SUPPORTING INFORMATION

Facile and Chemoselective Rhodium-Catalysed Intramolecular

Hydroacylation of α,α-Disubstituted 4-Alkylidenecyclopropanals

Damien Crépin, Coralie Tugny, James H. Murray, and Christophe Aïssa*

University of Liverpool, Department of Chemistry, Crown Street, L69 7ZD, United Kingdom.

e-mail: aissa@liverpool.ac.uk

General. Otherwise noted, all reactions were carried out in flame-dried glassware under dry nitrogen atmosphere. The solvents were purified either with the solvent purification system Pure Solv MD-6 (THF, Et₂O, CH₂Cl₂, benzene, toluene, hexane) or by distillation over the drying agents indicated and were transferred under N₂: 1,2-DCE (CaH₂), acetone (Na₂SO₄). Flash chromatography: Merck silica gel 60 (230-400 mesh). NMR: Spectra were recorded on a Bruker DRX 500 spectrometer in CDCl₃; chemical shifts (δ) are given in ppm relative TMS and were converted to the TMS scale using the solvent signals as references (CDCl₃: $\delta_C = 77.0$ ppm; residual CHCl₃ in CDCl₃: $\delta_H = 7.24$ ppm). IR: PerkinElmer Spectrum 100 FT-IR spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. HRMS at the University of Liverpool: VG7070E (CI), micromass LCT mass spectrometer (ES+), except for compounds 2, 4a, 5, 7, 10, and 15d whose HMRS spectra were obtained from the EPSRC National Mass Spectrometry Service Centre at Swansea. Melting points: Griffin melting point apparatus (not corrected). Elemental analyses: University of Liverpool. All commercially available compounds were used as received. Compounds 16 and 22 are known compounds and were prepared according to literature.¹

Preparation of substrates 1, 3a–3e, 5, 8, 11, 14a, and 14c–14f	S2
Representative procedure for rhodium-catalyzed rearrangements	S19
Oxidation of diol 5 and hydroacylation of 1,3-keto-aldehyde 6	S23
Oxidation of diol 8 and hydroacylation of bis-aldehyde 9	S24
Preparation of compound 14b and hydroacylation to obtain 15b	S25
NMR spectra of compounds 1, 2, 3a–3e, 4a–4e, 5–12, 14a–14f, and 15a–15f	S27
2D NMR spectra of compounds 4c, 15c, and 15d	S89

¹ Known compound, see: A. Stolle, J. Ollivier, P. P. Piras, J. Salaun, A. de Meijere, J. Am. Chem. Soc., 1992, **114**, 4051.

^a 1) NaH, methyl phenylacetate, DMF, 2) **16**, Pd₂(dba)₃, dppe, DMF, THF, 60 °C, 86%. ^b LiHMDS, methylallyl bromide, THF, -78 °C to r.t., 89%. ^c LiAlH₄, Et₂O, r.t., 84%. ^d (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 94%.

Compound 17. Under N₂, methyl phenylacetate (1.27 mL, 8.82 mmol) was added at 0 °C to a suspension of sodium hydride (336 mg, 8.40 mmol) in DMF (16 mL) and the ,CO₂Me Ph、 mixture was stirred at room temperature for 40 minutes. In another flask, g, 4.20 mmol) was added to a suspension of tosylate **16** (1 tris(dibenzylideneacetone)dipalladium (115 mg, 0.126 mmol) and dppe (100 mg, 0.252 mmol) in THF (24 mL) and the mixture was stirred at room temperature for 30 minutes. The palladium complex was cannulated to the enolate and the resulting mixture was stirred at 60 °C for 3 hours. The mixture was guenched with water (25 mL) and extracted with Et₂O (3 \times 20 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/Et₂O, 50/1) gave 17 as a pale yellow oil (778 mg, 86%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.40-7.25 \text{ (m, 5H)}, 5.80-5.71 \text{ (m, 1H)}, 3.77 \text{ (t, } J = 7.7 \text{ Hz}, 2\text{H)}, 3.68 \text{ (so MHz, CDCl}_3)$ (s, 3H), 3.09–2.93 (m, 1H), 2.76–2.63 (m, 1H), 1.14–0.98 (m, 3H), 0.97–0.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 174.1, 138.9, 128.5 (2C), 128.0 (2C), 127.2, 124.0, 114.8, 51.9, 51.4, 35.8, 2.3, 1.9; IR (neat): $\tilde{v} = 3030, 2980, 2951, 2845, 1734, 1602, 1495, 1435, 1266,$ 1223, 1157, 836, 729, 697 cm⁻¹; MS (CI): *m/z* (rel. intensity): 234 (100), 217 (17); HRMS (CI) calcd for $(C_{14}H_{16}O_2 + NH_4)^+$: 234.14940; found: 234.14907; elemental analysis (%) calcd for C₁₄H₁₆O₂: C 77.75, H 7.46; found: C 77.86, H 7.48.

Compound 18. LiHMDS (1M in THF, 0.90 mL, 0.90 mmol) was added dropwise via syringe ₂CO₂Me to 17 (150 mg, 0.69 mmol) in 5 mL THF at -78 °C under N₂. After stirring at Ph. that temperature for 1h, methylallyl bromide (91 µL, 0.90 mmol) was added via microsyringe. The mixture was allowed to slowly warm to room temperature overnight. The mixture was then quenched with a saturated solution of NH₄Cl (5 mL) and extracted with EtOAc (3 \times 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAC, 30/1) gave **18** as a colourless oil (167 mg, 89%). ¹H NMR (500 MHz, CDCl₃): δ = 7.31-7.23 (m, 4H), 7.23-7.18 (m, 1H), 5.57-5.49 (m, 1H), 4.82-4.80 (m, 1H), 4.63-4.60(m, 1H), 3.61 (s, 3H), 2.97–2.93 (m, 2H), 2.88 (d, J = 13.7 Hz, 1H), 2.74 (d, J = 13.7 Hz, 1H), 1.40 (s, 3H), 1.01–0.90 (m, 2H), 0.89–0.80 (m, 1H), 0.80–0.72 (m, 1H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 176.1, 142.5, 141.8, 128.2$ (2C), 126.7, 126.6 (2C), 125.5, 115.2, 113.1, 53.8, 51.9, 42.5, 37.0, 23.8, 2.7, 1.9; IR (neat): $\tilde{\nu} = 3058$, 3023, 2980, 2949, 1729, 1644, 1600, 1580, 1498, 1446, 1257, 1200, 1081, 1031, 989, 959, 931, 893, 763, 729, 697 cm⁻¹; MS (ES+): m/z (rel. intensity): 293 (100); HRMS (ES+) calcd for $(C_{18}H_{22}O_2 + Na)^+$: 293.1517; found: 293.1518; elemental analysis calcd (%) for C₁₈H₂₂O₂: C 79.96, H 8.20; found: C 80.04, H 8.47.

Compound 19. Under N₂, ester 18 (154 mg, 0.57 mmol) in Et₂O (2.8 mL) was added to a suspension of lithium aluminium hydride (11 mg, 0.285 mmol) in Et₂O (4 mL) at 0 °C. After stirring for 20 minutes at room temperature, lithium aluminium hydride (11 mg, 0.285 mmol) was added at 0 °C. After stirring for another 30 minutes at room temperature, a saturated aqueous solution of Na₂SO₄ was

added dropwise, first at 0 °C then at room temperature, until a white precipitate appeared. The mixture was filtered through a pad of celite and concentrated. Purification by flash chromatography (PE/EtOAc, $30/1 \rightarrow 15/1$) afforded **19** as a colourless oil (116 mg, 84%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37-7.34$ (m, 2H), 7.33-7.28 (m, 2H), 7.21-7.16 (m, 1H), 5.69-5.63 (m, 1H), 4.77-4.74 (m, 1H), 4.62-4.59 (m, 1H), 3.85 (d, J = 6.7 Hz, 2H), 2.72 (ddquint, J = 14.1 Hz, J = 6.7 Hz, J = 1.4 Hz, 1H), 2.63 (ddquint, J = 14.1 Hz, J = 7.7 Hz, J = 1.1 Hz, 1H), 2.47 (s, 2H), 1.43 (t, J = 6.7 Hz, 1H (OH)), 1.30 (s, 3H), 1.04-0.98 (m, 2H), 0.97-0.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.1$, 143.1, 128.2 (2C), 127.0 (2C), 126.0, 124.6, 114.5, 114.2, 67.4, 46.2, 44.8, 38.3, 24.5, 2.8, 1.8; IR (neat): $\tilde{\nu} = 3436$ (br), 3055, 2978, 2922, 1641, 1498, 1445, 1375, 1024, 964, 937, 892, 764, 697 cm⁻¹; MS (ES+): m/z (rel. intensity): 265 (100); HRMS (ES+) calcd for (C₁₇H₂₂O + Na)⁺: 265.1568; found: 265.1560; elemental analysis calcd (%) for C₁₇H₂₂O: C 84.25, H 9.15; found: C 84.43, H 8.90.

Compound 1. Under N₂, dimethyl sulfoxide (0.18 mL, 2.60 mmol) in CH₂Cl₂ (0.5 mL) was added to a solution of oxalyl chloride (0.11 mL, 1.30 mmol) in CH₂Cl₂ (5 mL) at -78 °C. After 10 minutes stirring at -78 °C, a solution of **19** (243 mg, 1 mmol) in CH₂Cl₂ (1 mL) was added. After 20 minutes stirring at -78 °C, triethylamine (0.70 mL, 5 mmol) was added rapidly and the mixture was stirred

at room temperature during 20 minutes. A saturated solution of NH₄Cl (10 mL) was added to the reaction mixture which was then extracted with CH₂Cl₂ (3 × 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography PE/EtOAc, 80/1) gave **1** as colourless oil (225 mg, 94%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 9.54 (s, 1H), 7.37–7.32 (m, 2H), 7.29–7.21 (m, 3H), 5.65–5.59 (m, 1H), 4.81–4.78 (m, 1H), 4.62–4.58 (m, 1H), 2.89 (d, *J* = 7.2 Hz, 2H), 2.74 (d, *J* = 14.2 Hz, 1H), 2.67 (d, *J* = 14.4 Hz, 1H), 1.37 (s, 3H), 1.04–0.94 (m, 2H), 0.92–0.81 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 202.3, 141.3, 138.6, 128.6 (2C), 127.9 (2C), 127.3, 126.0, 115.3, 112.5, 57.6, 41.0, 34.8, 24.3, 2.8, 2.0; IR (neat): $\tilde{\nu} = 3057$, 2979, 2709, 1721, 1643, 1544, 1495, 1446, 1377, 1091, 1030, 1002, 967, 930, 894, 759, 697 cm⁻¹; MS (CI) : *m/z* (rel. intensity) : 259 (17), 258 (100), 242 (12), 241 (69), 173 (14); elemental analysis calcd (%) for C₁₇H₂₀O: C 84.16, H 8.83; found: C 83.20, H 8.44.

Preparation of compound 3a

^a NaHMDS, MeI, THF, r.t., 79%. ^b LiAlH₄, Et₂O, r.t., 95%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 91%.

Compound 20. Under N₂, NaHMDS (407 mg, 2.22 mmol) was added as solid in one portion to a solution of **17** (320 mg, 1.48 mmol) in THF (15 mL) at 0 °C. The mixture was stirred at room temperature during 1 hour. Then iodomethane (0.55 mL, 8.88 mmol) was added via syringe and the mixture was stirred for another 4 hours at room temperature. The reaction mixture was quenched with a saturated solution of NH₄Cl (10 mL) and extracted with EtOAc (3 \times 10 mL). The organic

layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 60/1) gave **20** as a colourless oil (270 mg, 79%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.32-7.31$ (m, 4H), 7.24–7.20 (m, 1H), 5.62-5.56 (m, 1H), 3.64 (s, 3H), 2.94 (dd, J = 13.2 Hz, J = 7.2 Hz, 1H), 2.77 (dd, J = 13.2 Hz, J = 7.6 Hz, 1H), 1.52 (s, 3H), 1.06–0.98 (m, 2H), 0.95–0.84 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 176.5$, 143.5, 128.3 (2C), 126.7, 126.0 (2C), 125.6, 113.4, 52.1, 50.5, 41.6, 22.7, 2.8, 1.7; IR (neat): $\tilde{\nu} = 3053$, 3023, 2980, 2950, 1729, 1601, 1497, 1446, 1434, 1377, 1268, 1227, 1203, 1147, 1120, 1074, 1031, 986, 968, 935, 857, 810, 764, 732, 697 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 253 (100); HRMS (ES+) calcd for (C₁₅H₁₈O₂ + Na)⁺: 253.1204; found: 253.1194; elemental analysis (%) calcd for C₁₅H₁₈O₂: C 78.23, H 7.88; found: C 77.32, H 7.74.

Compound 21. This compound was prepared from **20** (117 mg, 0.508 mmol) according to the procedure described for the preparation of **19**. Colourless oil (81 mg, 79%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37$ (d, J = 7.1 Hz, 2H), 7.33 (t, J = 7.1 Hz, 2H), 7.20 (t, J = 7.1 Hz, 1H), 5.61–5.53 (m, 1H), 3.76 (d, J = 10.8 Hz, 1H), 3.60 (dd, J = 13.9 Hz, J = 4.7 Hz, 1H), 2.63 (dd, J = 13.9 Hz, J = 6.5 Hz, 1H), 2.47 (dd, J = 13.9 Hz, J = 7.9 Hz, 1H), 1.33 (s, 3H), 1.30–1.22 (br s, 1H), 1.04–0.82 (m, 1H), 1.247 (m, 2000) (m, 200

4H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.8$, 128.4 (2C), 126.7 (2C), 126.2, 124.5, 113.9, 71.8, 43.9, 40.9, 21.9, 2.8, 1.7; IR (neat): $\tilde{\nu} = 3367$ (br), 3053, 2977, 2926, 2871, 1601, 1497, 1445, 1373, 1296, 1156 1024, 966, 935, 894, 830, 760, 697 cm⁻¹; MS (CI): *m/z* (rel. intensity): 221 (15), 220 (100), 185 (5); HRMS (CI) calcd for (C₁₄H₁₈O + NH₄)⁺: 220.1696; found: 220.1692.

Compound 3a. This compound was prepared from **21** (50 mg, 0.25 mmol) according to the procedure described for the preparation of **1**. Colourless oil (45 mg, 91%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.56$ (s, 1H), 7.39–7.36 (m, 2H), 7.31–7.25 (m, 3H), 5.61–5.55 (m, 1H), 2.80 (d, J = 7.2 Hz, 2H), 1.44 (s, 3H), 1.08-0.98 (m, 2H), 0.96–0.83 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.4$, 139.8, 128.7 (2C), 127.2 (3C), 125.9, 112.6, 54.4, 38.4, 19.0, 2.9, 1.7; IR (neat): $\tilde{\nu} = 3056$, 2979, 2934, 2806, 2707, 1722, 1600, 1495, 1446, 1389, 1372, 1267, 1075, 1029, 967, 935, 837, 760, 733, 698 cm⁻¹; MS (CI): *m/z* (rel. intensity): 219 (12), 218 (100), 201 (3), 200 (1); HRMS (CI) calcd for (C₁₄H₁₆O + NH₄)⁺: 218.1539; found: 218.1539.

MeC

^a NaH, MeI, THF, r.t., 80%. ^b LiAlH₄, Et₂O, r.t., 89%. ^c NaH, TBSCl, CH₂Cl₂, r.t., 84%. ^d (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 82%.

Compound 23. Under N₂, 22 (300 mg, 1.51 mmol) in THF (4 mL) was added to a suspension of sodium hydride (44 mg, 1.82 mmol) in THF (12 mL) cooled at 0 °C. The mixture was stirred at room temperature for 1 hour, then iodomethane (141 ЭМе µL, 2.27 mmol) was added and the mixture was stirred for another 40 minutes at room temperature. The mixture was quenched with brine (10 mL) and extracted with Et₂O (3 \times 10 mL). The organic layers were dried over

Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/Et₂O, 40/1 \rightarrow 30/1) afforded **23** as a colourless oil (257 mg, 80%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.63$ – 5.57 (m, 1H), 3.67 (s, 6H), 2.70 (d, J = 7.6 Hz, 2H), 1.35 (s, 3H), 1.06–1.01 (m, 2H), 0.98– 0.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 172.5$ (2C), 126.5, 112.0, 53.9, 52.4 (2C), 38.2, 19.8, 2.9, 1.7; IR (neat): $\tilde{\nu} = 2985$, 2954, 1731, 1454, 1434, 1377, 1287, 1242, 1202, 1159, 1110, 982, 936, 874, 755 cm⁻¹; MS (CI): *m/z* (rel. intensity): 232 (42), 230 (95), 215 (82), 213 (100), 164 (93), 147 (10); HRMS (CI) calcd for $(C_{11}H_{16}O_4 + H)$: 213.11268; found: 213.11277; elemental analysis (%) calcd for C₁₁H₁₆O₄: C 62.25, H 7.60; found: C 62.32, H 7.63.

Compound 24. To a suspension of lithium aluminum hydride (67 mg, 1.77 mmol) in Et₂O (12 mL), a solution of 23 (250 mg, 1.18 mmol) in Et_20 (6 mL) was added at HO 0°C. The mixture was stirred during 20 minutes at room temperature then lithium aluminum hydride (67 mg, 1.77 mmol) was added at 0°C. After 30 minutes of stirring at room temperature, few drops of a saturated solution of

Na₂SO₄ was added until a white precipitate appeared. The mixture was filtered through a pad of celite and evaporated. Colourless oil (164 mg, 89%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 5.82-5.72 (m, 1H), 3.53 (d, J = 10.6 Hz, 2H), 3.47 (d, J = 10.6 Hz, 2H), 2.90 (s, 2H (OH)), 2.16 (d, J = 7.7 Hz, 2H), 1.09–0.94 (m, 4H), 0.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 124.6, 113.5, 70.0 (2C), 40.0, 36.4, 18.5, 2.8, 1.7; IR (neat): $\tilde{\nu} = 3246$ (br), 2962, 2936, 2877, 1470, 1429, 1387, 1367, 1295, 1251, 1223, 1156, 1096, 1044, 1018, 988, 964, 941, 887, 871, 807, 755, 715 cm⁻¹; MS (CI): *m/z* (rel. intensity): 176 (24), 174 (100), 159 (16), 157 (43), 139 (14), 132 (13), 128 (16), 126 (23), 115 (17), 109 (16); HRMS (CI) calcd for $(C_9H_{16}O_2 + H)$: 157.12285; found: 157.12310; elemental analysis (%) calcd for C₉H₁₆O₂: C 69.19, H 10.32; found: C 69.32, H 10.37.

Compound 25. Under N₂, a solution of 24 (170 mg, 1.088 mmol) in THF (2 mL) was added to a suspension of sodium hydride (26 mg, 1.088 mmol) in THF (8 mL) ЮH TBSO cooled at 0 °C. The mixture was stirred at room temperature during 18 hours then tert-butyldimethylsilyl chloride (163 mg, 1.088 mmol) was added. The mixture was sirred at room temperature during 1 hour then

quenched with water (10 mL) and extracted with Et₂O (3×15 mL). The organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/Et₂O, $35/1 \rightarrow 30/1$) gave 25 as a colourless oil (247 mg, 84%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.79-5.70$ (m, 1H), 3.51 (d, J = 9.7 Hz, 2 H), 3.49–3.42 (m, 2H), 3.02–2.56 (m, 1H (OH)), 2.19 (dd, J = 13.6 Hz, 7.5 Hz, 1H), 2.13 (dd, J = 13.7 Hz, 7.6 Hz, 1H), 1.08–1.00 (m, 2H), 0.99–0.93 (m, 2H), 0.86 (s, 9H), 0.78 (s, 3H), -0.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 124.3$, 113.7, 71.2, 70.6, 39.9, 36.4, 25.8 (3C), 18.6, 18.1, 2.8, 1.8, -5.7 (2C); IR (neat): $\tilde{\nu} = 3436$, 2955, 2929, 2857, 1472, 1389, 1362, 1252, 1088, 1039, 1006, 968, 937, 834, 774, 667 cm⁻¹; MS (CI): *m/z* (rel. intensity): 273 (61), 271 (100), 132 (20), 109 (13); HRMS (CI) calcd for (C₁₅H₃₀O₂Si + H): 271.20933; found: 271.20890; elemental analysis (%) calcd for C₅₈H₃₀O₂Si: C 66.61, H 11.18; found: C 67.06, H 11.26.

Compound 3b. This compound was prepared from **25** (210 mg, 0.78 mmol) according to the procedure described for the preparation of **1**. Colourless oil (181 mg, 82%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.57$ (s, 1H), 5.68–5.62 (m, 1H), 3.66 (d, *J* = 9.7 Hz, 1H), 3.56 (d, *J* = 9.7 Hz, 1H), 2.39–2.44 (m, 1H), 2.35–2.30 (m, 1H), 1.07–1.02 (m, 2H), 0.99 (s, 3H), 0.97–0.93 (m, 2H), 0.84 (s, 9H), 0.00 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 206.3$, 125.5, 112.4, 66.6, 51.9, 34.6, 25.7 (3C), 18.1, 16.0, 2.8, 1.8, -5.7 (2C); IR (neat): $\tilde{\nu} = 2952$, 2930, 2886, 2857, 1730, 1472, 1464, 1391, 1363, 1252, 1102, 1004, 969, 936, 835, 777, 670 cm⁻¹; MS (CI): *m/z* (rel. intensity): 286 (14), 271 (32), 269 (100), 268 (18), 251 (18), 136 (33), 132 (35), 119 (28); HRMS (CI) calcd for (C₁₅H₂₈O₂Si + H): 269.19368; found: 269.19364; elemental analysis (%) calcd for C₁₅H₂₈O₂Si: C 67.11, H 10.51; found: C 67.00, H 10.54.

Preparation of compound 3c

^a NaH, BnBr, Bu₄NI, THF, r.t., 71%. ^b LiAlH₄, Et₂O, r.t., 99%. ^c TBSCl, Pyridine, CH₂Cl₂, 40 °C, 90%. ^d (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 95%.

Compound 26. Under N₂, a solution of ester **22** (200 mg, 1.01 mmol) in THF (3 mL) was added to a suspension of sodium hydride (29 mg, 1.21 mmol) in THF (3 mL) at 0 °C. The resulting mixture was stirred at room temperature during 2 hours then benzyl bromide (145 μ L, 1.21 mmol) followed by tetrabutylammonium iodide (149 mg, 0.40 mmol) were added. The resulting mixture was stirred at room temperature during 14 hours. The mixture was

quenched with a saturated solution of NH₄Cl (5 mL) and extracted with EtOAc (3 × 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 60/1 \rightarrow 40/1) gave **26** as a colourless oil (445 mg, 71%). ¹H NMR (500 MHz, CDCl₃): δ = 7.29–7.18 (m, 3H), 7.09–7.04 (m, 2H), 5.74–5.68 (m, 1H), 3.67 (s, 6H), 3.23 (s, 2H), 2.68 (d, *J* = 7.5 Hz, 2H), 1.11–1.06 (m, 2H), 1.02–0.96 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 171.4 (2C), 136.0, 129.8 (2C), 128.2 (2C), 126.9, 126.4, 112.0, 59.1, 52.3 (2C), 38.1, 34.5, 2.9, 2.0; IR (neat): $\tilde{\nu}$ = 3031, 2977, 2952, 1732, 1497, 1434, 1328, 1278, 1242, 1201, 1175, 1084, 1044, 1003, 953, 899, 862, 821, 780, 743, 700 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 311 (100); HRMS (ES+) calcd for (C₁₇H₂₀O₄ + Na)⁺: 311.1259; found: 311.1260; elemental analysis (%) calcd for C₁₇H₂₀O₄: C 70.81, H 6.99; found: C 70.25, H 6.97.

Compound 27. This compound was prepared from **26** (197 mg, 0.68 mmol) according to the procedure described for the preparation of **24**. Colourless oil (157 mg, 99%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.30-7.25$ (m, 3H), 7.23–7.19 (m, 2H), 5.91–5.85 (m, 1H), 3.60 (d, J = 10.7 Hz, 2H), 3.54 (d, J = 10.7 Hz, 2H), 2.98 (s, 2H), 2.71 (s, 2H), 2.11 (d, J = 7.5 Hz, 2H), 1.14–1.08 (m, 2H), 1.04–0.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 137.6$, 130.4 (2C), 128.0 (2C), 126.1, 124.9, 113.4, 67.8 (2C), 43.3, 37.4, 34.0, 2.9, 2.0; IR (neat): $\tilde{\nu} = 3349$, 3058, 3028, 2978, 2923, 2876, 1603, 1496, 1453, 1333, 1211, 1089, 1064, 1027, 967, 933, 870, 797, 722, 701 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 255 (100); HRMS (ES+) calcd for (C₁₅H₃₀O₂ + Na)⁺: 255.1361; found: 255.1366.

Compound 28. Under N₂, pyridine (51 μ L, 0.698 mmol) was added to a solution of **27** (135 mg, 0.582 mmol) in CH₂Cl₂ (4 mL) at room temperature. The mixture was stirred at room temperature during 2 hours before adding *tert*-butyldimethylsilyl chloride (85 mg, 0.564 mmol). The resulting mixture was stirred at 40 °C during 14 hours. The mixture was quenched with a

saturated solution of NH₄Cl (4 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 70/1 \rightarrow 50/1) afforded **28** as a colourless oil (181 mg, 90%). ¹H NMR (500 MHz, CDCl₃): δ = 7.31–7.19 (m, 5H), 5.90–5.83 (m, 1H), 3.63–3.54 (m, 2H), 3.52–3.44 (m, 2H), 2.81 (d, *J* = 12.7 Hz, 1H), 2.78–2.73 (m, 1H (OH)), 2.67 (d, *J* = 12.9 Hz, 1H), 2.15–2.03 (m, 2H), 1.14–1.08 (m, 2H), 1.04–0.98 (m, 2H), 0.94 (s, 9H), -0.09 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ = 137.9, 130.6 (2C), 127.9 (2C), 126.0, 124.6, 113.6, 68.7, 68.1, 43.4, 37.3, 34.0, 25.8 (3C), 18.1, 2.8, 2.0, -5.6, -5.7; IR (neat): $\tilde{\nu}$ = 3454 (br), 3028, 2953, 2928, 2857, 1603, 1492, 1471, 1391, 1360, 1252, 1070, 1034, 1006, 967, 938, 834, 774, 723, 701, 669 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 369 (100); HRMS (ES+) calcd for (C₂₁H₃₄O₂Si + Na)⁺: 369.2226; found: 369.2236.

Compound 3c. This compound was prepared from **28** (166 mg, 0.48 mmol) according to the procedure described for the preparation of **1**. Colourless oil (157 mg, 95%). ^{TBSO} Ph $^{\text{CHO}}$ $^{\text{H}}$ NMR (500 MHz, CDCl₃): $\delta = 9.64$ (s, 1H), 7.26–7.22 (m, 2H), 7.21– 7.18 (m, 1H), 7.15–7.12 (m, 2H), 5.76–5.71 (m, 1H), 3.62 (d, J = 10.1 Hz, 1H), 3.55 (d, J = 10.1 Hz, 1H), 2.98 (d, J = 13.9 Hz, 1H), 2.87 (d, J = 13.9 Hz, 1H), 2.37 (d, J = 7.1 Hz, 2H), 1.10–1.05 (m, 2H), 1.00–0.95 (m, 2H),

0.90 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 206.0, 136.7, 130.3 (2C), 128.1 (2C), 126.4, 125.8, 112.3, 62.8, 56.0, 35.8, 32.7, 25.8 (3C), 18.1, 2.9, 2.1, -5.6 (2C); IR (neat): $\tilde{\nu}$ = 3053, 3028, 2954, 2929, 2857, 2714, 1726, 1603, 1496, 1471, 1390, 1360, 1252, 1095, 1031, 1006, 968, 937, 835, 775, 723, 700, 669 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 367 (100); HRMS (ES+) calcd for (C₂₁H₃₂O₂Si + Na)⁺: 367.2069; found: 367.2075; elemental analysis (%) calcd for C₂₁H₃₂O₂Si: C 73.20, H 9.36; found: C 72.12, H 9.42.

Preparation of compound 3d

^a NaH, BnBr, Bu₄NI, DMF, r.t., 63%. ^b (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 86%.

Compound 29. Under N₂, a solution of **24** (153 mg, 0.979 mmol) in DMF (0.4 mL) was $Ph \bigcirc O \bigcirc OH$ added to a suspension of sodium hydride (24 mg, 0.979 mmol) in DMF (1 mL). The resulting mixture was stirred at room temperature during 2 hours. Then, benzyl bromide (117 µL, 0.979 mmol) followed by tetrabutylammonium iodide (217 mg, 0.588 mmol) were added. The

mixture was stirred at room temperature during 16 hours. The mixture was quenched with water (10 mL) and extracted with Et₂O (3 × 15 mL). The organic layer was dried over MgSO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 40/1 \rightarrow 10/1) afforded **29** as a colourless oil (152 mg, 63%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37-7.26$ (m, 5H), 5.78–5.71 (m, 1H), 4.49 (s, 2H), 3.50 (s, 2H), 3.39 (d, J = 9.1 Hz, 1H), 3.33 (d, J = 8.8 Hz, 1H), 2.73–2.50 (m, 1H (OH)), 2.29–2.17 (m, 2H), 1.10–1.03 (m, 2H), 1.00–0.93 (m, 2H), 0.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 138.0$, 128.4 (2C), 127.7, 127.4 (2C), 124.6, 113.6, 78.1, 73.5, 70.5, 39.8, 36.8, 19.0, 2.8, 1.8; IR (neat): $\tilde{\nu} = 3434$ (br), 3031, 2977, 2916, 2856, 1497, 1454, 1406, 1362, 1307, 1292, 1249, 1206, 1095, 1075, 1028, 967, 936, 902, 801, 734, 696 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 269 (100); HRMS (ES+) calcd for (C₁₆H₂₂O₂ + Na)⁺: 269.1517; found: 269.1508; elemental analysis (%) calcd for C₁₆H₂₂O₂: C 78.01, H 9.00; found: C 77.17, H 9.40.

Compound 3d. This compound was prepared from **29** (166 mg, 0.67 mmol) according to the procedure described for the preparation of **1**. Colourless oil (141 mg, 86%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.58$ (s, 1H), 7.35–7.31 (m, 2H), 7.29–7.25 (m, 3H), 5.67–5.61 (m, 1H), 4.48 (s, 2H), 3.53 (d, J = 9.3 Hz, 1H), 3.43 (d, J = 9.2 Hz, 1H), 2.44 (dd, J = 13.8 Hz, J = 7.6 Hz, 1H), 2.38 (dd, J = 13.8 Hz, J = 7.6 Hz, 1H), 1.06 (s, 3H), 1.07–1.02 (m, 2H), 0.98–0.93 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 205.6$, 138.0, 128.3 (2C), 127.6, 127.4 (2C), 125.9, 112.1, 73.4 (2C), 51.0, 35.0, 16.5, 2.9, 1.8; IR (neat): $\tilde{\nu} = 3027$, 2979, 2857, 2704, 1726, 1492, 1454, 1406, 1361, 1305, 1257, 1205, 1093, 1028, 967, 934, 900, 798, 735, 697 cm⁻¹. MS (ES+): *m/z* (rel. intensity): 267 (100); HRMS (ES+) calcd for (C₁₆H₂₀O₂ + Na)⁺: 267.1361; found: 267.1359.

^a Pyridine, pivaloyl chloride, CH₂Cl₂, reflux, 85%. ^b (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 94%.

Compound 30. Under N₂, pyridine (42 μ L, 0.518 mmol) was added to a solution of **24** (140 mg, 0.896 mmol) in CH₂Cl₂ (14 mL). The resulting mixture was stirred at room temperature during 2 hours. Then, pivaloyl chloride (111 μ L, 0.905 mmol) was added and the mixture was stirred under reflux for 14 hours. The mixture was quenched with brine (10 mL) and extracted with Et₂O (3 × 15

mL). The organic layer was dried over MgSO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, $50/1 \rightarrow 25/1 \rightarrow 10/1$) afforded **30** as a colourless oil (183 mg, 85%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.80-5.70$ (m, 1H), 3.95 (d, J = 11.2 Hz, 1H), 3.90 (d, J = 11.2 Hz, 1H), 3.30 (d, J = 11.5 Hz, 1H), 3.26 (d, J = 11.6 Hz, 1H), 2.65–2.35 (m, 1H (OH)), 2.16 (dd, J = 13.6 Hz, J = 7.9 Hz, 1H), 2.10 (dd, J = 13.5 Hz, J = 7.6 Hz, 1H), 1.19 (s, 9H), 1.09–1.02 (m, 2H), 1.00–0.93 (m, 2H), 0.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 179.4$, 125.2, 112.9, 67.5, 66.9, 40.2, 39.0, 36.5, 27.2 (3C), 18.6, 2.8, 1.7; IR (neat): $\tilde{\nu} = 3452$ (br), 2976, 2937, 2876, 1728, 1710, 1481, 1462, 1398, 1366, 1284, 1155, 1096, 1034, 986, 968, 937, 890, 793, 771, 750, 714 cm⁻¹; MS (ES+): m/z (rel. intensity): 263 (100); HRMS (ES+) calcd for (C₁₄H₂₄O₃ + Na)⁺: 263.1623; found: 263.1617.

Compound 3e. This compound was prepared from **30** (207 mg, 0.86 mmol) according to the procedure described for the preparation of **1**. Colourless oil (194 mg, 94%). ¹H NMR (500 MHz, CDCl₃): $\delta = 9.54$ (s, 1H), 5.68–5.61 (m, 1H), 4.14 (d, *J* = 11.3 Hz, 1H), 4.05 (d, *J* = 11.1 Hz, 1H), 2.39 (d, *J* = 7.7 Hz, 2H), 1.14 (s, 9H), 1.07 (s, 3H), 1.08–1.03 (m, 2H), 0.98–0.93 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.6$, 178.0, 126.7, 111.3, 66.2, 50.3, 38.8, 34.9, 27.0 (3C), 16.3, 2.9, 1.8; IR (neat): $\tilde{v} = 2978$, 2937, 2906, 2871, 2709, 1728, 1481, 1461, 1398, 1366, 1282, 1144, 1036, 993, 936, 872, 787, 769, 718 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 261 (100); HRMS (ES+) calcd for (C₁₄H₂₂O₃ + Na)⁺: 261.1467; found: 261.1468.

^a 1) NaH, DMF, 2) Pd₂(dba)₃, dppe, 16, THF, r.t., 99%. ^b LiAlH₄, Et₂O, r.t., 70%.

Compound 31. This compound was prepared from **16** (200 mg, 0.84 mmol) and commercially available 2-ethoxycarbonylcyclopentanone according to the procedure described for the preparation of **17**. Colourless oil (184 mg, 99%). ¹H NMR (500 MHz, CDCl₃): ¹H NMR (500 MHz, CDCl₃): $\delta = 5.68-5.61$ (m, 1H), 4.14 (q, J = 7.2 Hz, 2H), 2.76 (dd, J = 13.7 Hz, J = 7.0 Hz, 1H), 2.49 (dd, J = 13.7 Hz, J = 7.5 Hz, 1H), 2.46–2.34 (m, 2H), 2.29–2.17 (m, 1H), 2.04–1.82 (m, 3H), 1.23 (t, J = 7.2 Hz, 3H), 1.09–1.03 (m, 2H), 1.01–0.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.8$, 171.0, 126.1, 112.5, 61.2, 60.3, 38.0, 35.7, 32.0, 19.4, 13.9, 2.8, 1.8; IR (neat): $\tilde{v} = 2980$, 2906, 1749, 1718, 1448, 1406, 1366, 1278, 1223, 1146, 1117, 1094, 1028, 965, 934, 921, 861, 788, 761, 722 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 245 (100); HRMS (ES+) calcd for (C₁₃H₁₈O₃ + Na)⁺: 245.1154; found: 245.1157; elemental analysis (%) calcd for C₁₃H₁₈O₃: C 70.24, H 8.16; found: C 70.33, H 8.29.

Compound 5. This compound was prepared from **31** (64 mg, 0.29 mmol) according to the procedure described for the preparation of **19**, using 2 equivalents of lithium aluminium hydride. White solid (37 mg, 70%). m.p.: 53–55°C; ¹H NMR (500 MHz, CDCl₃): $\delta = 5.90-5.80$ (m, 1H), 4.05 (m, 1H), 3.61 (d, J = 10.3 Hz, 1H), 3.34 (d, J = 10.9 Hz, 1H), 2.51 (dd, J = 14.2 Hz, J = 7.8 Hz, 1H), 2.29–2.24 (n, 1H (OH)), 2.20 (dd, J = 14.2 Hz, J = 7.1 Hz, 1H), 2.06–1.94 (m, 2H), 1.79–

1.68 (m, 1H), 1.66–1.584 (m, 1H), 1.582–1.47 (m, 2H), 1.27–1.17 (m, 1H), 1.11–1.05 (m, 2H), 1.04–0.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 124.2, 114.9, 79.4, 68.9, 49.4, 32.3, 31.1, 30.4, 19.6, 2.9, 1.8; IR (neat): $\tilde{\nu}$ = 3320, 3038, 2962, 2922, 2901, 2871, 2860, 1467, 1440, 1356, 1319, 1254, 1202, 1136, 1090, 1048, 1036, 1017, 962, 948, 929, 905, 878, 850, 792, 766, 719 cm⁻¹; MS (CI): *m/z* (rel. intensity): 201 (11), 200 (100), 183 (31), 165 (31), 158 (12), 147 (38), 141 (22); HRMS (CI) calcd for (C₁₁H₁₈O₂ + NH₄)⁺: 200.1645; found: 200.1643; elemental analysis (%) calcd for C₁₁H₁₈O₂: C 72.49, H 9.95; found: C 71.99, H 9.90.

Preparation of compound 8

^a 1) NaH, DMF; 2) Pd₂(dba)₃, dppe, **16**, THF, r.t., 71%. ^b LiAlH₄, Et₂O, r.t., 95%. ^c (COCl)₂, DMSO, ET₃N, CH₂Cl₂, -78 °C, full conversion.

Compound 32. Under N₂, at room temperature, a solution of **22** (470 mg, 2.37 mmol) was added to a suspension of sodium hydride (56 mg, 2.37 mmol) in DMF (8 mL). The mixture was stirred at room temperature during 1 hour. In another flask, under N₂, **16** (564 mg, 2.37 mmol) was added to a solution of tris(dibenzylideneacetone)dipalladium (66 mg, 0.071 mmol) and dppe (28

mg, 0.071 mmol) in THF (15 mL) at room temperature. The resulting mixture was stirred at room temperature during 30 minutes before being canulated to the enolate. The resulting mixture was stirred during 48 hours at room temperature. The mixture was quenched with water (15 mL) and extracted with Et₂O (3 × 20 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/Et₂O, 50/1 \rightarrow 20/1) gave **32** as a colourless oil (445 mg, 71%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.65-5.57$ (m, 2H), 3.65 (s, 6H), 2.75 (d, J = 7.8 Hz, 4H), 1.07–1.00 (m, 4H), 0.96–0.90 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.6$ (2C), 126.2 (2C), 111.9 (2C), 58.0, 52.3 (2C), 35.0 (2C), 2.9 (2C), 1.7 (2C); IR (neat): $\tilde{v} = 3053$, 2982, 2953, 2841, 1732, 1436, 1411, 1307, 1281, 1245, 1198, 1180, 1109, 1071, 1000, 969, 947, 931, 861, 826, 794, 756 733 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 287 (100); HRMS (ES+) calcd for (C₁₅H₂₀O₄ + Na)⁺: 287.1259; found: 287.1266; elemental analysis (%) calcd for: C 68.16, H 7.63; found: C 68.15, H 7.69.

Compound 8. This compound was prepared from **32** (286 mg, 1.08 mmol) according to the procedure described for the preparation of **24**. White solid (214 mg, 95%). m.p.: 39–41°C; ¹H NMR (500 MHz, CDCl₃): $\delta = 5.86-5.78$ (m, 2H), 3.59 (s, 4H), 2.20 (d, J = 7.9 Hz, 4H), 2.11–1.96 (m, 2H), 1.11–1.06 (m, 4H), 1.03–0.97 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 124.7$ (2C), 113.5 (2C), 68.6 (2C), 43.4, 33.9 (2C), 2.9 (2C), 1.8 (2C); IR (neat): $\tilde{\nu} = 3346$ (br), 3051, 2978, 2923 1464, 1438, 1408, 1312, 1211, 1091, 1025, 965, 933, 871, 785, 748, 717 cm⁻¹; MS (ES+): *m/z* (rel.

intensity): 231 (100); HRMS (ES+) calcd for $(C_{13}H_{20}O_2 + Na)^+$: 231.1361; found: 231.1364; elemental analysis (%) calcd for: C 74.96, H 9.68; found: C 75.09, H 9.82.

Preparation of compound 11

^a TBSCl, DMAP, Et₃N, CH₂Cl₂, r.t., 83%. ^b (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 97%.

Compound 33. 4-(dimethylamino)pyridine (6 mg, 0.049 mmol) followed by triethylamine TBSO OH (70 μ L, 0.504 mmol) and *t*-butyldimethylsilyl chloride (72 mg, 0.480 mmol) were added to a solution of **8** (100 mg, 0.480 mmol) in CH₂Cl₂ (2 mL) at 0 °C. The resulting mixture was stirred at room temperature for 16 hours. The mixture was quenched with a saturated solution of NH₄Cl (4 mL) then extracted with CH₂Cl₂ (3 × 5 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 10/1 \rightarrow 5/1) afforded **33** as a colourless oil (129 mg, 83%). ¹H NMR (500 MHz, CDCl₃): δ = 5.81–5.75 (m, 2H), 3.55 (s, 2H), 3.53 (d, *J* = 6.3 Hz, 2H), 2.72 (t, *J* = 5.9 Hz, 1H), 2.23–2.13 (m, 4H), 1.09–1.03 (m, 4H), 1.01–0.94 (m, 4H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (125 MHz,

CDCl₃): $\delta = 124.2$ (2C), 113.8 (2C), 69.2, 68.9, 43.2, 34.0 (2C), 25.8 (3C), 18.1, 2.8 (2C), 1.8 (2C), -5.7 (2C); IR (neat): $\tilde{\nu} = 3463$ (br), 3052, 2980, 2954, 2929, 2896, 2857, 1472, 1462, 1438, 1411, 1389, 1361, 1255, 1083, 1039, 1005, 966, 937, 834, 774, 668 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 345 (100); HRMS (ES+) calcd for (C₁₉H₃₄O₂Si + Na)⁺: 345.2226; found: 345.2223; elemental analysis (%) calcd for C₁₉H₃₄O₂Si: C 70.75, H 10.62; found: C 70.45, H 10.60.

Compound 11. This compound was prepared from **33** (30 mg, 0.093 mmol) according to the procedure described for the preparation of **1**. Colourless oil (29 mg, 97%). ^{TBSO} ^{CHO} ¹H NMR (500 MHz, CDCl₃): $\delta = 9.57$ (s, 1H), 5.71–5.65 (m, 2H), 3.67 (s, 2H), 2.49–2.37 (m, 4H), 1.08–1.01 (m, 4H), 0.99–0.92 (m, 4H), 0.85 (s, 9H), 0.00 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 206.3$, 125.3 (2C), 112.5 (2C), 64.0, 55.5, 32.3 (2C), 25.7 (3C), 18.1, 2.8 (2C), 1.9 (2C), -5.7 (2C); IR (neat): $\tilde{v} = 3054$, 2981, 2954, 2929, 2896, 2857, 2704, 1725, 1472, 1438, 1410, 1386, 1362, 1252, 1100, 1006, 967, 934, 836, 815, 776, 670 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 343 (100); HRMS (ES+) calcd for (C₁₉H₃₂O₂Si + Na)⁺: 343.2069; found: 343.2073.

Preparation of compound 14a

^a NaHMDS, allyl bromide, THF, -78 °C to r.t., 74%. ^b LiAlH₄, Et₂O, r.t., 97%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 89%.

Compound 34. Under N₂, NaHMDS (188 mg, 1.023 mmol) was added as solid in one portion to a solution of **17** (170 mg, 0.787 mmol) in THF (5 ml) at -78 °C. The mixture was stirred for 1.5 hour at -78 °C then allyl bromide (89 μ L, 1.023 mmol) and tetrabutylammonium iodide (116 mg, 0.315 mmol) were added. The mixture was slowly warmed at room temperature overnight. The mixture was quenched with a saturated solution of NH₄Cl (5 mL) and extracted with

EtOAc (3 × 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAC, 30/1) gave **34** as a colourless oil (150 mg, 74%). ¹H NMR (500 MHz, CDCl₃): δ = 7.33-7.27 (m, 2H), 7.26-7.20 (m, 3H), 5.57 (ddt, *J* = 17.2 Hz, 10.5 Hz, 7.1 Hz, 1H), 5.51–5.47 (m, 1H), 5.04–5.01 (m, 1H), 5.01–4.97 (m, 1H), 3.62 (s, 3H), 2.93 (dd, *J* = 13.7 Hz, *J* = 7.7 Hz, 1H), 2.85 (dd, *J* = 13.7 Hz, *J* = 7.0 Hz, 1H), 2.79 (dd, *J* = 13.9 Hz, 7.9 Hz, 1H), 2.75 (dd, *J* = 13.9 Hz, 7.0 Hz, 1H), 1.05–0.94 (m, 2H), 0.92–0.85 (m, 1H), 0.85–0.77 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 175.7, 142.0, 133.6, 128.2 (2C), 126.7, 126.5 (2C), 125.6, 118.3, 112.8, 54.2, 51.9, 39.1, 37.2, 2.8, 1.9; IR (neat): \tilde{v} = 2980, 2950, 1729, 1640, 1600, 1581, 1498, 1445, 1320, 1301, 1268, 1206, 1138, 1108, 1088, 1035, 996, 916, 889, 847, 811, 763, 729, 698 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 295 (16), 280 (19), 279 (100); HRMS (ES+) calcd for (C₁₇H₂₀O₂ + Na)⁺: 279.1361; found: 279.1362; Elemental analysis calcd (%) for C₁₇H₂₀O₂: C 79.65, H 7.86; found: C 79.59, H 7.87.

Compound 35. This compound was prepared from 34 following the procedure described for the preparation of **19**. Colourless oil (217 mg, 97%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.41-7.29$ (m, 3H), 7.23–7.18 (m, 2H), 5.74–5.57 (m, 2H), 5.07 (d, J = 16.9 Hz, 1H), 5.01 (d, J = 10.2 Hz, 1H), 3.78 (s, 2H), 2.64 (dd, J = 13.8 Hz, J = 7.4 Hz, 1H), 2.59–2.53 (m, 2H), 2.48 (dd, J = 13.3 Hz, J = 7.3 Hz, 1H), 1.48–1.30 (s, 1H), 1.06–0.98 (m, 2H), 0.97–0.87 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 143.6, 134.6, 128.3 (2C), 126.9 (2C), 126.2, 124.7, 117.6, 113.7, 68.1, 46.5, 39.7, 37.7, 2.8, 1.9; IR (neat): $\tilde{v} = 3403$ (br), 3057, 2977, 2925, 1638, 1498, 1446, 1413, 1043, 997, 963, 697 cm⁻¹; MS (CI): *m/z* (rel. intensity): 246 (100); HRMS (CI) calcd for (C₁₄H₁₆O + NH₄)⁺: 246.1852; found: 246.1855.

Compound 14a. Under N₂, dimethyl sulfoxide (29 μ L, 0.410 mmol) in CH₂Cl₂ (0.5 mL) was added to a solution of oxalyl chloride (18 μ L, 0.205 mmol) in CH₂Cl₂ (1.9 mL) at -78 °C. After 10 minutes stirring at -78 °C, a solution of **35** (36 mg, 0.158 mmol) in CH₂Cl₂ (0.7 mL) was added. After 20 minutes stirring at -78 °C, triethylamine (0.11 mL, 0.788 mmol) was added rapidly and the mixture was stirred at room temperature during 15 minutes. A saturated solution of NH₄Cl

(4 mL) was added to the reaction mixture which was then extracted with CH₂Cl₂ (3 × 5 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography PE/EtOAc, 80/1) gave **1** as a colourless oil (32 mg, 89%). ¹H NMR (500 MHz, CDCl₃): δ = 9.53 (s, 1H), 7.39–7.32 (m, 2H), 7.30–7.25 (m, 1H), 7.24–7.19 (m, 2H), 5.61–5.50 (m, 2H), 5.02 (d, *J* = 16.2 Hz, 1H), 5.01 (d, *J* = 12.9 Hz, 1H), 2.85 (dd, *J* = 14.2 Hz,

Ph

ΩН

J = 7.7 Hz, 1H), 2.79 (dd, J = 14.2 Hz, J = 7.0 Hz, 1H), 2.69 (d, J = 7.5 Hz, 2H), 1.07–0.96 (m, 2H), 0.93–0.81 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.3$, 138.3, 133.1, 128.7 (2C), 127.7 (2C), 127.3, 126.1, 118.6, 112.2, 57.7, 37.1, 34.8, 2.9, 2.0; IR (neat): $\tilde{\nu} = 3057$, 2980, 2921, 2804, 2709, 1722, 1640, 1599, 1580, 1496, 1446, 997, 967, 918, 875, 842, 759, 738, 698 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 249 (100); HRMS (ES+) calcd for (C₁₆H₁₈O + Na)⁺: 249.1255; found: 249.1258.

Preparation of compound 14c

^a KHMDS, 3,3-dimethylallyl bromide, THF, -78 °C to r.t., 82%. ^b LiAlH₄, Et₂O, r.t., 94%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 90%.

Compound 36. This compound was prepared from **17** (119 mg, 0.551 mmol) according to the procedure described for the preparation of **18** and using 3,3-dimethylallyl bromide. Colourless oil (128 mg, 82%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.29$ (t, J = 7.7 Hz, 1H), 7.26–7.18 (m, 4H), 5.53–5.45 (m, 1H), 4.94 (t, J = 6.7 Hz, 1H), 3.61 (s, 3H), 2.91 (dd, J = 13.3 Hz, J = 7.7 Hz, 1H), 2.83 (dd, J = 13.5 Hz, J = 6.5 Hz, 1H), 2.76 (dd, J = 14.3 Hz, J = 7.6 Hz, 1H), 2.64 (dd, J = 14.3 Hz, J = 6.4 Hz, 1H), 1.63 (s, 3H), 1.47 (s, 3H), 1.02–0.91 (m, 2H), 0.88–0.80 (m, 1H), 0.80–0.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 176.2$, 142.4, 134.4, 128.1 (2C), 126.63 (2C), 125.59, 125.4, 119.0, 113.1, 54.5, 51.9, 37.5, 33.3, 26.0, 17.8, 2.8, 1.7; IR (neat) : $\tilde{\nu} = 2980$, 2916, 1730, 1601, 1498, 1446, 1377, 1311, 1268, 1202, 1069, 1031, 1002, 852, 765, 737, 697 cm⁻¹; MS (ES+): m/z (rel. intensity): 307 (100); HRMS (ES+) calcd for (C₁₉H₂₄O₂ + Na)⁺: 307.1674; found : 307.1685; elemental analysis calcd (%) for C₁₉H₂₄O₂: C 80.28, H 8.45; found: C 79.92, H 8.77.

Compound 37. This compound was prepared from 36 (119 mg, 0.419 mmol) according to the

procedure described for the preparation of **19**. Colourless oil (101 mg, 94%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.39-7.29$ (m, 4H), 7.22–7.17 (m, 1H), 5.63–5.57 (m, 1H), 5.04–4.98 (m, 1H), 3.77 (d, J = 6.0 Hz, 2H), 2.64 (ddquint, J = 13.9 Hz, J = 7.2 Hz, J = 1.3 Hz, 1H), 2.56 (ddquint, J = 13.9 Hz,

J = 7.3 Hz, J = 1.3 Hz, 1H), 2.47 (dd, J = 14.6 Hz, J = 7.3 Hz, 1H), 2.40 (dd, J = 14.6 Hz, J = 7.3 Hz, 1H), 1.63 (s, 3H), 1.57 (s, 3H), 1.30 (t, J = 6.0 Hz, 1H), 1.03–0.96 (m, 2H), 0.96–0.87 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.1$, 133.8, 128.7 (2C), 127.1 (2C), 126.0, 124.4, 120.0, 114.1, 68.5, 47.0, 38.0, 33.9, 26.0, 17.9, 2.8, 1.8; IR (neat) : $\tilde{\nu} = 3432$ (br), 3054, 2978, 2914, 1601, 1498, 1445, 1376, 1028, 965, 936, 760, 697 cm⁻¹; MS (ES+): m/z (rel. intensity): 279 (100); HRMS (ES+) calcd for (C₁₈H₂₄O + Na)⁺: 279.1725; found: 279.1729; elemental analysis calcd (%) for C₁₈H₂₄O: C 84.38, H 9.38; found: C 84.50, H 9.79.

Compound 14c. This compound was prepared from **37** (89 mg, 0.348 mmol) according to the procedure described for the preparation of **1**. Colourless oil (79 mg, 90%). ¹H NMR (500 MHz, CDCl₃): δ = 9.53 (s, 1H), 7.38–7.32 (m, 2H), 7.29–7.19 (m, 3H), 5.56–5.50 (m, 1H), 4.99–4.92 (m, 1H), 2.83 (dd, *J* = 14.1 Hz, *J* = 7.6 Hz, 1H), 2.76 (*J* = 14.1 Hz, *J* = 6.9 Hz, 1H), 2.67 (dd, *J* = 15.0 Hz, *J* = 7.5 Hz,

1H), 2.58 (dd, J = 15.0 Hz, J = 6.9 Hz, 1H), 1.62 (s, 3H), 1.49 (s, 3H), 1.04–0.93 (m, 2H), 0.89–0.76 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.8$, 138.8, 134.7, 128.6 (2C), 127.8 (2C), 127.2, 125.7, 118.3, 112.6, 58.2, 35.2, 31.1, 26.1, 18.0, 3.0, 1.9; IR (neat): $\tilde{\nu} = 3055$, 2980, 2916, 2707, 1722, 1599, 1496, 1446, 1377, 1088, 1030, 1002, 967, 932, 880, 858, 759, 698 cm⁻¹; MS (ES+): m/z (rel. intensity): 277 (100); HRMS (ES+) calcd for (C₁₈H₂₄O + Na)⁺: 277.1568; found: 277.1566.

Preparation of compound 14d

^a NaH, allyl bromide, Bu₄NI, THF, 0 °C to r.t., 76%. ^b LiCl, DMSO, water, 150 °C, 66%. ^c 1) LiAlH₄, Et₂O, r.t. 2) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 59%.

Compound 38. Under N₂, A solution of **22** (500 mg, 2.52 mmol) in THF (7 mL) was added M_{eO_2C} CO_2M_e to a suspension of sodium hydride (61 mg, 2.55 mmol) in THF (7 mL) at 0°C. The resulting mixture was stirred at room temperature during 40 minutes then cooled down at 0°C. Allyl bromide (0.22 mL, 2.55 mmol) followed by tetrabutylammonium iodide (186 mg, 0.50 mmol) were added

and the mixture was stirred at room temperature for 1 hour. The mixture was quenched with brine (10 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were dried over Na₂SO₄, filtered and evaporated. Purification by flash chromatography (PE/EtOAc, 40/1) gave **38** as colourless oil (396 mg, 66%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.71-5.61$ (m, 1H), 5.60–5.54 (m, 1H), 5.07–5.04 (m, 2H), 3.68 (s, 6H), 2.75 (d, *J* = 7.4 Hz, 2H), 2.60 (d, *J* = 7.4 Hz, 2H), 1.07–1.02 (m, 2H), 0.98–0.93 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.4$ (2C), 132.5, 126.5, 118.9, 111.7, 57.9, 52.3 (2C), 36.9, 34.9, 2.9, 1.8; IR (neat): $\tilde{\nu} = 3078$, 3048, 2983, 2954, 2841, 1731, 1642, 1436, 1284, 1249, 1198, 1142, 1082, 1043, 996, 968, 921, 859, 823, 756, 721 cm⁻¹; MS (CI): *m/z* (rel. intensity): 257 (10), 256 (84), 240 (12), 239 (100); HRMS (CI) calcd for (C₁₃H₁₈O₄ + H)⁺: 239.1278; found: 239.1275; elemental analysis (%) calcd for C₁₃H₁₈O₄: C 65.53, H 7.61; found: C 65.52, H 7.62.

Compound 39. Lithium chloride (149 mg, 3.51mmol) was added to a solution of 38 (380 mg,

CO₂Me

1.60 mmol) in DMSO (11 mL). Water (100 μ L) was added then the mixture was stirred at 150 °C (oil bath temperature) during 6 hours. At room temperature, the mixture was partitioned between brine (10 mL) and Et₂O and extracted with Et₂O (3 × 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (pentane/Et₂O,

50/1) gave **39** as a colourless oil (188 mg, 66%); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.77-5.64$ (m, 2H), 5.02 (dd, J = 17.2 Hz, J = 1.8 Hz, 1H), 4.99 (d, J = 11.0 Hz, 1H), 3.62 (s, 3H), 2.62–2.54 (m, 1H), 2.51–2.42 (m, 1H), 2.39–2.29 (m, 2H), 2.27–2.20 (m, 1H), 1.05–0.94 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 175.6$, 135.4, 123.9, 116.7, 114.7, 51.4, 45.2, 35.8, 33.8, 2.5 1.9; IR (neat): $\tilde{\nu} = 3078$, 3053, 2982, 2951, 2911, 2846, 1736, 1642, 1436, 1370, 1340, 1262, 1232, 1164, 1120, 1067, 1046, 995, 964, 916, 857, 834, 754, 718 cm⁻¹; MS (CI): *m/z* (rel. intensity): 198 (100), 181 (73), 121 (26); HRMS (CI) calcd for (C₁₁H₁₆O₂ + H)⁺: 181.12285; found: 181.12233; elemental analysis (%) calcd for C₁₁H₁₆O₂: C 73.30, H 8.95; found: C 73.25, H 8.99;

S16

procedure described for the prepared nonices (roo mg, one) minor) decording to the procedure described for the preparation of **19**. The crude alcohol was then oxidised according to the procedure described for the preparation of **1**. Colourless oil (79 mg, 59% over two steps). ¹H NMR (500 MHz, C_3D_6O): $\delta = 9.64$ (s, 1H), 5.79 (ddt, J = 17.3 Hz, J = 10.4 Hz, J = 6.9 Hz, 1H), 5.78–5.70 (m, 1H), 5.06 (d, J = 17.5 Hz, 1H), 5.01 (d, J = 10.4 Hz, 1H), 2.55–2.63 (m, 1H),

2.48–2.55 (m, 1H), 2.46–2.36 (m, 2H), 2.30–2.22 (m, 1H), 1.07–0.98 (m, 4H); ¹³C NMR (125 MHz, C₃D₆O): δ = 204.5, 136.5, 124.6, 117.1, 115.4, 51.7, 32.2, 31.2, 2.7, 2.3; IR (neat): $\tilde{\nu}$ = 3078, 3048, 2981, 2922, 2849, 2718, 1725, 1641, 1440, 1413, 1393, 1070, 994, 966, 915, 835, 776, 749, 719; MS (CI): *m/z* (rel. intensity): 168 (100), 152 (21), 150 (22), 135 (17), 133 (14); HRMS (CI) calcd for (C₁₀H₁₄O + NH₄)⁺: 168.13884; found: 168.13860.

Preparation of compound 14e

^a KHMDS, 3-bromo-1-(trimethylsilyl)-1-propyne, THF, -78 °C to r.t., 77%. ^b LiAlH₄, Et₂O, r.t., 96%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 94%.

Compound 40. This compound was prepared from **17** (233 mg, 1.08 mmol) according to the procedure described for the preparation of **18** and using 3-bromo-1-(trimethylsilyl)-1-propyne. Colourless oil (271 mg, 77%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33-7.27$ (m, 2H), 7.26–7.21 (m, 3H), 5.48 (tquint, J = 7.3 Hz, J = 2.0 Hz, 1H), 3.66 (s, 3H), 3.14–3.01 (m, 2H), 2.93 (d, J = 16.5 Hz, 1H), 2.80 (d, J = 16.7 Hz, 1H), 1.08–0.92 (m, 4H), 0.08 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 174.8$, 141.1, 128.2 (2C), 127.1, 126.7, 126.3 (2C), 112.5, 103.6, 87.5, 54.0, 52.2, 37.2, 26.9, 2.9, 2.0, 0.0 (3C); IR (neat) : $\tilde{\nu} = 2955$, 2178, 1733, 1601, 1498, 1435, 1316, 1250, 1205, 1037, 839, 759, 733, 696 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 349 (100); HRMS (ES+) calcd for (C₂₀H₂₆O₂Si + Na)⁺: 349.1600; found: 349.1609; elemental analysis calcd (%)

for C₁₇H₂₆O₂Si: C 73.62, H 7.98; found: C 72.79, H 8.21.

Compound 41. This compound was prepared from **40** (255 mg, 0.782 mmol) according to the procedure described for the preparation of **19**. Colourless oil (224 mg, 96%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.39-7.29$ (m, 4H), 7.26–7.19 (m, 1H), 5.54–5.44 (m, 1H), 3.95–3.83 (m, 2H), 2.79–2.71 (m, 2H), 2.68–2.58 (m, 2H), 1.59–1.44 (m, 1H (OH)), 1.03–0.94 (m, 3H), 0.94–0.85 (m, 1H), 0.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 142.6$, 128.4 (2C), 126.8 (2C), 126.5, 125.3, 113.1, 104.6, 87.7, 68.9, 46.8, 38.1, 26.0, 2.8, 1.9, 0.0 (3C). IR (neat): $\tilde{\nu} = 3436$, 3055, 2958, 2173, 1741, 1602, 1499, 1445, 1249, 1080, 1025, 838, 759, 696 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 321 (100); HRMS (ES+) calcd for (C₁₉H₂₆OSi + Na⁺): 321.1651; found: 321.1660; elemental analysis calcd (%) for C₁₉H₂₆OSi: C 76.51, H 8.72; found: C 75.96, H 9.04.

Compound 14e. This compound was prepared from **41** (127 mg, 0. 426 mmol) according to the procedure described for the preparation of **1**. The crude material was purified by flash chromatography (PE only \rightarrow PE/EtOAc = 30/1). However, an unidentified small impurity was still visible by NMR. Further purification was not attempted. Colourless oil (107 mg, 85%).¹H NMR (500 MHz, CDCl₃): δ = Ph

S17

9.58 (s, 1H), 7.39–7.33 (m, 2H), 7.32–7.20 (m, 2H), 5.55 (tquint, J = 7.4 Hz, J = 2.0 Hz, 1H), 3.05-2.93 (m, 2H), 2.83 (d, J = 17.0 Hz, 1H), 2.72 (d, J = 17.2 Hz, 1H), 1.09-0.91 (m, 4H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ = 200.9, 137.5, 125.7 (2C), 127.6, 127.5 (2C), 127.0, 111.9, 102.7, 88.5, 57.3, 34.9, 24.5, 3.0, 2.0, -0.1 (3C); IR (neat): $\tilde{\nu} = 2959, 2702,$ 2178, 1725, 1496, 1447, 1249, 107, 838, 758, 697 cm⁻¹; HRMS (ES+) calcd for (C₁₉H₂₄OSi + Na⁺): 319.1494; found: 319.1496.

Preparation of compound 14f

^a LDA, 4-bromo-1-butyne, THF, -78°C, 73%. ^b LiAlH₄, Et₂O, 0°C to r.t., 85%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78°C, 96%.

Compound 42. Under N₂, a solution of LDA (1.80 mmol), prepared from 0.72 mL of a 2.5 M of nBuLi and 0.25 mL of diisopropylamine in THF (3.60 mL) at 0°C, was added CO₂Me to a solution of 17 (150 mg, 0.694 mmol) in THF (3.30 mL) at -78°C. The resulting solution was stirred at -78°C for 1.5 hour then 4-bromo-1-butyne (0.16 mL, 1.80 mmol) was slowly added. The mixture was stirred at -78°C for another 30 minutes before being quenched with few drops of methanol and allowed to

warm at room temperature. The mixture was diluted with a saturated solution of NH₄Cl (5 mL) and extracted with EtOAc (3 \times 10 mL). The organic layers were dried over Na₂SO₄, filtered and concentrated. Purification by flash chromatography (PE/EtOAc, 200/1 \rightarrow 175/1 \rightarrow 150/1) afforded **35** as a colourless oil (136 mg, 73%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 7.33–7.28 (m, 2H), 7.26–7.21 (m, 3H), 5.53–5.46 (m, 1H), 3.64 (s, 3H), 3.10–3.01 (m, 2H), 2.88 (dq, J = 16.3 Hz, J = 2.5 Hz, 1H), 2.75 (dq, J = 16.3 Hz, J = 2.5 Hz, 1H), 1.71 (t, J = 2.5 Hz, 2H), 1.71 (t, J = 2.5 Hz, 3H), 1.05–0.91 (m, 3H), 0.91–0.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 175.1, 141.3, 128.2 (2C), 126.9, 126.34 (2C), 126.31, 112.7, 78.1, 75.1, 54.0, 52.2, 37.4, 25.6, 3.5, 2.9, 1.8; IR (neat): $\tilde{\nu} = 3053$, 3023, 2981, 2951, 2921, 2851, 1731, 1601, 1580, 1498, 1436, 1322, 1302, 1270, 1207, 1070, 1002, 964, 910, 849, 764, 731, 698 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 291 (100); HRMS (ES+) calcd for $(C_{18}H_{20}O_2 + Na)^+$: 291.1361; found: 291.1357; elemental analysis (%) calcd for C₁₈H₂₀O₂: C 80.56, H 7.51; found: C 80.85, H 7.59.

Compound 43. This compound was prepared from 42 (83 mg, 0.310 mmol) according to the procedure described for the preparation of **19**. Colourless oil (63 mg, 84%). ¹H Ph OH NMR (400 MHz, CDCl₃): $\delta = 7.43 - 7.28$ (m, 4H), 7.23-7.15 (m, 1H), 5.55-5.45 (m, 1H), 3.87 (d, J = 5.8 Hz, 2H), 2.75-2.65 (m, 2H), 2.63-2.57 (m, 1H), 2.56(dq, J = 16.4 Hz, J = 2.6 Hz, 1H), 1.75 (t, J = 2.6 Hz, 3H), 1.60-1.56 (m, 1H)(OH)), 1.03–0.90 (m, 3H), 0.89–0.82 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 143.0, 128.3 (2C), 126.9 (2C), 126.3, 125.0, 113.3, 78.2, 76.1, 68.9, 46.7, 38.4, 24.9, 3.5, 2.8, 1.8; IR (neat): $\tilde{\nu} = 2412, 3084, 3048, 2978, 2918, 1602, 1580, 1498, 1445, 1378, 1075,$ 1028, 966, 937, 860, 846, 761, 698 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 263 (100); HRMS (ES+) calcd for $(C_{17}H_{20}O + Na)^+$: 263.1412; found: 263.1410.

Compound 14f. This compound was prepared from **43** (32 mg, 0.133 mmol) according to the procedure described for the preparation of **1**. Colourless oil (29 mg, 91%). ¹H NMR (400 MHz, CDCl₃): $\delta = 9.57$ (s, 1H), 7.39–7.32 (m, 2H), 7.30–7.26 (m, 1H), 7.24–7.21 (m, 2H), 5.57–5.49 (m, 1H), 2.99–2.88 (m, 2H), 2.79 (dq, J = 16.8 Hz, J = 2.6 Hz, 1H), 2.67 (dq, J = 16.8 Hz, J = 2.6 Hz, 1H), 1.06–0.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 201.4$, 137.8,

128.7 (2C), 127.5 (2C), 127.4, 126.5, 112.0, 79.0, 74.4, 57.4, 35.3, 23.2, 3.5, 2.9, 1.9; IR (neat): $\tilde{\nu} = 3055$, 2980, 2919, 2854, 2800, 2712, 1723, 1599, 1580, 1496, 1446, 1384, 1317, 1257, 1231, 1090, 1070, 1002, 967, 933, 910, 874, 837, 759, 733, 698 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 261 (100); HRMS (ES+) calcd for (C₁₇H₁₈O + Na)⁺: 261.1255; found: 261.1257.

Representative procedure for rhodium-catalysed rearrangement

A Teflon-screw Schlenk flask equipped with a small stirring bar was charged with $[Rh(nbd)_2]BF_4$ (3.4 mg, 0.0091 mmol), BINAP (5.7 mg, 0.0091 mmol), and acetone (1.8 mL) under N₂ before bubbling H₂ (3.8 mL, 0.153 mmol) via syringe and sealing the flask under N₂. After stirring for 1h at room temperature, this solution was added to aldehyde **1a** (20.8 mg, 0.091 mmol) in acetone (0.83 mL) was added under N₂ and the flask was again sealed. After stirring for 4 h at room temperature, the mixture was allowed to cool before evaporation. Purification by flash chromatography (PE/EtOAc: 250/1) gave ketone **2** (15.6 mg, 75%).

Compounds 4a–4e, 12, and 15c–15e were obtained according to this procedure using purified aldehydes as starting material and the catalyst loadings specified in the manuscript. Compounds 7, 10, 15a and 15b were obtained from crude aldehydes and after treating this crude material with the active catalyst prepared according to this general and representative procedure. Compound 15f was obtained according to this general procedure, except that BINAP was replaced with dppf.

Compound 2. White solid (25 mg, 89%). m.p.: 41–43 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.32-7.16$ (m, 5H), 5.83–5.73 (m, 1H), 5.64–5.56 (m, 1H), 4.76–4.71 (m, 1H), 4.54–4.49 (m, 1H), 3.15–3.06 (m, 1H), 3.00–2.91 (m, 1H), 2.70 (d, J = 13.6 Hz, 1H), 2.59 (dd, J = 15.0 Hz, J = 7.5 Hz, 1H), 2.53 (d, J = 13.6 Hz, 1H), 2.36-2.21 (m, 3H), 1.06 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 212.2$, 143.2, 140.6, 130.3, 128.4 (2C), 127.2 (2C), 127.0, 126.9, 115.0, 61.8, 44.9, 37.9, 29.1, 27.1, 23.9; IR (neat): $\tilde{v} = 3069$, 3022, 2947, 2918, 2851, 1702, 1641, 1597, 1580, 1497, 1472, 1445, 1375, 1343, 1308, 1267, 1196, 1139, 1032, 963, 893, 793, 770, 728, 698, 680, 661 cm⁻¹; MS (ES+): m/z (rel. intensity): 263 (100); HRMS (ES+) calcd for (C₁₇H₂₀O + Na)⁺: 263.1412; found: 263.1408.

Compound 4a. Colourless oil (25.2 mg, 85%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.33-7.28$ (m, 2H), 7.24–2.20 (m, 3H), 5.85–5.77 (m, 1H), 5.68–5.61 (m, 1H), 3.09 (dd, J = 15.4 Hz, J = 5.9 Hz, 1H), 2.98 (ddd, J = 12.2 Hz, J = 9.5 Hz, J = 6.9 Hz, 1H), 2.47–2.38 (m, 2H), 2.32–2.24 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 213.6$, 143.5, 130.3, 128.6 (2C), 127.0, 126.7, 126.1 (2C), 58.6, 38.7, 34.7, 26.7, 26.4; IR (neat): $\tilde{v} = 3053$, 3022, 2969, 2928, 2851, 1706, 1600, 1580, 1495, 1445, 1371, 1309, 1194, 1153, 1075, 1031, 894, 766, 699, 678, 656 cm⁻¹; MS (CI): *m/z* (rel. intensity) 219 (13), 218 (100), 201 (9), 200 (3); HRMS (CI) calcd for (C₁₄H₁₆O + NH₄)⁺: 218.1539; found: 218.1542; elemental analysis (%) calcd for C₁₄H₁₆O: C 83.96 H 8.05; found: C 83.17, H 8.17.

Compound 4b. Colourless oil (17.8 mg, 87%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.73-5.65$ (m, 1H), 5.59–5.53 (m, 1H), 3.65 (d, J = 9.3 Hz, 1H), 3.37 (d, J = 9.3 Hz, 1H), 3.03 (td, J = 11.2 Hz, J = 5.3 Hz, 1H), 3.00–2.93 (m, 1H), 2.56–2.49 (m, 1H), 2.44–2.21 (m, 2H), 1.91 (dd, J = 15.9 Hz, J = 7.7 Hz, 1H), 1.00 (s, 3H), 0.84 (s, 9H), -0.01 (s, 3H), -0.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 217.4$, 129.0, 126.7, 70.1, 56.0, 39.9, 31.5, 27.6, 25.8 (3C), 19.9, 18.2, -5.86 (2C); IR (neat): $\tilde{v} = 2954$, 2929, 2896, 2857, 1706, 1464, 1383, 1362, 1311, 1251, 1203, 1089, 1006, 939, 907, 834, 774, 734, 657 cm⁻¹; MS (CI): *m/z* (rel. intensity): 271 (12), 269 (100); HRMS (CI) calcd for (C₁₅H₂₈O₂Si + H): 269.19368; found: 255.19440; elemental analysis (%) calcd for C₁₅H₂₈O₂Si: C 67.11, H 10.51; found: C 68.00, H 10.70. **Compound 4c.** Colourless oil (23.4 mg, 93%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.24-7.16$ (m, 3H), 7.06 (d, J = 7.2 Hz, 2H), 5.70–5.61 (m, 1H), 5.53 (dt, J = 11.4 Hz, TBSO 3.8 Hz, 1H), 3.65 (d, J = 9.2 Hz, 1H), 3.46 (d, J = 9.2 Hz, 1H), 2.87 (s, 2H), 2.69 (ddd, J = 11.3 Hz, J = 7.9 Hz, J = 6.0 Hz, 1H), 2.62 (dd, J = 15.6 Hz, J =Ph 6.5 Hz, 1H), 2.55 (ddd, J = 11.3 Hz, J = 7.7 Hz, J = 6.0 Hz, 1H), 2.36–2.23 (m, 2H), 2.16 (dd, J = 15.6 Hz, J = 6.3 Hz, 1H), 0.87 (s, 9H), 0.00 (s, 6H); ¹³C NMR (125) MHz, CDCl₃): $\delta = 216.6, 137.5, 130.2$ (2C), 129.2, 128.0 (2C), 126.3 (2C), 66.5, 60.4, 40.0, 39.9, 27.7, 27.4, 25.8 (3C), 18.2, -5.6, -5.7; IR (neat): $\tilde{\nu} = 3026, 2952, 2928, 2856, 1702,$ 1603, 1495, 1471, 1441, 1388, 1361, 1311, 1251, 1195, 1095, 1031, 1022, 1004, 939, 900, 834, 775, 733, 701, 667 cm⁻¹; MS (ES+): m/z (rel. intensity): 367 (100); HRMS (ES+) calcd for $(C_{21}H_{32}O_2Si + Na)^+$: 367.2069; found: 367.2066; elemental analysis (%) calcd for C₂₁H₃₂O₂Si: C 73.20, H 9.36; found: C 72.98, H 9.30.

Compound 4d. Colourless oil (15.3 mg, 77%). ¹H NMR (500 MHz, C_6D_6): $\delta = 7.22-7.17$ (m,

78.65, H 8.25; found: C 77.99, H 8.41.

Ρń

4H), 7.10-7.08 (m, 1H), 5.58-5.49 (m, 1H), 5.38-5.30 (m, 1H), 4.24 (d, J =12.0 Hz, 1H), 4.17 (d, J = 12.0 Hz, 1H), 3.52 (d, J = 8.6 Hz, 1H), 3.17 (d, J =8.6 Hz, 1H), 2.97-2.91 (m, 1H), 2.88 (dt, J = 11.6 Hz, 8.2 Hz, 1H), 2.42 (dt, J = 11.5 Hz, 5.7 Hz, 1H), 2.04-1.96 (m, 2H), 1.75 (dd, J = 15.7 Hz, J = 7.8 Hz, 1H), 1.09 (s, 3H); ¹³C NMR (125 MHz, C_6D_6): $\delta = 214.4$, 138.9, 129.6, 128.6 (2C), 127.73, 127.66 (2C), 126.7, 77.6, 73.4, 54.9, 39.7, 32.2, 27.7, 20.6; IR (neat): $\tilde{\nu} = 3064$, 3023, 2967, 2928, 2901, 2855, 1704, 1494, 1454, 1371, 1312, 1252, 1205, 1100, 1029, 907, 776, 737, 698 cm⁻¹; MS (ES+): m/z (rel. intensity): 267 (100); HRMS (ES+) calcd for

Compound 4e. Colourless oil (5.4 mg, 54%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.74-5.60$ (m, 2H), 4.06 (d, J = 10.7 Hz, 1H), 4.03 (d, J = 10.7 Hz, 1H), 2.91 (ddd, J = 15.2Hz, J = 10.0 Hz, J = 5.2 Hz, 1H), 2.69-2.62 (m, 2H), 2.45-2.363 (m, 1H), 2.356-2.58 (m, 1H), 2.11 (dd, J = 15.6 Hz, J = 6.5 Hz, 1H), 1.16 (s, 9H), 1.12 PivÓ (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.6$, 178.1, 129.8, 125.9, 69.8, 53.7, 39.0, 32.0, 29.7, 27.3, 27.1 (3C), 20.5; IR (neat): $\tilde{\nu} = 3023$, 2967, 2929, 2871, 2856, 1732, 1708, 1479, 1463, 1396, 1365, 1283, 1152, 1080, 1035, 989, 905, 769 cm⁻¹; MS (ES+): m/z (rel. intensity): HRMS (ES+) calcd for $(C_{14}H_{22}O_3 + Na)^+$: 261.1467; found: 261.1355.

 $(C_{16}H_{20}O_2 + Na)^+$: 267.1361; found: 267.1356; elemental analysis (%) calcd for $C_{16}H_{20}O_2$: C

Compound 12. Colourless oil (34.5 mg, 88%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.69-5.61$ (m, 2H), 5.59-5.52 (m, 1H), 3.64 (d, J = 9.6 Hz, 1H), 3.55 (d, J = 9.6 Hz, 1H), 2.82–2.75 (m, 1H), 2.74–2.64 (m, 2H), 2.45–2.37 (m, 2H), 2.35–2.28 TBSO (m, 2H), 2.21 (dd, J = 15.7 Hz, J = 6.7 Hz, 1H), 1.06–1.01 (m, 2H), 0.99– 0.90 (m, 2H), 0.85 (s, 9H), -0.01 (s, 3H), -0.02 (s, 3H); ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 216.6, 129.2, 126.7, 124.9, 113.4, 66.9, 59.8, 39.9, 36.1, 28.4, 113.4, 66.9, 59.8, 10.9, 1$ 27.5, 25.8 (3C), 18.1, 2.8, 1.8, -5.65, -5.69; IR (neat): $\tilde{\nu} = 3018, 2953, 2929, 2856, 1703,$ 1464, 1440, 1408, 1386, 1361, 1312, 1251, 1197, 1095, 1005, 960, 938, 902, 834, 775, 667 cm⁻¹; MS (ES+): m/z (rel. intensity): 343 (100); HRMS (ES+) calcd for (C₁₉H₃₂O₂Si + Na)⁺: 343.2069; found: 343.2067; elemental analysis (%) calcd for C₁₉H₃₂O₂Si: C 71.19, H 10.06; found: C 71.30, H 10.30.

Compound 15a. This compound was obtained from crude aldehyde obtained according to the procedure and aqueous work up described for the preparation of compound **9**. Colourless oil (15.6 mg, 75% over two steps). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.34-7.28$ (m, 2H), 7.23-7.18 (m, 3H), 5.81-5.73 (m, 1H), 5.66-5.59 (m, 1H), 5.39-5.28 (m, 1H), 4.94 (d, J = 17.0 Hz, 1H), 4.97 (d, J = 9.0 Hz, 1H), 3.07 (dd, J = 15.4 Hz, 5.5 Hz, 1H), 2.98-2.91 (m, 1H), 2.78 (dd, J = 14.2 Hz, 5.9 Hz, 1H), 2.54 (dd, J = 14.5 Hz, 12.2 Hz, 1H), 2.53 (t, J = 14.3 Hz, 1H), 2.35-2.25 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 212.4$, 140.3, 134.7, 130.4, 128.5, 126.9, 126.8, 117.8, 61.8, 42.2, 38.3, 29.8, 26.7; IR (neat): $\tilde{v} = 3063$, 3022, 2972, 2927, 2856, 1705, 1638, 1598, 1578, 1495, 1472, 1445, 1345, 1308, 1196, 1134, 1090, 1075, 1035, 998, 948, 913, 840, 785, 761, 727, 698, 673 cm⁻¹; MS (CI): *m/z* (rel. intensity): 245 (16), 244 (100), 228 (10), 227 (70); HRMS (CI) calcd for (C₁₆H₁₈O + H)⁺: 227.1430; found: 227.1433; elemental analysis (%) calcd for C₁₆H₁₈O: C 84.91, H 8.02; found: C 84.96, H 8.18.

Compound 15c. Colourless oil (17.2 mg, 75%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.31-7.27$ (m, 2H), 7.23–7.16 (m, 3H), 5.81–5.71 (m, 1H), 5.66–5.57 (m, 1H), 4.76– 4.67 (m, 1H), 2.98 (dd, J = 15.3 Hz, J = 5.8 Hz, 1H), 2.91 (dt, J = 16.4 Hz, 8.1 Hz, 1H), 2.58 (dd, J = 14.8 Hz, 6.6 Hz, 1H), 2.52 (dd, J = 15.0 Hz, 8.7 Hz, 1H), 2.49 (dd, J = 15.3 Hz, 6.9 Hz), 2.39–2.32 (m, 1H), 2.31–2.22 (m, 2H), 1.58 (s, 3H), 1.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 213.0$, 140.8, 134.3, 130.3, 128.3 (2C), 127.09, 127.05 (2C), 126.7, 119.8, 62.3, 38.6, 36.1, 30.1, 26.7, 25.9, 17.8; IR (neat): $\tilde{\nu} = 3084$, 3053, 3022, 2967, 2914, 2851, 1706, 1599, 1580, 1496, 1445, 1376, 1345, 1308, 1195, 1140, 1110, 1031, 1002, 981, 948, 899, 844, 774, 751, 724, 698, 681, 667 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 277 (100); HRMS (ES+) calcd for (C₁₈H₂₂O + Na)⁺: 277.1568; found: 277.1568; elemental analysis (%) calcd for C₁₈H₂₂O₂: C 84.99, H 8.72; found: C 84.94, H 8.71.

Compound 15d. Colourless oil (99% conversion was obtained when the reaction was performed in NMR tube). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.80-5.65$ (m, 3H), 5.018 (dq, J = 17.1 Hz, J = 1.6 Hz, 1H), 5.017–4.98 (m, 1H), 2.91–2.83 (m, 1H), 2.68 (ddd, J = 15.1 Hz, J = 11.3 Hz, J = 3.9 Hz, 1H), 2.53 (dd, J = 6.5 Hz, J = 3.7 Hz, 1H), 2.52–2.43 (m, 2H), 2.37–2.29 (m, 1H), 2.23–2.15 (m, 1H), 2.12–2.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 214.0$, 136.0, 129.5, 128.8, 116.8, 50.3, 42.2, 35.1, 30.1, 24.1; IR (neat): $\tilde{\nu} = 3073$, 3018, 2916, 2851, 1706, 1641, 1436, 1373, 1259, 1219, 1194, 991, 913 cm⁻¹; MS (EI): m/z (rel. intensity): 150 (6), 96 (48), 95 (27), 81 (24), 79 (53), 67 (44), 65 (18), 53 (44), 51 (21), 41 (59), 39 (100); HRMS (CI) calcd for (C₁₀H₁₄O)⁺: 150.1030; found: 150.1037.

Compound 15e. Colourless oil (14 mg, 58%). 7.33–7.28 (m, 2H), 7.26–7.24 (m, 1H), 7.22– 7.19 (m, 1H), 5.88–5.80 (m, 1H), 5.65 (dt, J = 11.4 Hz, 4.2 Hz, 1H), 3.12 (ddquint, J = 15.4 Hz, 6.1 Hz, 1.6 Hz, 1H), 2.94 (dt, J = 12.4 Hz, 8.2 Hz, 1H), 2.84 (dd, J = 17.2 Hz, J = 1.1 Hz, 1H), 2.80 (dd, J = 15.5 Hz, 7.0 Hz, 1H), 2.63 (d, J = 17.2 Hz, 1H), 2.40 (dt, J = 12.4 Hz, 5.6 Hz, 1H), 2.31–2.22 (m, 2H) 0.03 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 211.4$, 139.7, 130.9, 128.3 (2C), 127.2, 127.0 (2C), 126.7,

104.1, 87.7, 61.2, 38.8, 30.4, 29.7, 26.5, 0.0; IR (neat): $\tilde{\nu} = 3058$, 3024, 2958, 2901, 2851, 2177, 1709, 1598, 1497, 1472, 1446, 1308, 1249, 1199, 1142, 1051, 1037, 1025, 1001, 976, 943, 842, 759, 729, 698, 670 cm⁻¹; MS (ES+): m/z (rel. intensity): 319 (100); HRMS (ES+) calcd for (C₁₉H₂₄OSi + Na)⁺: 319.1494; found: 319.1487; elemental analysis (%) calcd for C₁₉H₂₄OSi: C 76.97, H 8.16; found: C 71.11, H 8.46.

Compound 15f. Colourless oil (7.5 mg, 75%). 7.33–7.28 (m, 2H), 7.26–7.20 (m, 3H), 5.87– 5.79 (m, 1H), 5.64 (dt, J = 11.4 Hz, J = 4.3 Hz, 1H), 3.13–3.06 (m, 1H), 2.92 (dt, J = 12.5 Hz, J = 8.0 Hz, 1H), 2.81 (dd, J = 15.5 Hz, J = 6.8 Hz, 1H), 2.75–2.69 (m, 1H), 2.60 (dq, J = 16.9 Hz, J = 2.6 Hz, 1H), 2.40 (dt, J = 12.5 Hz, J = 5.8 Hz, 1H), 2.28–2.21 (m, 2H), 1.66 (t, J = 2.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 211.9$, 140.1, 130.6, 128.3 (2C), 127.1, 126.9 (2C), 126.8, 78.4, 75.7, 61.3, 38.9, 30.5, 28.7, 26.5, 3.5; IR (neat): $\tilde{\nu} = 3053$, 3023, 2920, 2853, 1702, 1598, 1578, 1497, 1446, 1308, 1196, 1142, 1037, 758, 698, 670 cm⁻¹; HRMS (ES+) calcd for (C₁₇H₁₈O + Na)⁺: 261.1255; found: 261.1264.

Oxidation of diol 5 and hydroacylation of 1,3-keto-aldehyde 6

^a Dess-Martin periodinane, NaHCO₃, CH₂Cl₂, 0 °C, full conversion. ^b 10 mol% [Rh(BINAP)]BF₄, acetone, 60 °C. 80% over two steps.

Compound 7. Under N₂, **5** (14 mg, 0.0768 mmol) was added to a suspension of Dess Martin periodinane (137 mg, 0.323 mmol) and NaHCO₃ (84 mg, 0.999 mmol) in CH₂Cl₂ (1 mL) at 0 °C. The resulting mixture was stirred at 0 °C for 2 hours. The mixture was filtered through deactivated neutral alumina and rinsed with a mixture PE/Et₂O (2:1). The filtrate was evaporated and the filtration was repeated. Crude

compound 6 was obtained as colourless oil [¹H NMR (500 MHz, CDCl₃): $\delta = 5.58-5.50$ (m, 1H), 2.76 (dd, J = 14.0 Hz, 7.6 Hz, 1H), 2.55 (dd, J = 14.1 Hz, 7.1 Hz, 1H), 2.48 (dd, J = 11.7Hz, 5.9 Hz, 1H), 2.53–2.17 (m, 2H), 1.98–1.76 (m, 3H), 1.09–1.03 (m, 2H), 1.02–0.94 (m, 2H)]. This crude material was not further purified due to its inherent instability. Instead, a solution of [Rh(BINAP)]BF₄ (0.00768 mmol) in 1.5 mL acetone prepared according to the general procedure was added under N₂ to crude ketoaldehyde 6. After 12 h at 60 °C and purification by flash chromatography (PE/Et₂O = $70/1 \rightarrow 50/1 \rightarrow 30/1$), spirobisketone 7 was obtained as colourless oil (10.8 mg, 80%). ¹H NMR (500 MHz, CDCl₃): $\delta = 5.72-5.64$ (m, 1H), 5.63–5.56 (m, 1H), 3.28 (dt, J = 11.7 Hz, J = 5.6 Hz, 1H), 3.03–2.95 (m, 1H), 2.65–2.57 (m, 1H), 2.56-2.49 (m, 1H), 2.46 (dt, J = 11.6 Hz, 4.9 Hz, 1H), 2.42-2.35 (m, 2H), 2.33-2.23(m, 1H), 2.08–2.04 (m, 1H), 2.03 (dd, J = 15.6 Hz, 8.0 Hz, 1H), 1.89–1.75 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 215.6, 210.0, 130.2, 125.5, 69.5, 39.1, 38.2, 33.2, 30.7, 27.3, 19.3; IR (neat): $\tilde{\nu} = 3018, 2961, 2854, 1736, 1699, 1626, 1608, 1442, 1405, 1349, 1312, 1274, 1199,$ 1147, 1089, 1044, 1011, 951, 916, 860, 824, 774, 693, 662 cm⁻¹; MS (CI): *m/z* (rel. intensity): 196 (100), 179 (12), 151 (10); HRMS (CI) calcd for $(C_{11}H_{14}O_2 + H)^+$: 179.1067; found: 179.1069.

^a (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, full conversion. ^b 10 mol% [Rh(BINAP)]BF₄, acetone, r.t., 82% over two steps

Compound 10. Under N₂, dimethyl sulfoxide (30 μ L, 0.425 mmol) was added to a solution of oxalyl chloride (18 μ L, 0.210 mmol) in CH₂Cl₂ (1.5 mL) at -78 °C. After 10 minutes stirring at -78 °C, a solution of alcohol **8** (21 mg, 0.103 mmol) in CH₂Cl₂ (0.6 mL) was added. After 20 minutes stirring at -78°C, triethylamine (0.12 mL, 0.83 mmol) was added rapidly and the mixture was stirred at room

temperature during 30 minutes. The mixture was quenched with a saturated aqueous solution of CuSO₄ (4 mL) and extracted with CH₂Cl₂ (3 \times 5 mL). The organic layers were concentrated before being dissolved in CH₂Cl₂ (5 mL) and washed with water (2 x 3 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated, affording 9 as colourless oil. This aqueous work up² was repeated until no Me₂S was visible by NMR [¹H NMR (500 MHz, CDCl₃): $\delta = 9.71$ (s, 2H), 5.73–5.62 (m, 2H), 2.70 (d, J = 7.2 Hz, 4H), 1.10–1.03 (m, 4H), 1.01-0.93 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 201.5$ (2C), 127.2 (2C), 110.9 (2C), 65.5, 33.2 (2C), 3.0 (2C), 2.1 (2C)]. This crude material was not further purified due to its inherent instability. Instead, a solution of [Rh(BINAP)]BF₄ (0.01 mmol) in 2 mL acetone prepared according to the general procedure was added under N₂ to crude bisaldehyde 9. After stirring at room temperature for 12h, evaporation of volatiles and purification by flash chromatography gave 10. Colourless oil (16.7 mg, 82%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 5.73-5.59 (m, 4H), 3.23 (td, J = 11.4 Hz, J = 5.5 Hz, 2H), 3.20-3.14 (m, 2H), 2.48-2.40 (m, 2H), 2.35 (dt, J = 11.4 Hz, J = 5.1 Hz, 2H), 2.33–2.23 (m, 2H), 2.18 (dd, J = 15.7 Hz, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 209.6 (2C), 130.2 (2C), 126.1 (2C), 75.6, 38.5 (2C), 28.5 (2C), 27.4 (2C); IR (neat): $\tilde{\nu} = 3023$, 2973, 2896, 2856, 1709, 1691, 1469, 1440, 1382, 1349, 1311, 1195, 1140, 1112, 1076, 1043, 980, 934, 902, 836, 794, 746, 669 cm⁻¹; MS (CI): m/z (rel. intensity): 222 (100), 205 (32); HRMS (CI) calcd for ($C_{13}H_{16}O_2 + H$): 205.1223; found: 205.1221; elemental analysis (%) calcd for C₁₃H₁₆O₂: C 76.44, H 7.90; found: C 75.49, H 7.81.

² M. L. Grachan, M. T. Tudge, E. N. Jacobsen, Angew. Chem. Int. Ed., 2008, 47, 1469

Preparation of compound 14b and hydroacylation to obtain 15b

^a LiHMDS, crotyl chloride, THF, -78 °C to r.t., 83%. ^b LiAlH₄, Et₂O, r.t., 94%. ^c (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, CuSO₄ aqueous work up, full conversion. ^d 10 mol% [Rh(BINAP)]BF₄, acetone, r.t., 70% over two steps

Compound 44. This compound was prepared from 17 (152 mg, 0.698 mmol) according to the procedure described for the preparation of 18 and using crotyl chloride (E/Z =,CO₂Me 6:1). This compound was obtained as an inseparable mixture of stereoisomers $(E/Z = 5:1 \text{ (determined by }^{1}\text{H NMR}))$. Colourless oil (157 mg, 83%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.32-7.26 \text{ (m, 2H)}, 7.26-7.19 \text{ (m, 3H)}, 5.52-5.36 \text{ (m, 2H)}, 7.26-7.19 \text$ 2H), 5.23–5.14 (m, 1H), 3.61 (s, 3H), 2.89 (dd, J = 13.8 Hz, J = 7.7 Hz, 1H), 2.82 (dd, J =14.1 Hz, J = 6.9 Hz, 1H), 2.72 (dd, J = 13.7 Hz, J = 7.6 Hz, 1H,), 2.64 (dd, J = 13.8 Hz, J = 6.7 Hz, 1H), 1,59 (dd, J = 6.6Hz, J = 0.9Hz, 3H), 1.02–0.92 (m, 2H), 0.89–0.82 (m, 1H), 0.82-0.74 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 175.9$, 142.3, 129.0, 128.18 (2C), 126.63, 126.53 (2C), 125.8, 125.4, 112.97, 54.4, 51.9, 37.8, 37.2, 18.1, 2.75, 1.79; Additional signals for the minor isomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 2.93$ (dd, J = 14.1 Hz, 7.8 Hz, 1H), 1.47 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 128.21$ (2C), 126.9, 126.7, 126.57 (2C), 125.6, 125.1, 113.05, 52.0, 37.4, 32.0, 12.8, 2.80, 1.76; IR (neat): $\tilde{v} = 3026$, 2981, 2949, 1730, 1600, 1498, 1439, 1260, 1201, 1130, 1092, 1068, 1036, 1002, 967, 934, 919, 847, 763, 736, 697 cm⁻¹; MS (ES+): *m/z* (rel. intensity): 293 (100); HRMS (ES+) calcd for $(C_{18}H_{22}O_2 + Na)^+$: 293.1517; found: 293.1525; elemental analysis calcd (%) for $C_{18}H_{22}O_2$: C 79.96, H 8.20; found: C 80.41, H 8.46.

Compound 45. This compound was prepared from 44 (122 mg, 0.452 mmol) according to the procedure described for the preparation of 19. This compound was obtained as OН an inseparable mixture of stereoisomers (E/Z = 5:1 (determined by ¹H NMR)). Colourless oil (103 mg, 94%). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.40-7.29$ (m, 4H), 7.23-7.17 (m, 1H), 5.66-5.56 (m, 1H), 5.54-5.44 (m, 1H), 5.34-5.24 (m, 1H), 3.78 (s, 2H), 2.61 (dd, J = 13.9 Hz, J = 7.5 Hz, 1H), 2.54 (dd, J = 13.8 Hz, J = 7.2 Hz, = 6.0 Hz, J = 1.0 Hz, 3H, 1.41–1.31 (m, 1H (OH)), 1.05–0.96 (m, 2H), 0.96–0.86 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 143.9, 128.3 (2C), 128.1, 127.0 (2C), 126.8, 126.0, 124.4, 113.9, 68.26, 46.6, 38.4, 37.8, 18.0, 2.7, 1.8; Additional signals for the minor isomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 2.67$ (dd, J = 13.9 Hz, 7.2 Hz, 1H), 1.58 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 126.2, 126.1, 124.6, 114.0, 68.32, 46.8, 32.6, 12.9, 2.8; IR (neat): $\tilde{\nu} = 3413$ (br), 3024, 2978, 2917, 1601, 1498, 1445, 1027, 967, 937, 759, 697 cm⁻¹; MS (ES+): m/z (rel. intensity): 265 (100); HRMS (ES+) calcd for $(C_{17}H_{22}O + Na)^+$: 265.1568; found: 265.1569; elemental analysis calcd (%) for C₁₇H₂₂O: C 84.25, H 9.15; found: C 83.94, H 9.48.

Compound 15b. Aldehyde 14b prepared from 45 (23.5 mg, 0.093 mmol) according to the procedure described for the preparation of 9 was not further purified due to its inherent instability [¹H NMR (500 MHz, CDCl₃): $\delta = 9.52$ (s, 1H), 7.40–7.32 (m, 2H), 7.31–7.17 (m, 3H), 5.62–5.39 (m, 2H), 5.26–5.14 (m, 1H), 2.90–2.56 (m, 4H), 1.58 (d, J = 6.5 Hz, 3H), 1.05–0.94 (m, 2H), 0.92-0.78 (m, 2H); Additional signal for the minor isomer: ¹H NMR (500 MHz, CDCl₃): $\delta = 1.48$

(d, J = 6.5 Hz, 3H)]. Instead, a solution of [Rh(BINAP)]BF₄(0.0093 mmol) in 1.9 mL acetone prepared according to the general procedure was added under N₂ to the crude aldehyde. After stirring at room temperature for 12h, evaporation of volatiles and purification by flash chromatography gave 15b as inseparable mixture of stereoisomers (E/Z = 4:1, ratio determined by ¹H NMR). Colourless oil (16.3 mg, 70%). ¹H NMR (500 MHz, CDCl₃): $\delta =$ 7.33-7.27 (m, 2H), 7.24-7.16 (m, 3H), 5.81-5.71 (m, 1H), 5.66-5.57 (m, 1H), 5.39 (dq, J =15.1 Hz, J = 6.5 Hz, 1H), 5.03–4.92 (m, 1H), 3.05–2.92 (m, 1H), 2.92 (dt, J = 11.9 Hz, J = 8.2Hz, 1H), 2.67–2.58 (m, 1H), 2.49 (dd, J = 15.3 Hz, J = 7.0 Hz, 1H), 2.43 (dd, J = 14.1 Hz, J = 14.1 Hz 8.6 Hz, 1H), 2.37–2.301 (m, 1H), 2.297–2.22 (m, 2H), 1.54 (d, J = 6.3 Hz, 3H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 212.8, 140.7, 130.2, 128.4 (2C), 128.3, 126.96, 126.92 (2C), 126.9,$ 126.7, 62.1, 41.2, 38.6, 30.04, 26.7, 17.96; Additional signals for the minor isomer: ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: 5.49 (dqt, J = 11.0 Hz, J = 6.8 Hz, J = 1.5 Hz, 1H), 1.46 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 140.5, 130.5, 127.04, 126.8, 125.9, 38.4, 34.7, 30.05, 26.8, 17.97; IR (neat): $\tilde{v} = 3058, 3022, 2916, 2854, 1706, 1598, 1578, 1495, 1467, 1445,$ 1377, 1345, 1308, 1196, 1142, 1074, 1036,1002, 970, 912, 770, 753, 728, 698, 665 cm⁻¹; MS (ES+): m/z (rel. intensity): 263 (100); HRMS (ES+) calcd for $(C_{17}H_{20}O + Na)^+$: 263.1412; found: 263.1410.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

12 - Pro SP 255 255 255 255 255 255 255 255 255 25	1048 11 11 10	TCL STATES STATE	CUTLET:
00451Ng parametera 32768 500.11760575 W4 00.300 0.300 H2 0.300 H2 0.40	CHANNEL 21	1 m Manuerter 2010/201 1 m 2010/201 2 m 2010	Dats Psrametors DPC-06-092-01 4

27588883 - 33	8002 1012 1012	Tra - Acq bate r w r w r w r w r w r w r w r w r w r w	NNSCAD NNAC NNAC NNAC
500.1106235 Min 500.1106235 Min 23 20 2.10 2.10 2.10 2.10 1.00	10 ANNAL #1	1 ORIGONO AND CONTRACTOR OF CO	int in 1.00 miles (10.00) 1010-000-000-000 1

Correct SOME EXPTC

t Data Parameters

TO TO IL ALL

12 12 12 12 12 12 12 12 12 12 12 12 12 1	NLC.	F2 - Ass Take The INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUM INSTRUMING INSTRUMIN INSTRUMING INSTRUMIN INSTRUMIN INSTRUMINI	Curren- LK23/C
00000000000000000000000000000000000000	- SHANNEL EL	11111	Jula Jurunelein 1 1 1

15d

S89

Compound 4c – COSY2

S91

4

2 F1 [ppm]

Compound 15c – COSY2

Compound15c – HSQC

DFC-04-038-01 6 5.8 1 E:\ DCrepin MAN ۵ 5.6 5.4 5.2 0 3 5.0 4.8 F2 [ppm] 125 120 140 135 130 115 F1 [ppm]

Compound 15d – HSQC