Supporting Information for the Paper Entitled: A Four Coordinate Parent Imide via a Titanium Nitridyl

Ba L. Tran, Marlena P. Washington, Danielle A. Henckel, Xinfeng Gao, Hyunsoo Park, Maren Pink, Daniel J. Mindiola* Department of Chemistry and the Molecular Structure Center, Indiana University Bloomington, Indiana 47405

Table of Contents

General Considerations Synthesis of (nacnac)TiCl(Ntol ₂) (1)	
Table S1. Summary of Crystallographic Data and Parameters	S4
Figure S1. Isotropic EPR of (nacnac)TiCl(Ntol ₂)	S 5
Figure S2. FT-IR spectrum of (2)- ¹⁵ N	S 5
Figure S3. ¹⁵ N NMR of (2)- ¹⁵ N	S6
Figure S4. Decoupled ¹⁵ N NMR of (2)- ¹⁵ N	
Figure S5. 2D HQSC (¹⁵ N, ¹ H) of (2)- ¹⁵ N	
Figure S6. ¹ H NMR of (nacnac)Ti=NH(Ntol ₂)	S8
References	S8

General Considerations. Unless otherwise stated, all operations were performed in an M. Braun Lab Master dry box under an atmosphere of purified nitrogen or using high vacuum standard Schlenk techniques. Anhydrous n-hexane, n- pentane, toluene, and benzene were purchased from Aldrich in sure-sealed reservoirs (18L) and dried by passage through two columns of activated alumina and a Q-5 column. Diethyl ether and CH₂Cl₂ were dried by passage through a column of activated alumina. THF was distilled, under nitrogen, from purple sodium benzophenone ketyl and stored under sodium metal. Distilled THF was transferred under vacuum into sealed glass vessels before entering the dry box. C₆D₆ was purchased from Cambridge Isotope Laboratory (CIL), degassed and vacuum transferred to 4 Å molecular sieves. Celite, alumina, and 4 Å molecular sieves were activated under vacuum overnight at 200 °C. NaN₃ were stirred in dry THF overnight under an inert atmosphere, and the suspension filtered, and the solids washed with THF and Et₂O, and then the solids dried under reduced pressure for 12-24 h. All other chemicals were used as received from Sigma-Aldrich unless otherwise stated. 98% Na¹⁵N₃ was purchased from Cambridge Isotope Laboratories. ¹H, ¹³C, and ¹⁵N NMR spectra were recorded on Varian 400 and 500 MHz NMR spectrometer. ¹H and ¹³C NMR spectra are reported with reference to solvent resonances of C₆D₆ at 7.16 ppm and 128.0 ppm, respectively and assignment was conducted by performing ${}^{13}C{}^{1}H$ NMR spectra with reference to solvent resonances of C₆D₆ at 128.0 ppm. ¹⁵N NMR chemical shifts are reported with respect to a neat standard of MeNO₂ (380.2 ppm). X-ray diffraction data were collected on a SMART6000 (Bruker) system under a stream of N₂ (g) at a range 150 to 200K. Elemental analysis was performed at Indiana University, Bloomington. Infrared spectroscopy was performed on the Thermo Nicolet 6700 FT-IR equipped with software under PC control. $HNtol_2$ and $LiN(tol)_2$ (tol = 4-Me-C₆H₄) were prepared by standard published procedures¹ using a Buchwald-Hartwig C-N cross coupling route.² (nacnac)TiCl₂(THF) (nacnac⁻ = [ArNC(Me)]₂CH, Ar = 2,6-*i*Pr₂C₆H₃) was prepared according to published literature.³

Warning: NaN₃ should be handled cautiously due to its potentially explosive nature.

Synthesis of [(nacnac)TiCl(Ntol₂)] (1). In a 100 mL round bottom flask, to a cold solution of [(nacnac)TiCl₂(THF)] (2.50 g, 4.10 mol) in toluene (25 mL) at -37 °C was added solid LiN(tol₂) (0.877 g, 4.32 mmol). The reaction mixture immediately turned to an intensely darker green color. After stirring for 6h, all volatiles were removed under a reduced pressure. The crude product was extracted into diethyl ether and filtered through a medium porosity frit containing Celite to remove salt residues. The filtrate was removed of solvent to generate green solids. Crystalline materials were obtained from storing a concentrated diethyl ether solution in a scintillation vial at -37 °C. Yield: 60% (1.80 g, 2.58 mol). ¹H NMR (25 °C, 300 MHz, C₆D₆): δ 6.46 ($\Delta v_{1/2} = 100$ Hz), 5.56 ($\Delta v_{1/2} = 1028$ Hz), 2.99 ($\Delta v_{1/2} = 149$ Hz), 2.35 ($\Delta v_{1/2} = 939$ Hz), 2.10, 1.63 ($\Delta v_{1/2} = 205$ Hz) 1.36 ($\Delta v_{1/2} = 275$ Hz), 1.22 ($\Delta v_{1/2} = 255$ Hz). Evans' Method (C₆D₆, 298 K): $\mu_{eff} = 1.89$ μ_{B} . X-Band EPR (25 °C, toluene): $g_{iso} = 1.95$. Anal. Calcd for C₄₃H₅₅ClN₃Ti: C, 74.07; H, 7.95; N, 6.03. Found: C, 73.90; H, 8.15; N, 5.85.

Synthesis of [(nacnac)Ti=NH(Ntol₂)] (2). At -37 °C, to a cold suspension of NaN₃ (170 mg, 2.62 mmol) in 20 mL THF in a 100 mL round bottom was added 1 (305 mg, 0.43 mmol) in THF (10 mL). The dark green solution gradually turned red over a period of 12h. All volatiles were removed under a reduced pressure. The crude product was extracted in toluene and filtered through a medium porosity frit containing Celite. The resulting filtrate was concentrated to dryness and triturated with cold *n*-pentane to yield an orange powder. Crystalline product was also obtained from storing sautrated *n*-pentane solution at -37 °C over several days. Yield = 30% (87.3 mg, 0.13 mmol). ¹H NMR (25 °C, 400 MHz, C₆D₆): δ 7.21-7.11 (m, 4H, Ar-*H*), 7.07-7.05 (m, 6H, Ar-*H*), 6.97 (d, *J* = 8 Hz, 2H, Ar-*H*), 6.83 (d, *J* = 8 Hz, 2H, Ar-H), 5.08 (s, 1H, γ -H), 4.22 (br s, $\Delta v_{1/2} = 84$ Hz, 1H, NH) 3.74 (m, 2H, CH(Me)₂), 2.98 (m, 2H, CH(Me)₂), 2.17 (s, 6H, Ar-Me), 1.27 (s, 6H, (Me)CCHC(Me), 1.32 $(d, J = 7 Hz, 6H, CH(Me)_2), 1.26 (d, J = 7 Hz, 6H, CH(Me)_2), 1.19 (d, J = 7 Hz, 6H, CH(Me)_2)$ CH(Me)₂), 1.01 (d, J = 7 Hz, 6H, CH(Me)₂). ¹³C NMR (25 °C, 125 MHz, C₆D₆): δ 168.8 (ArN(CH₃)CCHC(CH₃)NAr), 144.8 (Ar), 142.9 (Ar), 142.4 (Ar), 130.1 (Ar), 130.0 (Ar), 129.5 (Ar), 124.3 (Ar), 123.5 (Ar), 126.8 (Ar), 124.5 (Ar), 118.3 (ArN(CH₃)CCHC(CH₃)NAr), 28.8 (CH(CH₃)₂), 28.6 (CH(CH₃)₂), 25.9 (CH(CH₃)₂), 24.9 (ArN(CH₃)CCHC(CH₃)NAr), 24.5 (CH(CH₃)₂), 24.4 (CH(CH₃)₂), 24.2 (CH(CH₃)₂), 20.7 (Ar-CH₃). ¹⁵N NMR (25 °C, 50 MHz, C₆D₆): δ 430.4 ($\Delta v_{1/2}$ = 8.67 Hz). The synthesis of the

¹⁵N isotopomer, $[(nacnac)Ti=N^{15}H(Ntol_2)]$ (2-¹⁵N), was prepared following the same procedure to prepare 2 using Na¹⁵N₃. The following scale was performed: compound 1 (150 mg, 0.21 mmol) and Na¹⁵N₃ (20 mg, 0.30 mmol). FT–IR (KBr, Nujol, cm⁻¹): 3367 (N–H), 3359 (N–D).

	1	2
Molecular formula	C ₄₃ H ₅₅ ClN ₃ Ti	$C_{43}H_{56}N_4Ti$
Fw	697.25	676.82
temp (K)	150(2)	120(2)
cryst system	Monoclinic	monoclinic
space group	$p2_{I}/c$	$p2_{I}/c$
cell constants		
<i>a</i> (Å)	10.6177(10)	11.7466(9)
b (Å)	33.391(3)	28.974(2)
<i>c</i> (Å)	11.5326(11)	12.3682(9)
α (deg)	90	90
β (deg)	107.582(2)	115.276(2)
$\gamma(\text{deg})$	90	90
Z	4	4
V (Å ³)	3897.7(6)	3806.5(5)
abs coeff, μ_{calc} (mm ⁻¹)	0.324	0.142
δ_{calc} (g/cm ³)	1.188	1.181
F(000)	1492	1456
cryst dimens (mm)	0.3 x 0.3 x 0.28	0.10 x 0.05 x 0.03
Radiation	Μο Κα	Synchrotron
	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 0.41328 \text{ Å})$
<i>h</i> , <i>k</i> , <i>l</i> ranges colled	-13 < h < 13, -43 < k < 42, -	-18 < h < 17, -44 < k < 31,
	14 < 1 < 14	-19 < 1 < 14
θ range (deg)	1.95-27.60	0.82-18.54
no. of reflens colled	39483	85507
no. of unique reflens	9003	14417
no. of params	478	445
data/param ratio	18.83	32.39
Refinement method	full-matrix least-squares of F ²	full-matrix least-squares of F ²
$R(F)^a$	0.0439	0.0535
$R_{\rm w}(F^2)^b$	0.0985	0.1320
GOFw ^c	1.034	1.040
largest diff peak and hole $(e/Å^3)$	0.362 and -0.329	0.953 and -1.002

Table S1. Summary of crystallographic data and parameters for [(nacnac)TiCl(Ntol₂)] (1) and [(nacnac)Ti=NH(Ntol₂)] (2).

^{*a*} $R = [\Sigma |\Delta F| / \Sigma |F_o|]$. ^{*b*} $R_w = [\Sigma w (\Delta F)^2 / \Sigma w F_o^2]$. ^{*c*} Goodness of fit on F^2 .

Figure S1. Room temperature X-band EPR spectrum of (nacnac)TiCl(Ntol₂) in toluene.

Figure S2. The FT-IR (Nujol) spectrum of (2)-¹⁵N showing the N-H region of (nacnac)Ti=N-H(Ntol₂) ($\mathbf{A} = 3367 \text{ cm}^{-1}$) and (nacnac)Ti=N¹⁵-H(Ntol₂) ($\mathbf{B} = 3359 \text{ cm}^{-1}$).

Figure S3. ¹⁵N NMR spectrum of (2)-¹⁵N shows a sharp singlet at 430.4 ppm ($v_{1/2} = 8.67$ Hz) in C₆D₆.

Figure S4. The ¹H decoupled ¹⁵N NMR spectrum of (2)-¹⁵N in C_6D_6 .

Figure S5. 2D HSQC spectroscopic experiment of (2)-¹⁵N recorded at 25 °C. The vertical scale (left) is the ¹⁵N NMR spectrum and on the horizontal scale (top) is the ¹H NMR spectrum displaying the ¹⁵N-H (d, J_{51N-1H} = 64.0 Hz, 1H) and broad ¹⁴N-H.

References

- B. L. Tran, M. Pink, X. Gao, H. Park, and D. J. Mindiola, J. Am. Chem. Soc., 2010, 132, 1458-1459.
- 2. (a) J. P. Wolfe, and S. L. Buchwald, *J. Org. Chem.*, 2005, **65**, 1144; J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, and S. L. Buchwald, *J. Org. Chem.*, 2000, **65**, 1158.
- 3. P. H. M. Budzelaar, A. B. v. Oort, and A. G. Orpen, *Eur. J. Inorg. Chem.*, 1998, 1485.

S8