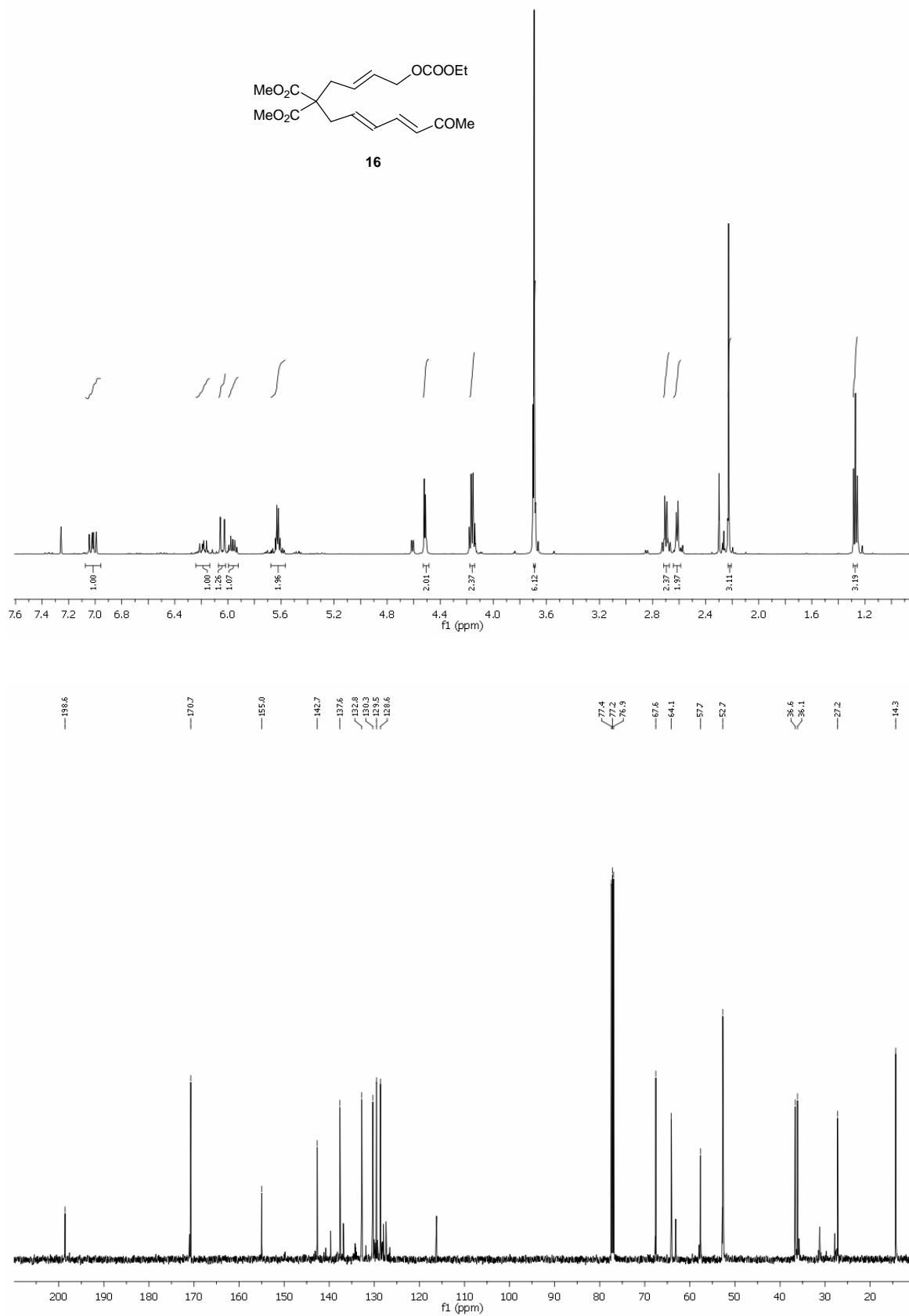


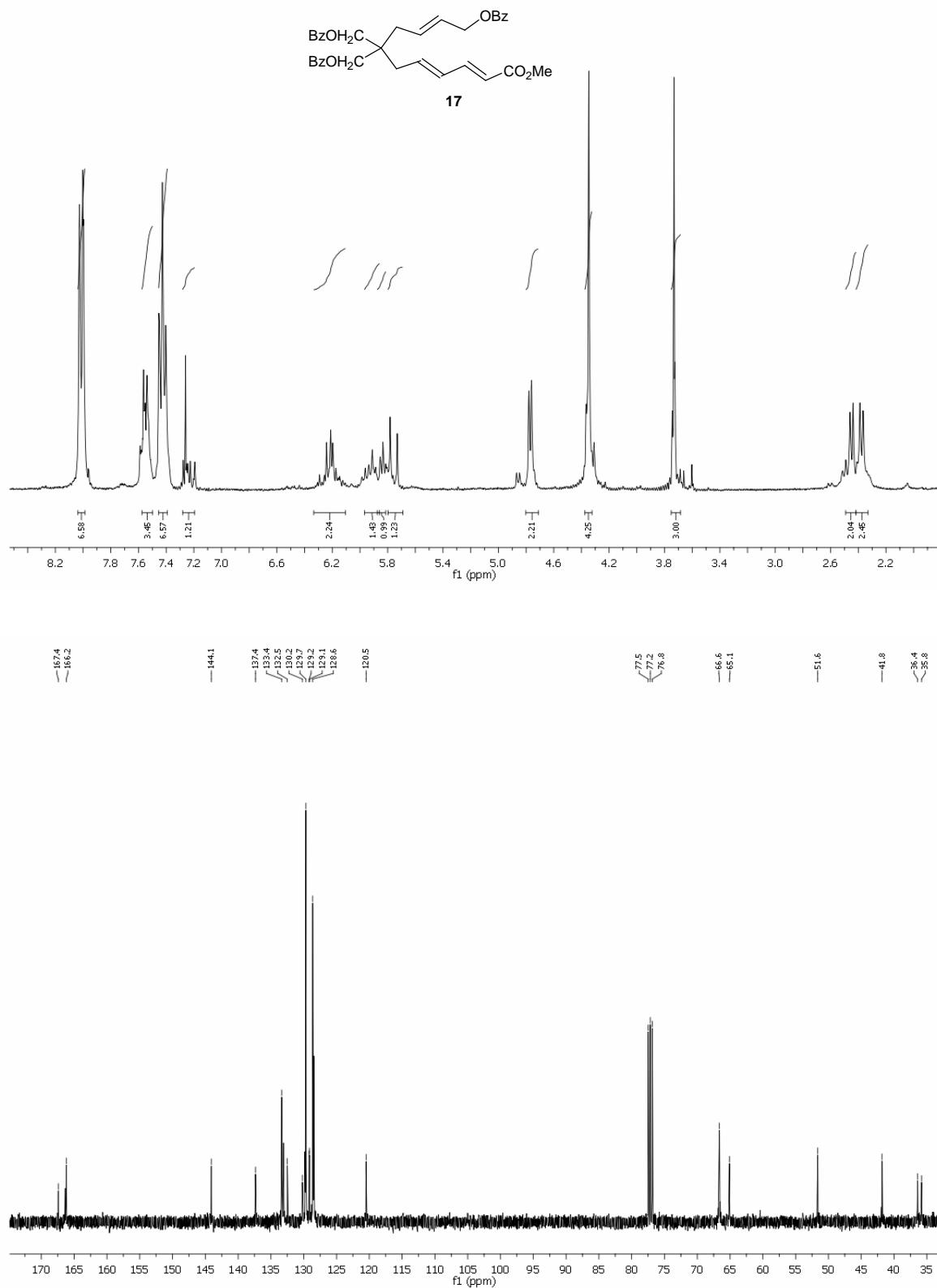


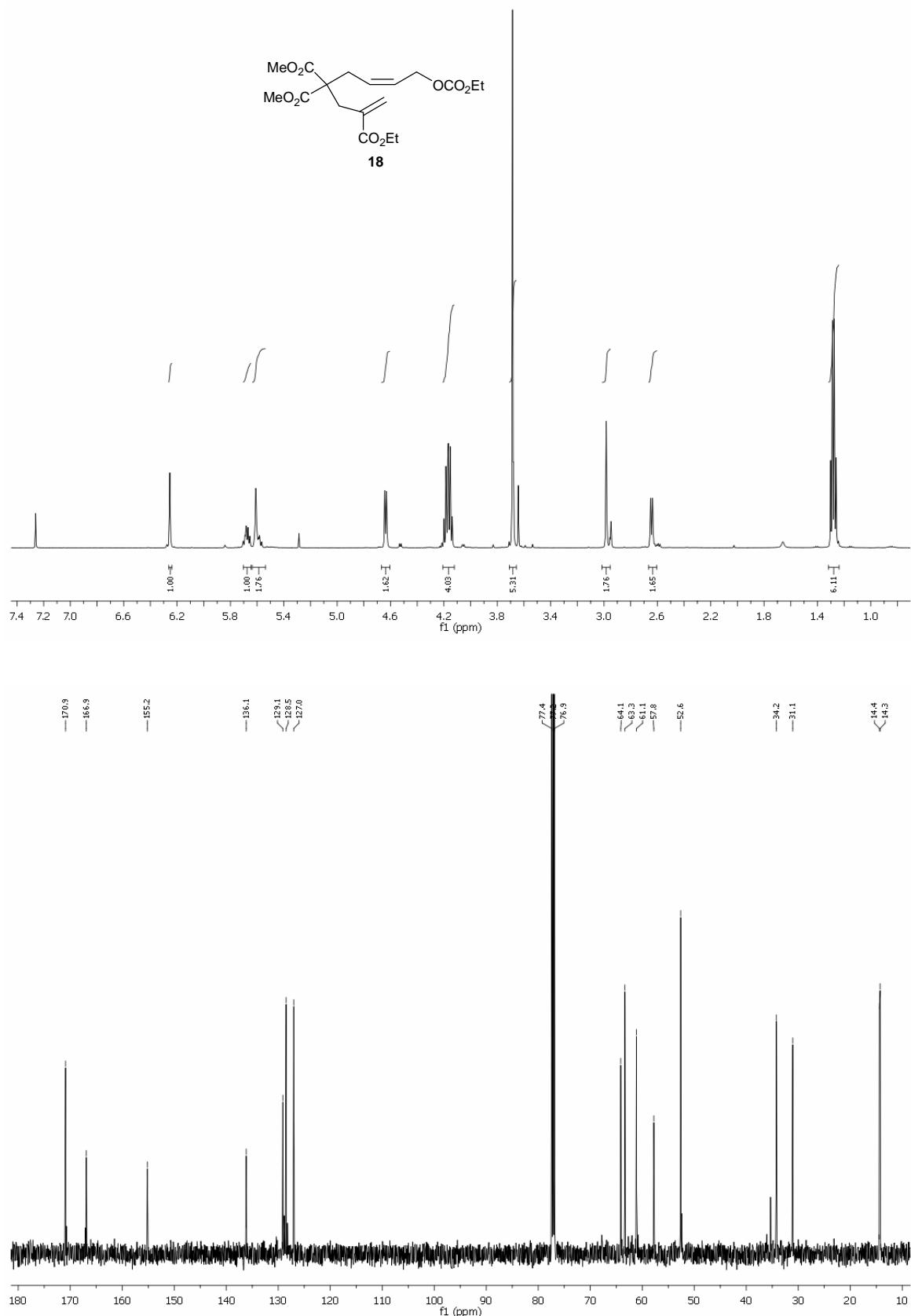


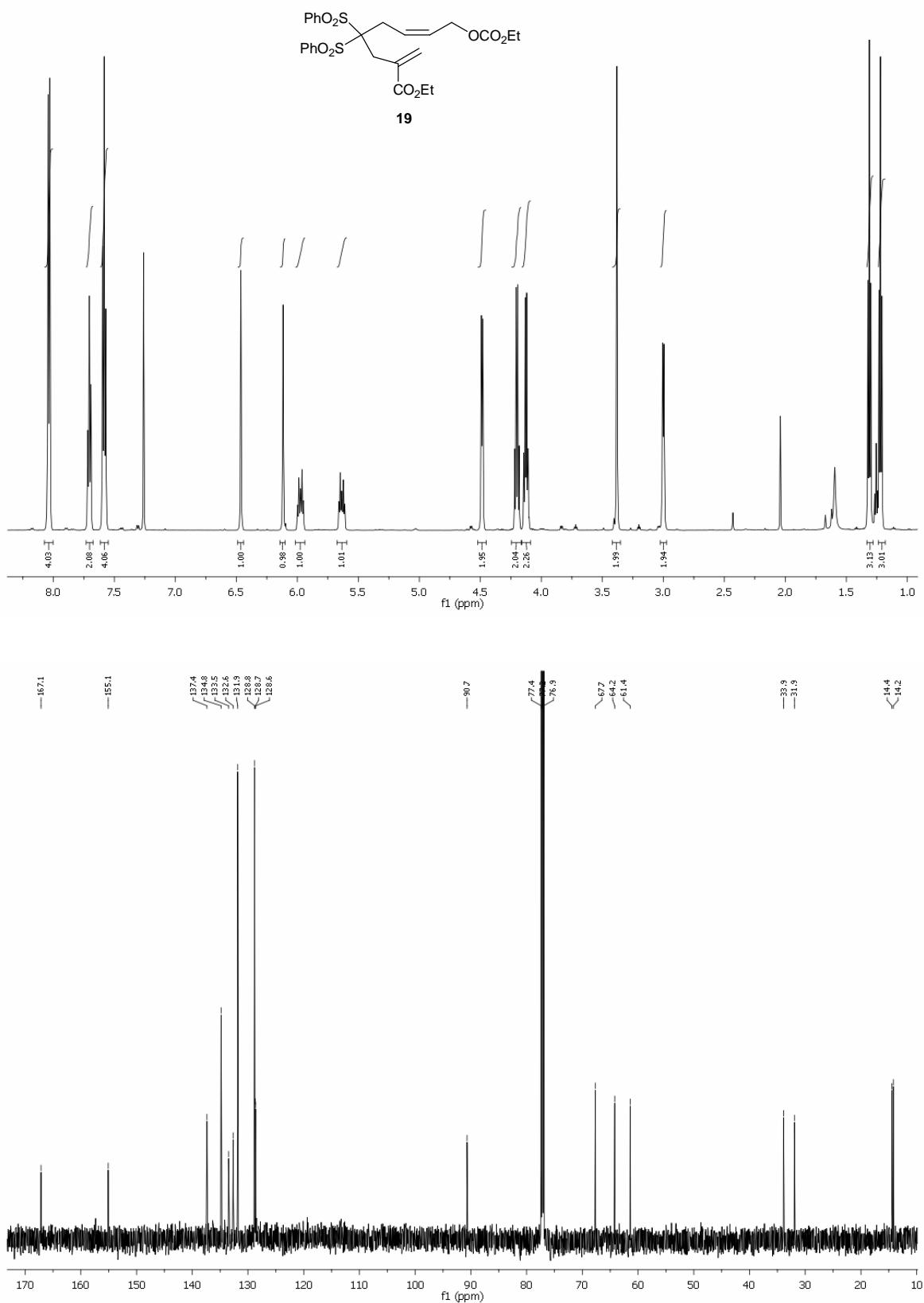


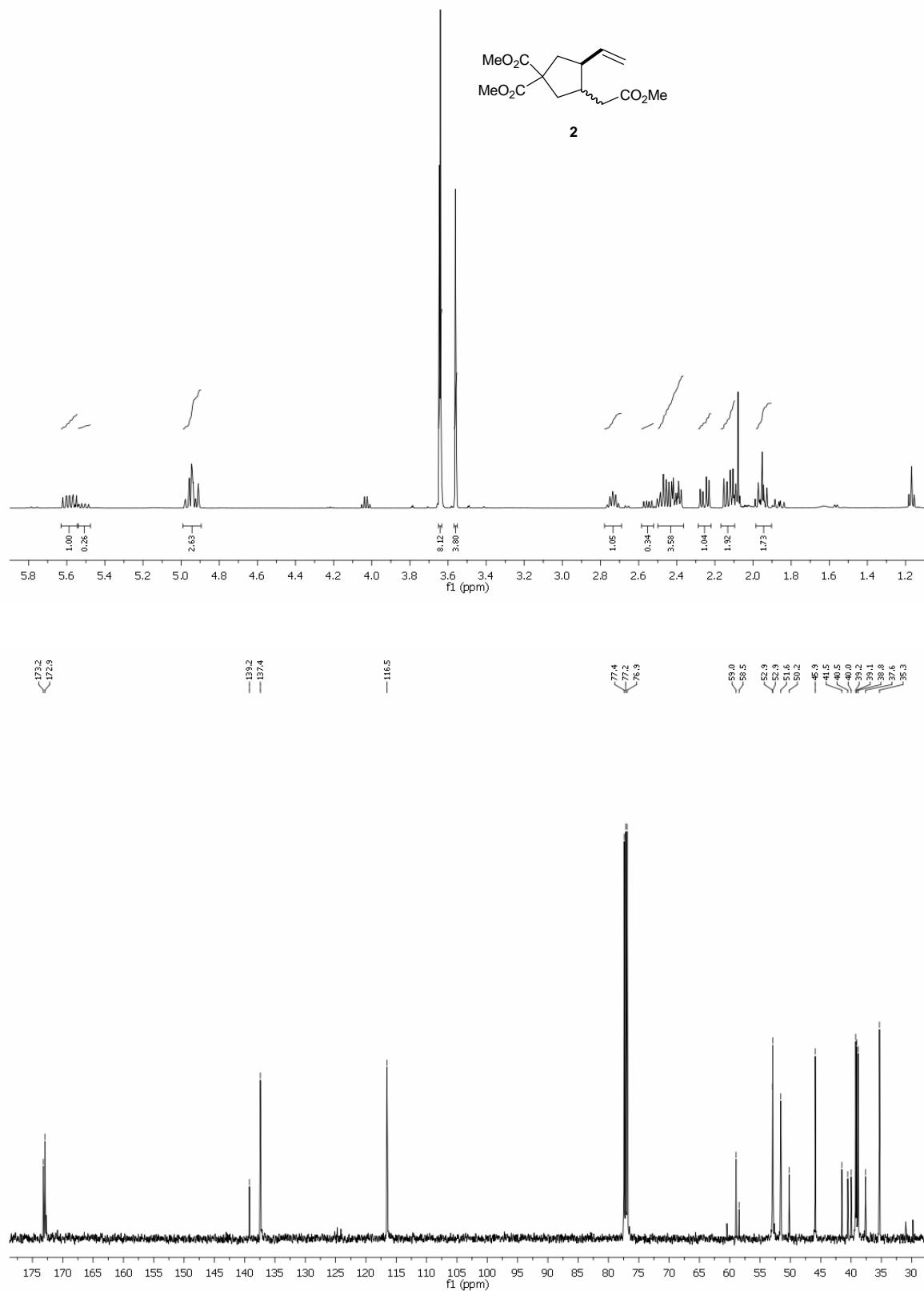


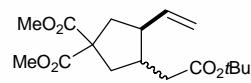


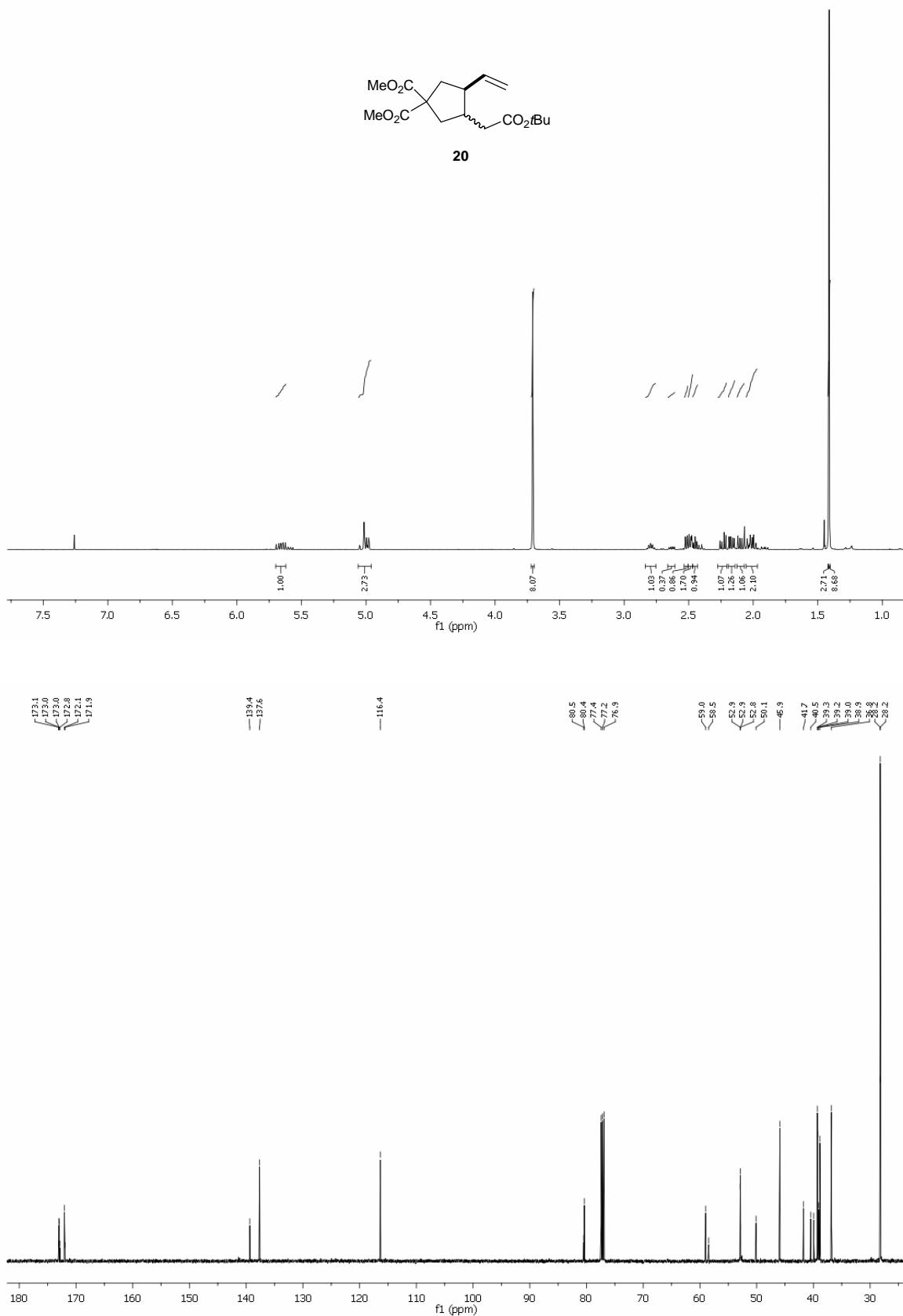


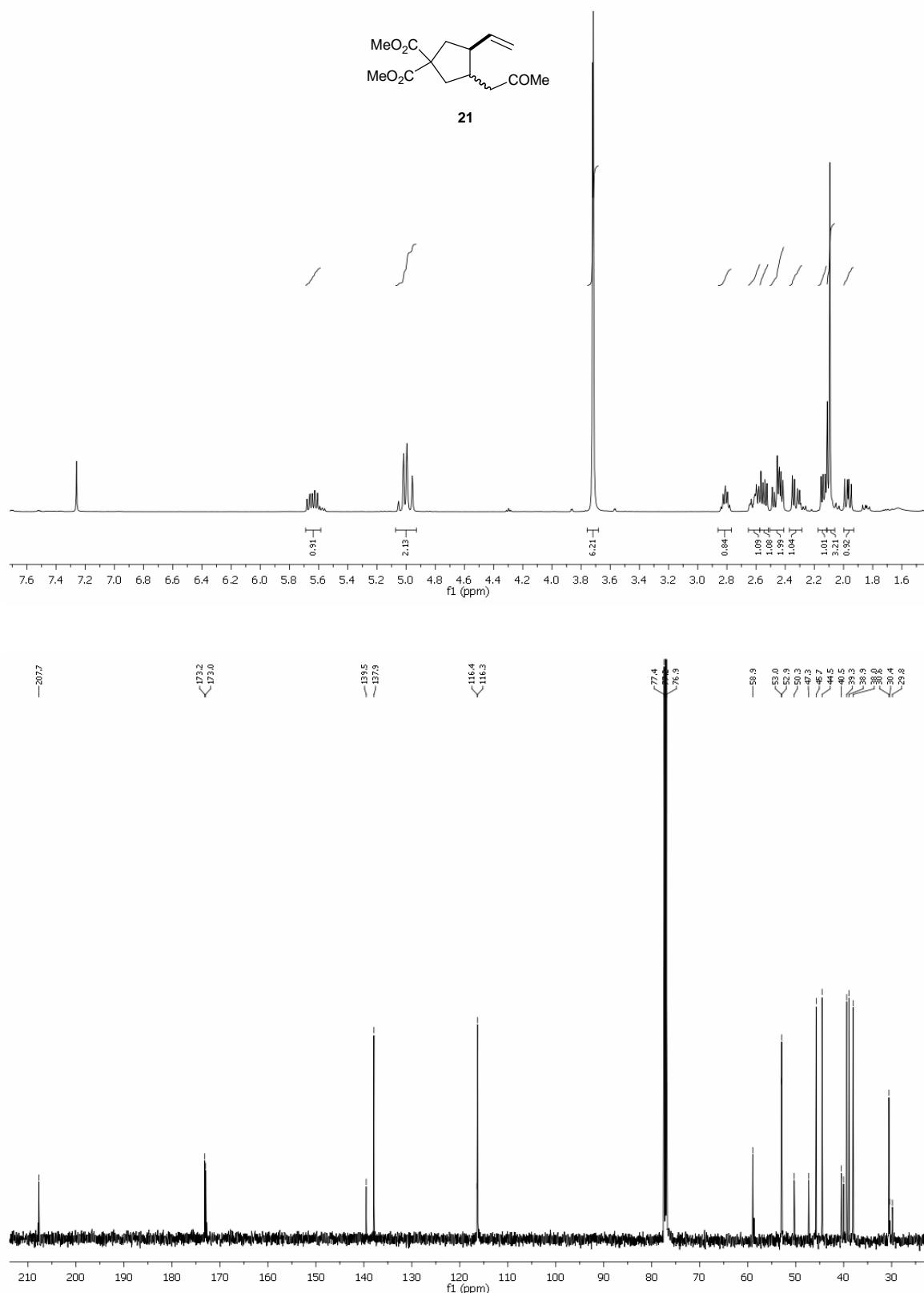


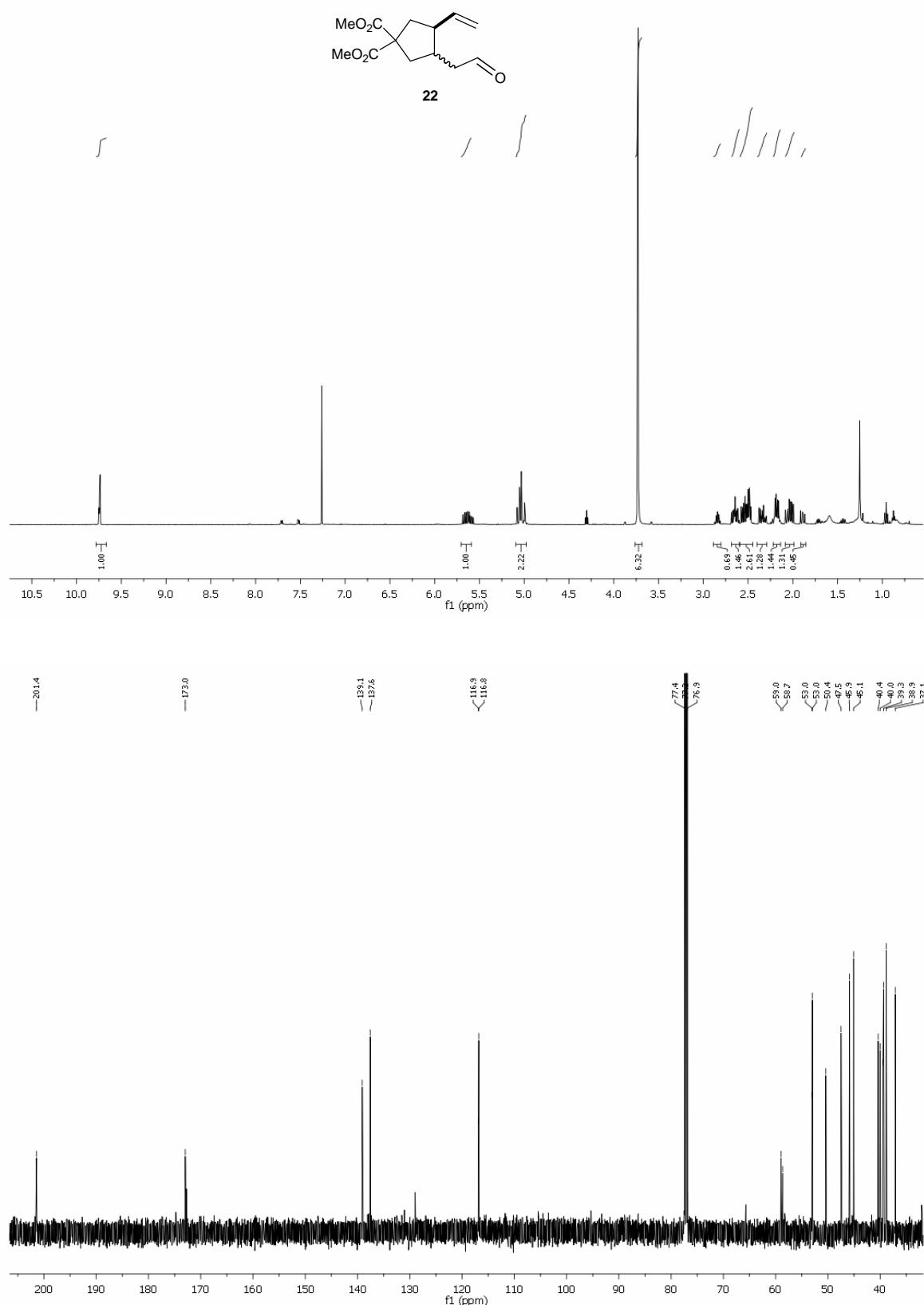


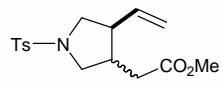

16



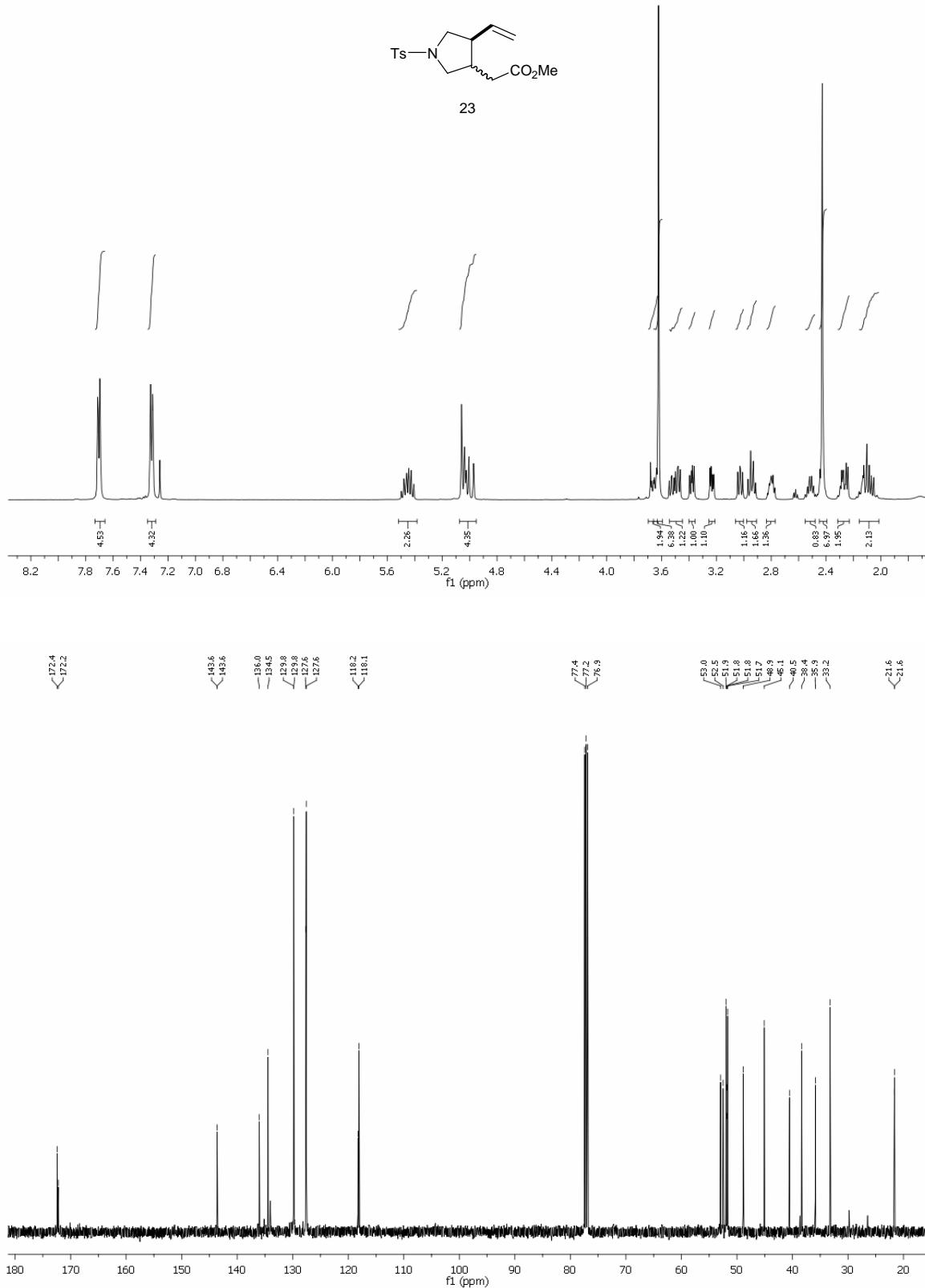


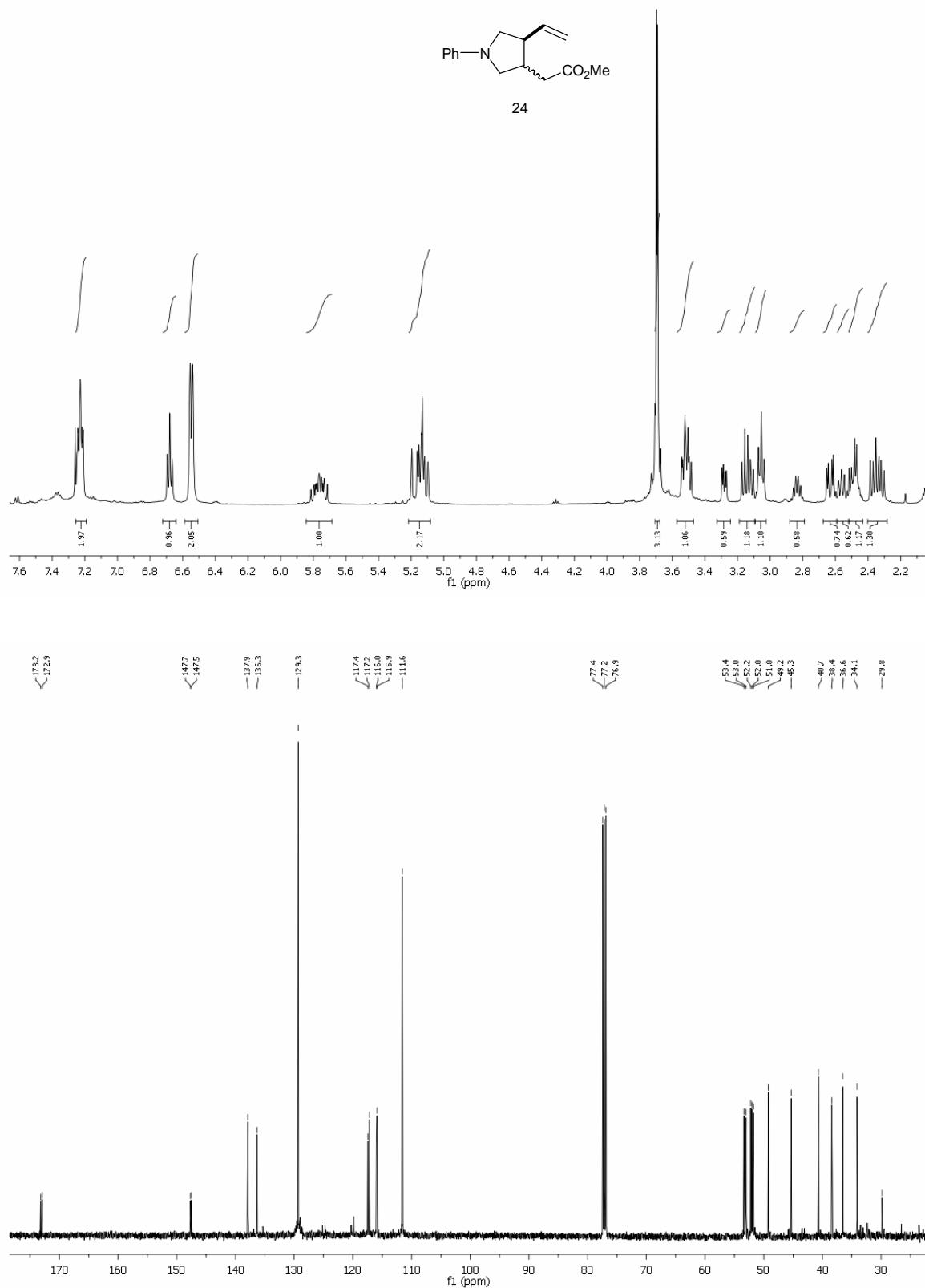


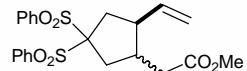


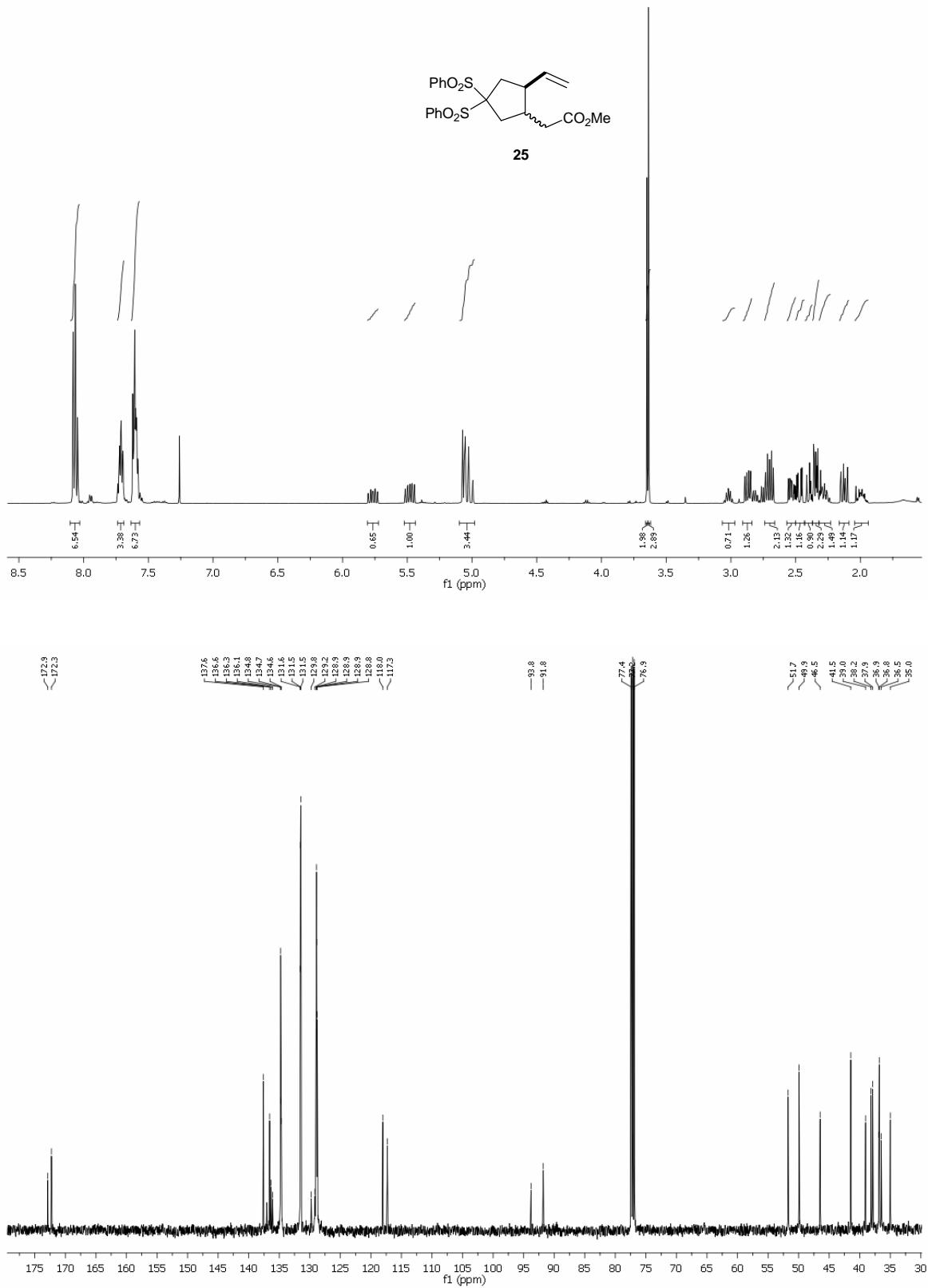


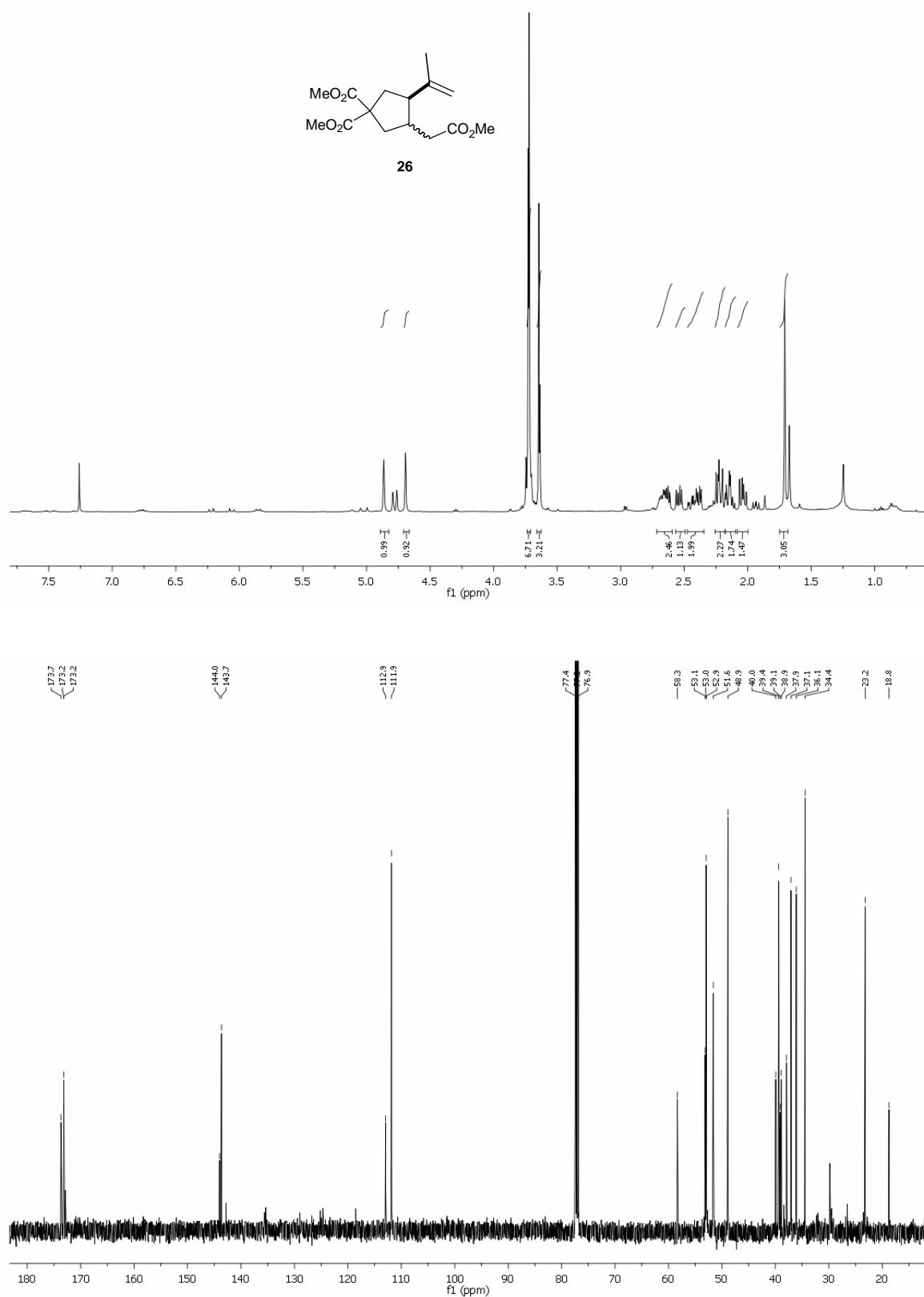
20

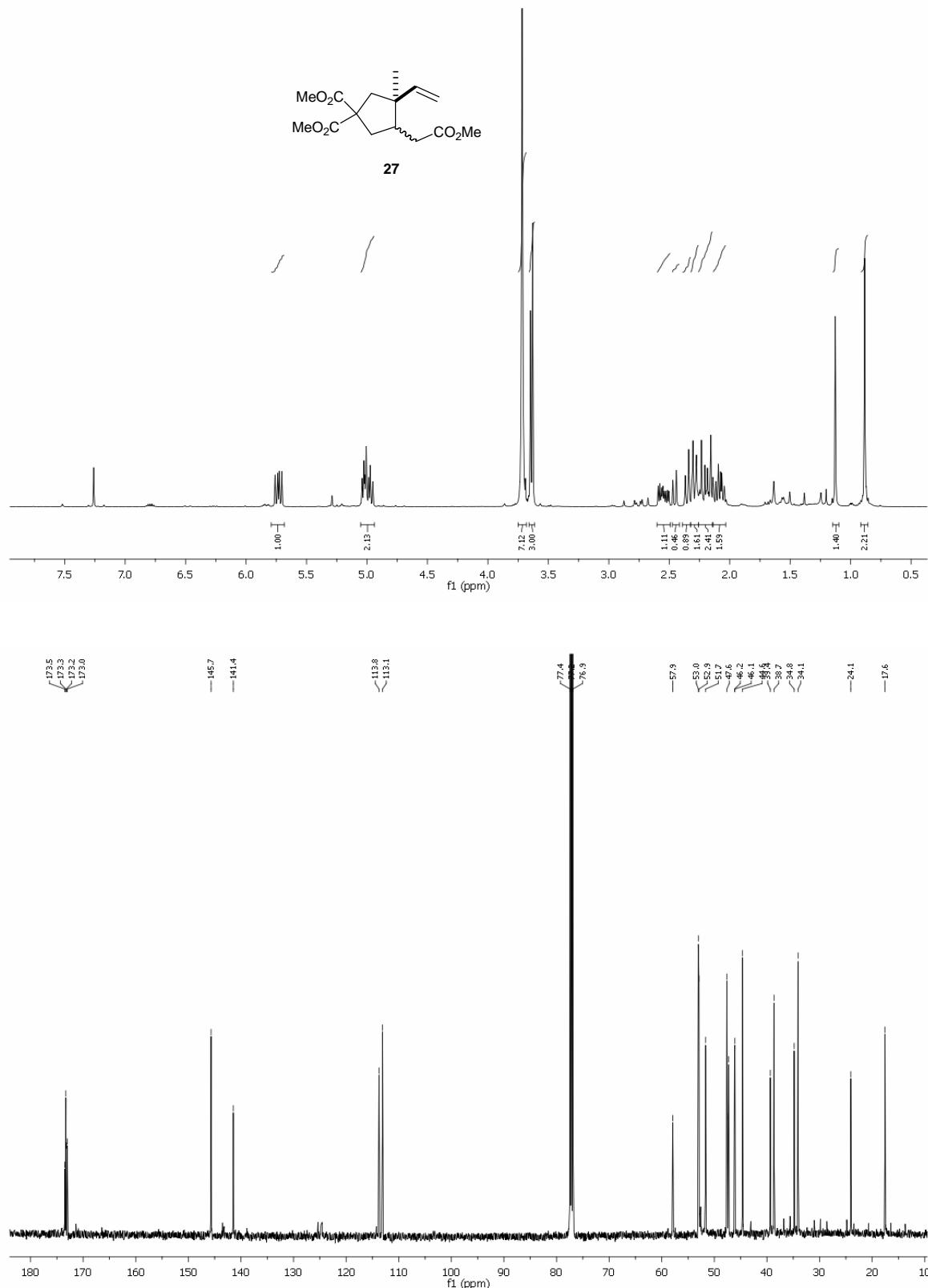


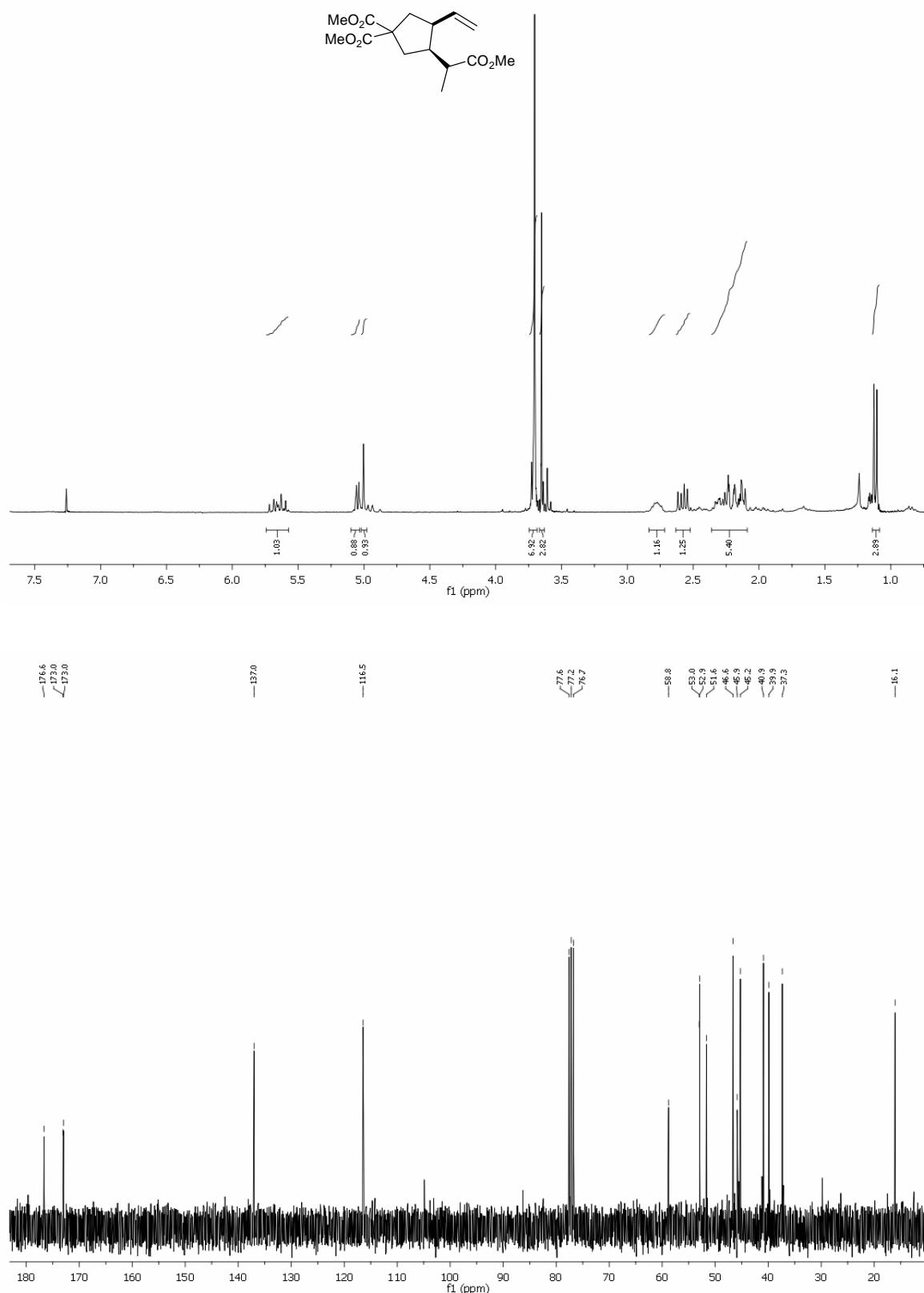


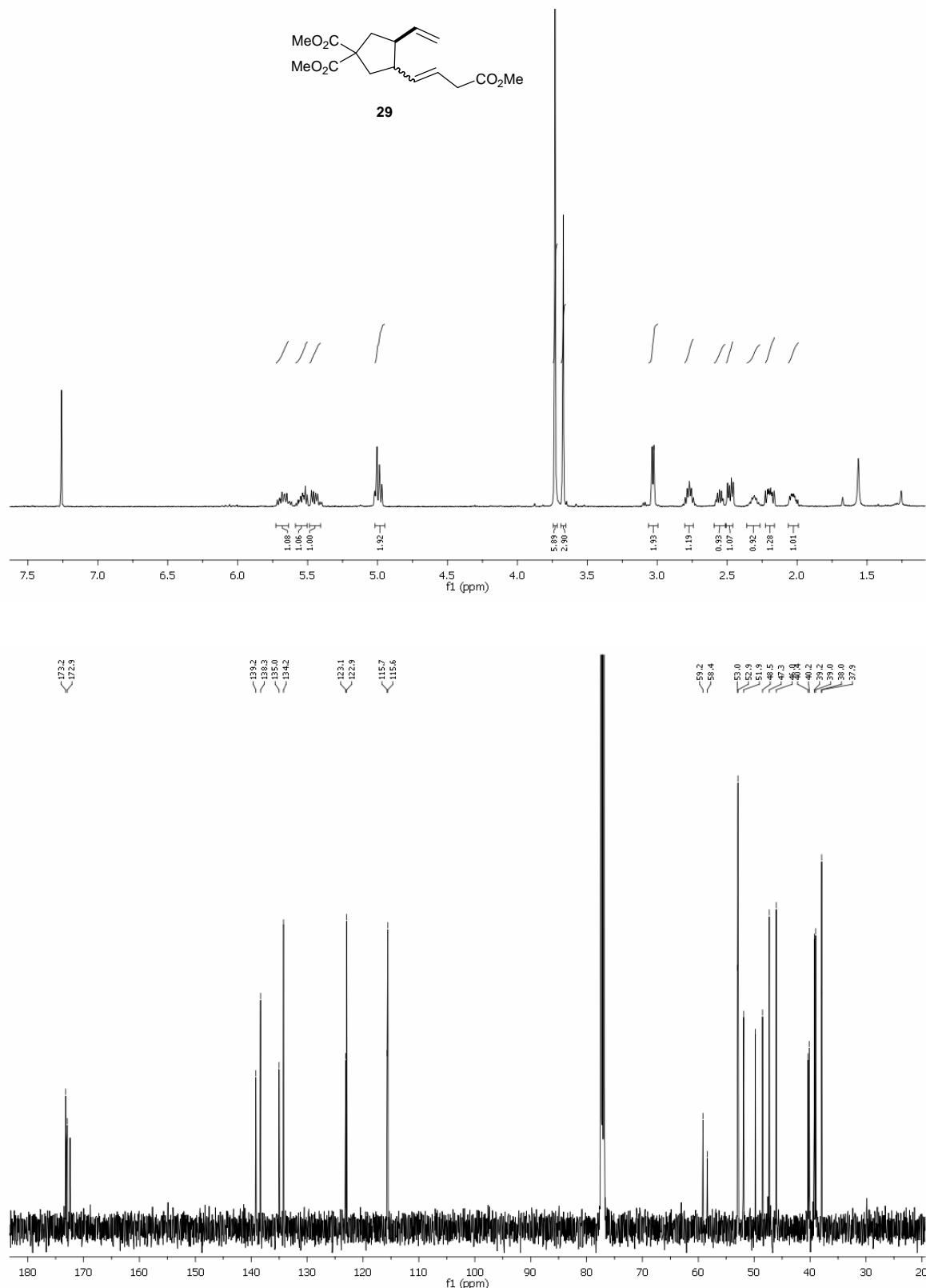



23








25

