Chemical Communications

Supporting Information for:

Structure and bonding in three-coordinate N-heterocyclic carbene adducts of iron(II) bis(trimethylsilyl)amide

R. A. Layfield, J. J. W. McDouall, M. Scheer, C. Schwarzmaier and F. Tuna

General experimental considerations

All synthetic manipulations were performed using standard Schlenk techniques. Toluene was degassed and dried by refluxing over sodium-potassium alloy under nitrogen. IMes and IPr were synthesized according to a recent literature report, 1 and $[Fe\{N(SiMe_{3})_{2}\}_{2}]$ was synthesized according to Lappert's original method.²

¹H NMR spectra were acquired using a Bruker Avance 600 MHz NMR spectrometer equipped with a CryoProbe, operating at the ¹H frequency of 600.25 MHz and a temperature of 298.1 K. Solvents for NMR spectroscopy were distilled under nitrogen off sodium-potassium alloy or molten potassium, and were stored over activated 4 Å molecular sieves for 24 hours before use.

X-ray diffraction data on **2** and **3** were collected on an OXFORD Diffraction Gemini R Ultra CCD diffractometer using $Cu_{K\alpha}$ radiation ($\lambda = 1.54178$ Å). Structure solution and refinement was performed using SIR97, ⁴SHELXL97⁵ and WinGX.⁶

SQUID measurements were carried out on polycrystalline samples of 2 and 3 by enclosing the sample in Oring-sealed Kel-F capsules. The capsules were transferred to sample holders in a glovebox, transported to the SQUID magnetometer in a sealed Schlenk tube, and then rapidly transferred to the helium-purged sample space of the magnetometer. Corrections for diamagnetism were made using Pascal's constants, and the magnetic susceptibility data for 2 and 3 were modelled according to the following equation:³

$$\chi = \frac{\chi_z + 2\chi_{x,y}}{3}$$
where:
$$\chi_z = \frac{2N\beta^2 g^2}{kT} \frac{\exp(D/kT) + 4\exp(-2D/kT)}{\exp(2D/kT) + 2\exp(D/kT) + 2\exp(-2D/kT)}$$
and:
$$\chi_{x,y} = \frac{2N\beta^2 g^2}{3D} \frac{9\exp(2D/kT) - 7\exp(D/kT) - 2\exp(-2D/kT)}{\exp(2D/kT) + 2\exp(D/kT) + 2\exp(-2D/kT)}$$

- 1. X. Bantrelli, S. P. Nolan, Nature Protocols, 2011, 6, 69.
- 2. R. A. Anderson, K. Faegri, J. C. Green, A. Haaland, M. F. Lappert, W. –P. Leung, *Inorg. Chem.* 1988, 27, 1782.
- 3. O. Kahn, Molecular Magnetism, VCH, New York, 1993.
- 4. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, SIR 97: A new tool for crystal structure determination and refinement. *J. Appl. Cryst.* 1999, *32*, 115-119.
- SHELX97 Programs for crystal structure analysis (Release 97-2). (G. M. Sheldrick, Institut f
 ür Anorganische Chemie der Universit
 ät,
 Tammanstrasse 4, D-3400 G
 öttingen, Germany, 1998).
- L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837-838.

Synthesis of 2. A solution of IPr (0.12 g, 0.33 mmol) in toluene (8 mL) was added to a stirred solution of $[Fe\{N(SiMe_3)_2\}_2]$ (0.15 g, 0.33 mmol) in toluene (2 mL) at room temperature. The reaction mixture developed a brown colour during the addition, and was stirred overnight. The resulting solution was filtered, concentrated to a volume of 2-3 mL and stored at -28°C overnight, resulting in the formation of large colourless/light-green crystals of $2\cdot$ (toluene). Removal of the crystallization solvent followed by washing the crystals with cold pentane and drying in vacuo produced 2 as a light-green polycrystalline material (0.13 g, 53%). Elemental analysis (%) calcd. for $C_{39}H_{72}FeN_4Si_4$ C 61.22, H 9.48, N 7.32; found C 61.34, H 9.58, N 7.39.

Synthesis of 3. Compound **3** was synthesized in an identical manner to **2**·(toluene), using IMes (0.12 g, 0.39 mmol) and 1 (0.12 g, 0.39 mmol). The product **3** was obtained as colourless/light-green crystals. Placing the crystals under a vacuum for ca. 30 minutes resulted in the formation of light-green polycrystalline **3** (0.16 g, 59 %). Elemental analysis (%) calcd. for $C_{33}H_{60}FeN_4Si_4$ C 58.20, H 8.88, N 8.23; found C 58.35, H 8.98, N 8.09.

Table S1. Crystal data and structure refinement for [(IPr)Fe{N(SiMe₃)₂}₂] (2)

Empirical formula $C_{39}H_{72}FeN_4Si_4$

Formula weight 765.22

Temperature 123(1) K

Wavelength 1.54178 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 10.8510(8) Å $\alpha = 76.430(6)^{\circ}$.

b = 11.3172(8) Å $\beta = 80.054(5)^{\circ}.$ c = 22.8051(13) Å $\gamma = 66.930(7)^{\circ}.$

Volume 2494.4(3) Å³

Z 2

Density (calculated) 1.019 Mg/m³
Absorption coefficient 3.538 mm⁻¹

F(000) 832

Crystal size $0.2862 \times 0.1423 \times 0.0853 \text{ mm}^3$

Theta range for data collection $4.00 \text{ to } 63.72^{\circ}$

Index ranges -11 <= h <= 12, -11 <= k <= 12, -25 <= l <= 26

Reflections collected 15902

Independent reflections 7794 [R(int) = 0.0284]

Completeness to theta = 63.72° 94.7% Absorption correction Analytical

Max. and min. transmission 0.813 and 0.545

Refinement method Full-matrix least-squares on F^2

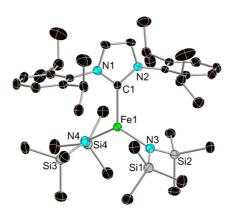
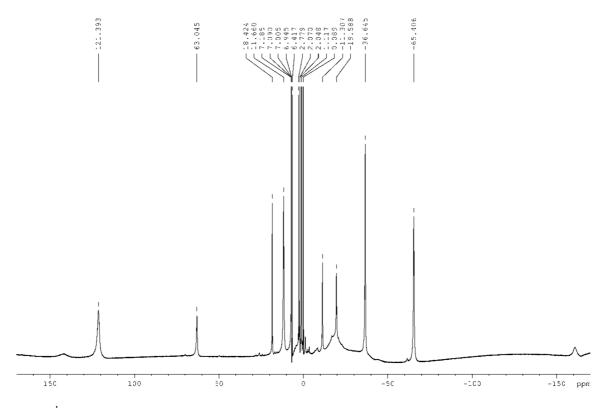
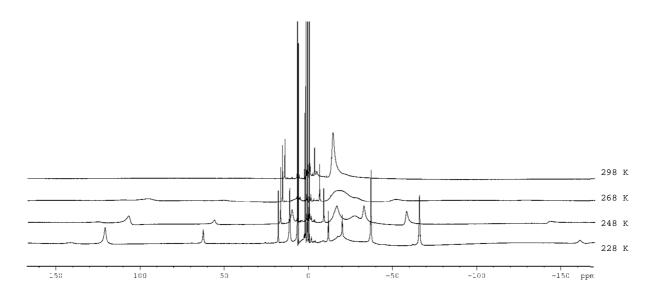
Data / restraints / parameters 7794 / 0 / 434

Goodness-of-fit on F^2 1.065

Final *R* indices [I > 2 sigma(I)] R1 = 0.0332, wR2 = 0.0880 *R* indices (all data) R1 = 0.0365, wR2 = 0.0913

Absolute structure parameter 0

Largest diff. peak and hole 0.321 and -0.220 e.Å-3

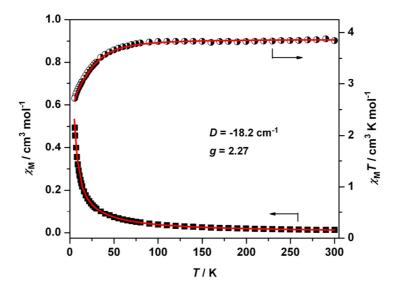

Figure S1. Molecular structure of 2. Hydrogen atoms are omitted for clarity.

Figure S2. ¹H NMR spectrum of **2** (toluene- d_8 , 228 K, 400.13 MHz). Assignments made where possible. $\&(^1H)/ppm$: 121.39 (SiMe₃ in **2**), 63.05 (SiMe₃ in **1**), 18.42 and 11.686 (aromatic CH in **2**), 7.19 (aromatic CH in IPr), 6.42 (imidazole CH in IPr), 2.78 (Me₂CH), 1.12 (Me₂CH), 0.09 (silicone grease), -11.31 (imidazole CH in **2**), -19.59 (IPr Me₂CH in **2**), -36.65 (IPr Me₂CH in **2**), -65.41 (IPr Me₂CH in **2**).

Figure S3. Variable temperature ¹H NMR spectrum of **2** in toluene.

Figure S4. Plots of χ_{M} vs. T and $\chi_{M}T$ vs. T for **2**.

Table S2. Crystal data and structure refinement for $[(IMes)Fe\{N(SiMe_3)_2\}_2]$ (3)

Empirical formula $C_{33}H_{60}FeN_4Si_4$

Formula weight 681.06
Temperature 123 K
Wavelength 1.54178 Å
Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 16.6461(3) Å $\alpha = 90^{\circ}$.

b = 14.2890(3) Å $\beta = 99.705(2)^{\circ}.$

c = 16.7741(3) Å $\gamma = 90^{\circ}$.

Volume 3932.72(13) Å³

Z 4

Density (calculated) 1.150 Mg/m³
Absorption coefficient 4.432 mm⁻¹

F(000) 1472

Crystal size $0.4431 \times 0.3543 \times 0.2560 \text{ mm}^3$

Theta range for data collection 4.10 to 70.66°.

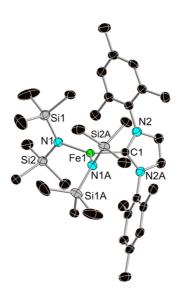
Index ranges -20 <= h <= 13, -16 <= k <= 11, -16 <= l <= 20

Reflections collected 7577

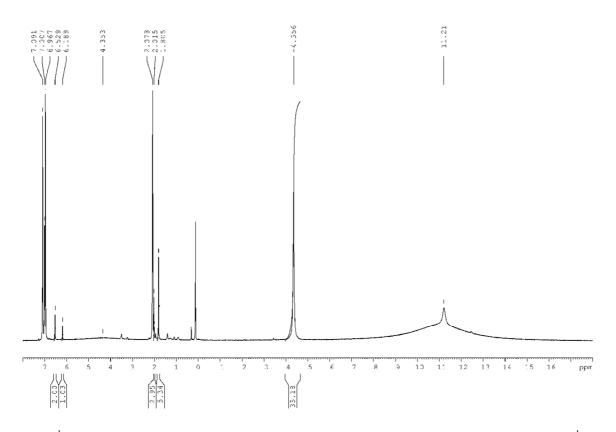
Independent reflections 3675 [R(int) = 0.0285]

Completeness to theta = 68.00° 99.3 % Absorption correction Analytical Max. and min. transmission 0.438 and 0.281

Refinement method Full-matrix least-squares on F²


Data / restraints / parameters 3675 / 0 / 200

Goodness-of-fit on F^2 1.046


Final *R* indices [I > 2 sigma(I)] R1 = 0.0408, wR2 = 0.1068 *R* indices (all data) R1 = 0.0419, wR2 = 0.1079

Absolute structure parameter 0

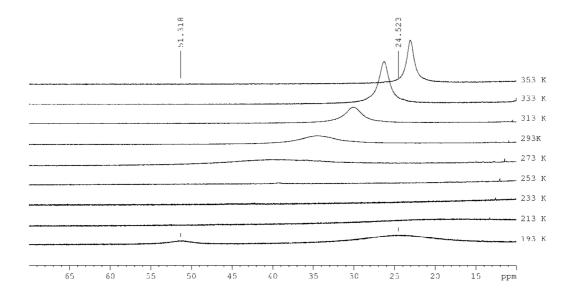

Largest diff. peak and hole 0.736 and -0.316 e.Å⁻³



Figure S5. Molecular structure of **3**. Hydrogen atoms are omitted for clarity.

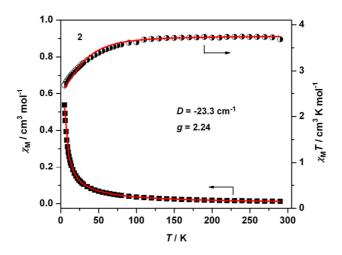
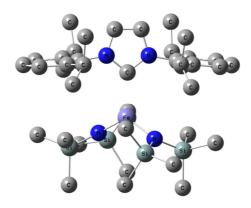
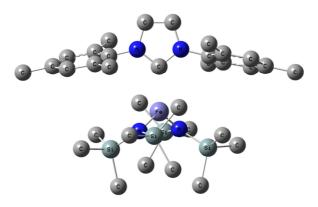


Figure S6. ¹H NMR spectrum of **3** (toluene- d_8 , 273 K, 400.13 Hz) in the region 8 to –18 ppm. δ (¹H)/ppm: 33.16, 6.53 (IMes aromatic CH), 6.19 (IMes imidazolylidene CH), 4.35 (imidazolylidene CH in **3**), 2.02 (IMes *para*-CH₃), 1.81 (IMes *ortho*-CH₃), 0.12 (silicone grease), –4.36 (SiMe₃ in **3**), –11.21 (CH₃ in **3**). At higher temperatures, the IMes methyl groups overlap with the toluene methyl solvent resonance.




Figure S7. ¹H NMR spectrum of **3** in the temperature range 193-353 K (toluene- d_8 , 400.13 Hz). Low-field region (upper) and high-field region (lower).

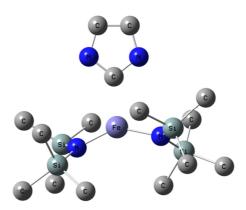
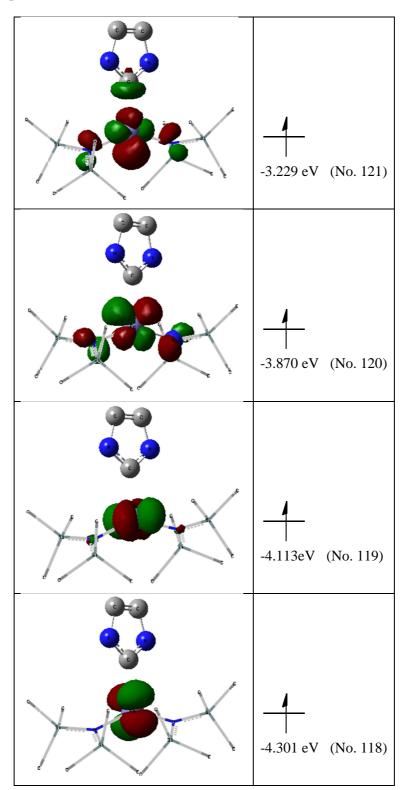
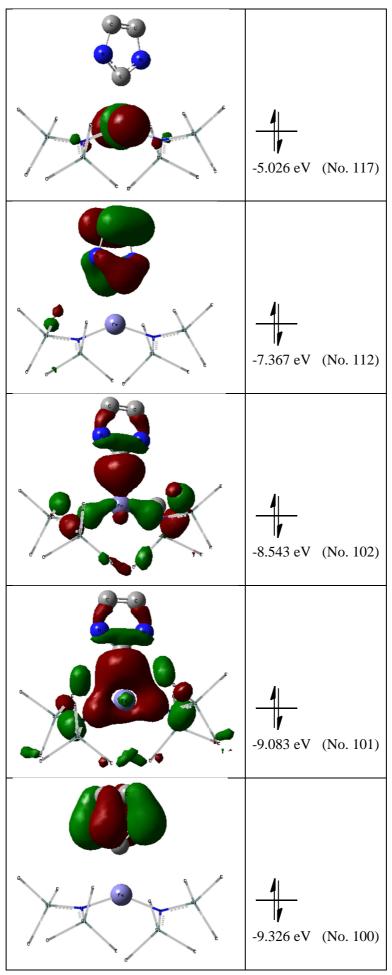

Figure S8. Plots of $\chi_M vs. T$ and $\chi_M T vs. T$ for 3.

Figure S9. Structure of **2** optimized at the B3LYP/Def2-SVP level of theory with COSMO simulation in toluene. Hydrogen atoms not shown.




Figure S10. Structure of **3** optimized at the B3LYP/Def2-SVP level of theory with COSMO simulation in toluene. Hydrogen atoms not shown.

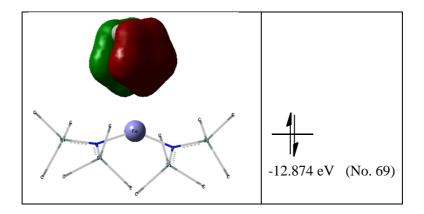


Figure S11. Structure of **5** optimized at the B3LYP/Def2-SVP level of theory with COSMO simulation in toluene. Hydrogen atoms not shown.

Table S12. Selected quasi-restricted orbitals for **5** (B3LYP/Def2-SVP, isosurface value = 0.04 a.u.)

