Metal Free: Bu₄NI-Catalyzed C–H Oxidation for *t*-Butyl Pere ster and its Combination with the Kharasch–Sosnovsky Re action

Wei Wei, Chao Zhang, Yuan Xu, and Xiaobing Wan*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow (Suzhou) University, Suzhou 215123, P. R. China

List of contents

General Information	
General procedures for reactions	2
Compound characterizations	3-15
Spectroscopic Data for Products	16-55

General Information

All manipulations were carried out under air atmosphere. Bu₄NI and TBHP (70% aqueous solution) were purchased from Sigma-Aldrich. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data were recorded on Varian 400 M spectrometers using CDCl₃ as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) as internal reference. IR, MS, and HRMS were performed by the State-authorized Analytical Center in Soochow University.

General procedures for products 3a-3w.

Aldehyde (0.5 mmol, 1.0 equiv), 2.0 mL H₂O, Bu₄NI (0.1 mmol, 20 mol %) and TBHP (3.0 equiv, 70% aqueous solution) were added to a tube under air. The reaction mixture was heated in an oil bath at 40 °C for 24 h. The reaction mixture was extracted with ethyl acetate. It was then removal of the organic solvent in vacuum and followed by flash silica gel column chromatographic purification afforded product with Petroleum/Ethyl acetate mixtures.

General procedures for products 4a-4p.

Aldehyde (0.5 mmol, 1.0 equiv), 5.0 mL CH₂Cl₂, Bu₄NI (0.1 mmol, 20 mol %) and TBHP (3 equiv, 70% aqueous solution) were added to a tube under air. The reaction mixture was heated in an oil bath at 40 °C for 24 h, then copper bromide (0.025 mmol, 5 mol %), olefin (5 mmol, 10.0 equiv) were added and stirred in an bath at 40 °C for 36 h. It was then removal of the organic solvent in vacuum and followed by flash silica gel column chromatographic purification afforded product with Petroleum/Ethyl acetate mixtures.

t-butyl naphthalene-2-carboperoxoate (3a).¹ ¹H NMR (CDCl₃, 400 MHz): δ 1.46 (s, 9H), 7.51-7.59 (m, 2H), 7.85 (m, 2 H), 7.93 (m, 2H), 8.51 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 83.9, 124.3, 124.7, 126.8, 127.7, 128.4, 128.4, 129.1, 130.6, 132.2, 135.4, 164.4; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₅H₁₆O₃: 244.1099, found: 244.1096; IR (KBr, cm⁻¹): v 1743.

t-butyl benzoperoxoate (3b).² ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 7.46 (m, 2H), 7.59 (m, 1H), 7.96 (d, J = 7.7 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.1, 83.9, 127.5, 128.5, 129.0, 133.3, 164.3; HRMS (EI) m/z [M]⁺ Calcd for C₁₁H₁₄O₃: 194.0943, found: 194.0940; IR (KBr, cm⁻¹): v 1757.

t-butyl 4-methylbenzoperoxoate (3c). ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 2.41 (s, 3H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.85 (d, *J* = 8.1 Hz, 2H); ¹³ C NMR (CDCl₃, 100 MHz): δ 21.6, 26.1, 83.7, 124.7, 129.0, 129.2, 144.1, 164.4; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₂H₁₆O₃: 208.1099, found: 208.1100; IR (KBr, cm⁻¹): v 1757.

t-butyl 3-methylbenzoperoxoate (3d). ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 2.40 (s, 3H) 7.32-7.40 (m, 2H) 7. 38-7.40 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.2, 26.2, 83.8, 126.1, 127.5, 128.4, 129.5, 134.0, 138.4, 164.5; HRMS (EI) *m/z*

 $[M]^+$ Calcd for $C_{12}H_{16}O_3$: 208.1099, found: 208.1104; IR (KBr, cm⁻¹): v 1758.

t-butyl naphthalene-1-carboperoxoate (3e).¹ ¹H NMR (CDCl₃, 400 MHz): δ 1.46 (s, 9H), 7.43-7.56 (m, 2H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.97-8.02 (m, 2H), 8.65 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 83.8, 124.3, 125.0, 125.2, 126.4, 127.9, 128.5, 128.8, 130.8, 133.3, 133.6, 165.5; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₅H₁₆O₃: 244.1099, found: 244.1100; IR (KBr, cm⁻¹): v 1756.

t-butyl 4-methoxybenzoperoxoate (**3f**).¹ ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 3.86 (s, 3H), 6.94 (d, *J* = 9.0 Hz, 2H), 7.92 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 52.4, 83.7, 113.8, 119.7, 131.1, 163.6, 164.2; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₂H₁₆O₄: 224.1049, found: 224.1050; IR (KBr, cm⁻¹): v 1748.

t-butyl 4-(methylthio)benzoperoxoate (3g). ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 2.51 (s, 3H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 14.6, 26.1, 83.8, 123.2, 124.9, 129.2, 146.2, 164.1; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₂H₁₆O₃S: 240.0820, found: 240.0817; IR (KBr, cm⁻¹): v 1748.

t-butyl 4-fluorobenzoperoxoate (3h). ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 7.15 (m, 2H), 7.97-8.01 (m, 2H,); ¹³C NMR (CDCl₃, 100 MHz): δ 26.1, 84.0, 115.7, 115.9, 123.8, 131.6, 131.7, 163.4, 164.5, 167.0; HRMS (EI) *m/z* [M]⁺ Calcd for C₁₁H₁₃FO₆: 212.0849, found: 212.0851; IR (KBr, cm⁻¹): v 1760.

t-butyl 4-bromobenzoperoxoate (3i). ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 7.61 (d, J = 8.3 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 84.1, 126.5, 128.5, 130.6, 132.0, 163.7; HRMS (EI) m/z [M]⁺ Calcd for C₁₁H₁₃BrO₃: 272.0048, found: 272.0042; IR (KBr, cm⁻¹): v 1766.

t-butyl 4-chlorobenzoperoxoate (3j).³ ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.90 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 84.1, 126.0, 129.0, 130.4, 139.8, 163.5; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₁H₁₃ClO₃: 228.0553, found: 228.0553; IR (KBr, cm⁻¹): v 1753.

t-butyl 3-chlorobenzoperoxoate (3k).¹ ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s,

9H), 7.40-7.44 (m, 1H) 7. 56-7.58 (m, 1H), 7.84-7.92 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 84.3, 127.2, 129.1, 129.3, 129.9, 133.4, 134.7, 163.2; HRMS (EI) *m/z* [M]⁺ Calcd for C₁₁H₁₃ClO₃: 228.0553, found: 228.0555; IR (KBr, cm⁻¹): v 1761.

t-butyl 2-chlorobenzoperoxoate (31).³ ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 7.14-7.19 (m, 1H) 7. 32-7.36 (m, 1H), 7.45-7.46 (m, 2H), 7.70 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 84.1, 126.7, 128.3, 130.7, 130.9, 132.8, 163.9; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₁H₁₃ClO₃: 228.0553, found: 228.0555; IR (KBr, cm⁻¹): v 1770.

t-butyl 2-bromobenzoperoxoate (3m). ¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 9H), 7.34-7.41 (m, 2H) 7. 62-7.67 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 84.2, 120.8, 127.2, 130.6, 130.7, 132.8, 133.9, 164.4; HRMS (EI) *m/z* [M]⁺ Calcd for C₁₁H₁₃BrO₃: 272.0048, found: 272.0047; IR (KBr, cm⁻¹): v 1770.

t-butyl 2-fluorobenzoperoxoate (3n). ¹H NMR (CDCl₃, 400 MHz): δ 1.42 (s, 9H), 7.14-7.19 (m, 1H) 7. 23-7.27 (m, 1H), 7.54-7.59 (m, 1H), 7.89-7.93 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.0, 84.0, 116.0, 116.2, 124.3, 131.9, 134.8, 134.9, 159.7, 162.3, 162.7; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₁H₁₃FO₃: 212.0849, found: 212.0852; IR (KBr, cm⁻¹): v 1757.

t-butyl 3-phenoxybenzoperoxoate (3o). ¹H NMR (CDCl₃, 400 MHz): δ 1.39 (s, 9H), 7.02 (d, J = 7.7 Hz, 2H) 7.12-7.21 (m, 2H) 7.34-7.42 (m, 3H) 7.59 (s, 1H) 7.68 (d, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.1, 84.0, 118.9, 119.1, 123.2, 123.5, 129.2, 129.9, 130.0, 156.2, 157.5, 163.7; HRMS (EI) *m/z* [M]⁺ Calcd for C₁₇H₁₈O₄:286.1205, found: 286.1205; IR (KBr, cm⁻¹): v 1760.

t-butyl 3-(trifluoromethoxy)benzoperoxoate (3p). Yield: 58%; ¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 9H), 7.45-7.55 (m, 2H) 7.80 (s, 1H) 7. 90-7.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.1, 84.4, 119.0, 121.6, 125.8, 127.4, 129.6, 130.2, 149.2, 163.0; HRMS (ESI) *m/z* [M+NH₄]⁺ Calcd for C₁₂H₁₇F₃NO₄: 296.1100, found: 296.1104; IR (KBr, cm⁻¹): v 1765.

t-butyl 4-(tosyloxy)benzoperoxoate (3q). ¹H NMR (CDCl₃, 400 MHz): δ 1.40 (s, 9H), 2.46 (s, 3H), 7.10 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.7, 26.1, 84.2, 122.6, 126.3, 128.4, 129.9, 130.8, 131.9, 145.8, 153.1, 163.2; HRMS (ESI) *m/z* [M+NH₄]⁺ Calcd for C₁₈H₂₄NO₆S: 382.1319, found: 382.1317; IR (KBr, cm⁻¹): v 1753.

methyl 4-(*t*-butylperoxycarbonyl)benzoate (3r). ¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 9H), 3.96 (s, 3H), 8.02 (d, J = 8.3 Hz, 2H), 8.13 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.2, 52.5, 84.2, 129.0, 129.7, 131.4, 134.2, 163.5, 165.9; HRMS (EI) m/z [M]⁺ Calcd for C₁₃H₁₆O₅:252.0998, found: 252.0999; IR (KBr, cm⁻¹): v 1754, 1716.

t-butyl thiophene-2-carboperoxoate (3s). ¹H NMR (CDCl₃, 400 MHz): δ 1.40 (s, 9H),7.13-7.15 (m, 1H), 7.61-7.63 (m, 1H), 7.80-7.82 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.1, 84.2, 127.8, 129.2, 132.8, 133.6, 160.3; HRMS (EI) *m/z* [M]⁺ Calcd for C₉H₁₂O₃S: 200.0507, found: 200.0504; IR (KBr, cm⁻¹): v 1747.

t-butyl 4-(*t*-butoxycarbonyloxy)benzoperoxoate (3t). Yield: 44%; ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 1.57 (s, 9H), 7.28 (d, J = 8.7 Hz, 2H), 7.99 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃,100 MHz): δ 26.2, 27.6, 84.0, 84.2, 121.5, 124.9, 130.7, 150.9, 154.8, 163.6; HRMS (EI) m/z [M]⁺ Calcd for C₁₆H₂₂O₆: 310.1416, found: 310.1422; IR (KBr, cm⁻¹): v 1754.

t-butyl cyclohexanecarboperoxoate (3u). ¹H NMR (CDCl₃, 400 MHz): δ

1.26-1.29 (m, 2H), 1.32 (s, 9H), 1.48-1.92 (m, 8H), 2.33-2.41 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 25.3, 25.5, 26.1, 29.0, 41.1, 83.2, 173.1; HRMS (EI) *m/z* [M+NH₄]⁺ Calcd for C₁₁H₂₄NO₃: 218.1751, found: 218.1743; IR (KBr, cm⁻¹): v 1772.

(E)-methyl 3-(4-(*t*-butylperoxycarbonyl)phenyl)acrylate (3v). ¹H NMR (CDCl₃, 400 MHz): δ 1.43 (s, 9H), 3.83 (s,3H), 6.53 (d, *J* = 16.1 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 16.1 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (CDCl₃,100 MHz): δ 26.1, 51.8, 84.1, 120.5, 128.0, 128.7, 129.6, 138.9, 143.0, 163.7, 166.7; HRMS (EI) *m*/*z* [M]⁺ Calcd for C₁₅H₁₈O₅: 278.1154, found: 278.1154; IR (KBr, cm⁻¹): v 1754.

t-butyl 4-(phenylethynyl)benzoperoxoate (3w). ¹H NMR (CDCl₃, 400 MHz): δ 1.41 (s, 9H), 7.34-7.35 (m, 3H), 7.53-7.55 (m, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.0, 83.9, 88.2, 92.7 122.34 126.7, 128.3, 128.4 128.7 128.9 131.5, 163.7; HRMS (EI) *m/z* [M]⁺ Calcd for C₁₉H₁₈O₃: 294.1256, found: 294.1224; IR (KBr, cm⁻¹): *v* 1750.

cyclohex-2-enyl benzoate (4a).⁴ ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.75 (m, 1H), 1.82-1.91 (m, 2H), 1.94-2.07 (m, 2H), 2.11-2.17 (m, 1H), 5.51 (m, 1H), 5.82-5.85 (m, 1H), 5.98-6.03 (m, 1H), 7.41-7.45 (m, 2H), 7.52-7.56 (m, 1H),

8.04-8.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 24.9, 28.3, 68.5, 125.6, 128.2, 129.5, 130.7, 132.7, 132.8, 166.2; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₃H₁₄NaO₂: 225.0886, found: 225.0885; IR (KBr, cm⁻¹): v 1715.

cyclohex-2-enyl 4-fluorobenzoate (4b). ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.75 (m, 1H), 1.78-1.91 (m, 2H), 1.94-2.17 (m, 3H), 5.50 (m, 1H), 5.81-5.84 (m, 1H), 5.99-6.03 (m, 1H), 7.01-7.12 (m, 2H), 8.05-8.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 24.9, 28.3, 68.7, 115.2, 115.4, 125.5, 132.0, 132.1, 132.9, 164.3, 165.2, 166.9; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₃H₁₃FNaO₂: 243.07918, found: 243.07882; IR (KBr, cm⁻¹): v 1716.

cyclohex-2-enyl 4-chlorobenzoate (4c). ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.75 (m, 1H), 1.79-1.91 (m, 2H), 1.93-2.17 (m, 3H), 5.49 (m, 1H), 5.80-5.84 (m, 1H), 5.99-6.03 (m, 1H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 24.8, 28.3, 68.8, 125.4, 128.5, 129.1, 130.9, 132.9, 139.0, 165.2; HRMS (ESI) *m*/*z* [M+Na]⁺ Calcd for C₁₃H₁₃ClNaO₂: 259.0496, found: 259.0502; IR (KBr, cm⁻¹): v 1716.

cyclohex-2-enyl 4-bromobenzoate (4d). ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.74 (m, 1H), 1.78-1.91 (m, 2H), 1.93-2,17 (m, 3H), 5.49 (m,1H), 5.80-5.83 (m,1H), 5.99-6.03 (m,1H), 7.56 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ 18.8, 24.9, 28.3, 68.9, 125.4, 127.8, 129.6, 131.1, 131.5, 133.0, 165.4; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₃H₁₃BrNaO₂: 302.9991, found: 302.0995; IR (KBr, cm⁻¹): v 1717.

cyclohex-2-enyl 4-(phenylethynyl)benzoate (4e). ¹H NMR (400 MHz, CDCl₃) δ 1.69-1.74 (m, 1H), 1.84-1.91 (m, 2H), 1.95-2.18 (m, 3H), 5.51 (m, 1H), 5.82-5.84 (m, 1H), 6.01-6.03 (m, 1H), 7.36-7.37 (m, 3H), 7.54-7.59 (m, 4H), 8.03 (d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 24.9, 28.4, 69.8, 88.7, 92.2, 122.7, 125.6, 127.8, 128.4, 128.7, 129.5, 130.1, 131.4, 131.7, 133.0, 165.6; HRMS (ESI) m/z [M+H]⁺ Calcd for C₂₁H₁₉O₂: 303.1385, found: 303.1382; IR (KBr, cm⁻¹): v 1709.

cyclohex-2-enyl 4-(tosyloxy)benzoate (4f). ¹H NMR (400 MHz, CDCl₃) δ 1.66-1.73 (m, 1H), 1.78-1.85 (m, 2H), 1.91-2.15 (m, 3H), 2.44 (s, 3H), 5.47 (m, 1H), 5.79-5.81 (m, 1H), 5.98-6.01 (m, 1H), 7.05 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 21.6, 24.8, 28.2, 68.9, 122.2, 125.2, 128.4, 129.5, 129.8, 132.0 131.2, 133.1, 145.6, 152.7, 164.9; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₂₀H₂₀NaO₅S: 395.0924; found: 395.0924; IR (KBr, cm⁻¹): *v* 1712.

cyclohex-2-enyl 2-naphthoate (4g). ¹Η NMR (400 MHz, CDCl₃) δ 1.69-1.78

(m, 130H), 1.85-1.97 (m, 2H), 1.99-2.09 (m, 2H), 2.15-2.20 (m, 1H), 5.58 (m, 1H), 5.87-5.91 (m, 1H), 6.02-6.06 (m, 1H), 7.51-7.60 (m, 2H), 7.87 (m, 2H), 7.95 (m, 1H), 8.08 (m, 1H), 8.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.0, 25.0, 28.4, 68.8, 125.3, 125.8, 126.5, 127.7, 128.0, 128.0, 128.1, 130.9, 132.5, 132.9, 135.4, 166.4; HRMS (ESI) *m*/*z* [M+Na]⁺ Calcd for C₁₇H₁₆NaO₂: 275.1043, found: 275.1042; IR (KBr, cm⁻¹): *v* 1711.

cyclohex-2-enyl 4-cyanobenzoate (4h). ¹H NMR (400 MHz, CDCl₃) δ 1.69-1.74 (m, 1H), 1.81-1.92 (m, 2H), 1.96-2.19 (m, 3H), 5.53 (m, 1H), 5.81-5.84 (m, 1H), 6.03-6.06 (m, 1H), 7.74 (d, *J* = 7.7 Hz, 2H), 8.15 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 24.8, 28.2, 69.5, 116.1, 118.0, 124.9, 130.0, 132.1, 133.5, 134.5, 164.4; HRMS (ESI) *m*/*z* [M+Na]⁺ Calcd for C₁₄H₁₃NNaO₂: 250.0838, found: 250.0849; IR (KBr, cm⁻¹): *v* 1710.

cyclohex-2-enyl furan-2-carboxylate (4i). ¹H NMR (400 MHz, CDCl₃) δ 1.65-1.72 (m, 1H), 1.79-1.89 (m, 2H), 1.93-2.15 (m, 3H), 5.49 (m, 1H), 5.79-5.81 (m, 1H), 5.99-6.03 (m, 1H), 6.49-6.51 (m, 1H), 7.17-7.18 (m, 1H), 7.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 24.9, 28.3, 68.8, 111.7, 117.7, 125.3, 133.2, 145.0, 146.1, 158.5; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₁H₁₂NaO₃: 215.0679, found: 215.07; IR (KBr, cm⁻¹): v 1722.

cyclohex-2-enyl 3-phenoxybenzoate (4j). ¹H NMR (400 MHz, CDCl₃) δ 1.66-1.73 (m, 1H), 1.79-1.88 (m, 2H), 1.92-2.16 (m, 3H), 5.49 (m, 1H), 5.80-5.83 (m, 1H), 5.98-6.01 (m, 1H), 7.00-7.01 (m, 2H), 7.11-7.19 (m, 2H), 7.33-7.41 (m, 3H), 7.70 (m, 1H), 7.79-7.81(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 24.9, 28.3, 68.8, 118.9, 119.9, 123.1, 123.6, 124.4, 125.5, 129.6, 129.8, 132.6, 133.0, 156.8, 157.2, 165.6; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₉H₁₈NaO₃: 317.1148, found: 317.1148; IR (KBr, cm⁻¹): *v* 1715.

cyclohex-2-enyl 4-(methylthio)benzoate (4k). Yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ 1.66-1.74 (m, 1H), 1.80-1.90 (m, 2H), 1.93-2.17 (m, 3H), 2.50 (s, 3H), 5.49 (m, 1H), 5.81-5.84 (m, 1H), 5.98-6.02 (m, 1H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.95 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.8 18.9, 24.9, 28.4, 68.4, 124.8, 125.7, 126.8, 129.8, 132.7, 145.1, 165.9; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₄H₁₆NaO₂S: 271.0763, found: 271.0765; IR (KBr, cm⁻¹): *v* 1708.

(E)-cyclohex-2-enyl 4-(2-methoxyvinyl)benzoate (4l). ¹H NMR (400 MHz, CDCl₃) δ 1.68-1.75 (m, 1H), 1.80-1.90 (m, 2H), 1.94-2.18 (m, 3H), 3.82 (s, 3H), 5.51 (m, 1H), 5.82-5.85 (m, 1H), 6.00-6.04 (m, 1H), 6.52 (d, *J* = 16.1 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 16.1 Hz, 1H), 8.06 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 24.9, 28.3, 51.8, 68.8, 119.9, 125.4, 127.8, 130.0, 132.0, 133.0, 138.3, 143.4, 165.4, 166.9; HRMS (ESI) *m/z* [M+H]⁺ Calcd for C₁₇H₁₉O₄: 287.1278, found: 287.1289; IR (KBr, cm⁻¹): *v* 1713.

cyclohex-2-enyl thiophene-2-carboxylate (4m). ¹H NMR (400 MHz, CDCl₃) δ 1.66-1.73 (m, 1H), 1.81-1.90 (m, 2H), 1.92-2.16 (m, 3H), 5.47 (m, 1H), 5.80-5.83 (m, 1H), 5.98-6.02 (m, 1H), 7.08-7.10 (m, 1H), 7.53-7.54 (m, 1H), 7.79-7.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 24.9, 28.3, 68.9, 125.4, 127.6, 132.1, 133.0, 133.1, 134.4, 161.9; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₁H₁₂NaO₂S: 231.04502, found: 231.04459; IR (KBr, cm⁻¹): *v* 1703.

2,3-dihydro-1H-inden-1-yl 2-naphthoate (4n). ¹H NMR (400 MHz, CDCl₃) δ 2.27-2.34 (m, 1H), 2.64-2.73 (m, 1H), 2.94-3.02 (m, 1H), 3.19-3.27 (m, 1H), 6.51-6.54 (m, 1H), 7.27-7.34 (m, 3H), 7.50-7.58 (m, 3H), 7.85-8.08 (m, 4H), 8.60 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 30.2, 32.4, 79.0, 124.8, 125.2, 125.7, 126.5, 126.7, 127.6, 127.6, 128.0, 128.0, 128.9, 129.2, 131.0, 132.3, 135.4, 141.1, 144.4, 166.6; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₂₀H₁₆NaO₂: 311.10425, found: 311.10365; IR (KBr, cm⁻¹): *v* 1699.

(2Z,6Z)-cycloocta-2,6-dienyl 2-naphthoate (4o). ¹H NMR (400 MHz, CDCl₃) δ 2.22-2.38 (m, 2H), 2.55-2.65 (m, 3H), 2.88-2.97 (m, 2H), 5.61-5.75 (m, 4H), 6.28-6.30 (m, 1H), 7.52-1.60 (m, 2H), 7.06-7.88 (m, 2H), 7.95-8.09 (m, 2H), 8.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.9, 28.0, 33.9, 73.1, 125.2, 125.3, 126.6, 127.7, 128.0, 128.2, 129.2, 129.2, 129.3, 129.6, 129.8, 131.0, 132.4, 135.4, 166.0; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₁₉H₁₈NaO₂: 301.1199, found: 301.1200; IR (KBr,

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

 cm^{-1}): v 1718.

1,2,3,4-tetrahydronaphthalen-1-yl 2-naphthoate (4p). ¹H NMR (400 MHz, CDCl₃) δ 1.91-2.18 (m, 4H), 2.81-3.00 (m, 2H), 6.33 (m, 1H), 7.19-7.26 (m, 4H), 7.40-7.58 (m, 3H), 7.86-8.09 (m, 4H), 8.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.1, 29.1, 29.3, 70.8, 125.4, 126.1, 126.5, 127.7, 127.8, 128.0, 128.1, 128.2, 129.1, 129.3, 129.6, 131.1, 132.4, 134.7, 135.5, 138.1, 166.4; HRMS (ESI) *m/z* [M+Na]⁺ Calcd for C₂₁H₁₈NaO₂: 325.1199, found: 325.1195; IR (KBr, cm⁻¹): *v* 1711.

2,2,6,6-tetramethylpiperidin-1-yl 2-naphthoate (5). ¹H NMR (CDCl₃, 400 MHz): δ 1.16 (s, 6H), 1.33 (s, 6H), 1.47-1.85 (m, 6H), 7.53-7.62 (m, 2H), 7.88-7.91 (m, 2H), 7.97-8.11 (m, 2H), 8.64 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 17.0, 20.9, 32.0, 39.0, 60.4, 125.2, 126.6, 127.7, 129.3, 130.9, 132.5, 135.4, 166.5; HRMS (EI) *m/z* [M]⁺ Calcd for C₂₀H₂₅NO₂:311.1885, found: 311.1884; IR (KBr, cm⁻¹): *v* 1736,.

References:

- 1. Hamada, Y.; Mizuno, A.; Ohno, T.; Shioiri, T. Chem. Pharm. Bull. 1984, 32, 3683.
- 2. Ahn, C.; Correia, R.; DeShong, P. J. Org. Chem. 2002, 67, 1751.
- 3. Andrus, M, B; Chen, X. Tetrahedron. 53, 48, 16229.
- 4. Fache, F.; Piva, O. Synlett. 2002, 12, 2035.

3a

3b

c

3d

3e

110 100 90 f1 (ppm)

80 70 60 50 40 30 20 10 0

200 190 180 170 160

. 150 140 130 120

3f

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

ò

3g

3h

3i

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

ò

m

3n

3p

110 100 90 f1 (ppm)

80 70 60 50 40 30 20 10 0

130 120

150 140

200 190 180 170 160

-0

q

3r

3s

110 100 90 f1 (ppm)

80 70 60 50 40 30 20 10 0

140 130 120

200 190 180 170 160 150

-0

3t

3u

v

 $3\mathbf{w}$

4a

4b

c

4d

4e

4f

g

4h

46

4i

4j

4k

4n

110 100 f1 (ppm) 200 190 140 130

0

