Electronic Supplementary Information

Mapping the nanoparticles coating monolayer with NMR pseudo-contact shifts

Gaetano Guarino, Federico Rastrelli and Fabrizio Mancin

Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy. Fax: +39 0498275829; Tel: +39 0498275666;

E-mail: fabrizio.mancin@unipd.it

(Total 13 pages including this cover page)

Table of Contents

1.	Experimental procedures	S2
3.	Synthesis and characterization of the nanoparticles	S2
5.	Additional NMR experiments	S5

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

1. Experimental Procedures.

General: Solvents were purified by standard methods. All commercially available reagents and substrates were used as received. NMR spectra were recorded using a Bruker AV300 spectrometer equipped with a 5 mm BBO *z* gradient probe operating at 300 MHz for ¹H. Chemical shifts are reported relative to internal Me₄Si. Multiplicity is given as follow: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet, br = broad peak. UV-Visible spectra were recorded on Perkin Elmer Lambda 45 spectrophotometer equipped with a thermostated cell holder. O-(decylphosphoryl)choline (1), methylbenzoate (2), potassium *p*-toluenesulphonate (3), potassium tetrakis(4-chlorophenyl)borate (5), trimethyloctylammonium bromide (6) were Aldrich products used as received. O-(11-mercapto-decylphosphoryl)choline (1) were prepared as reported.¹

2. Synthesis and characterization of monolayer protected gold nanoparticles (MPGN)

Monolayer protected gold nanoparticles (MPGN) were prepared according to a previously reported two-step procedure.²,³ All the glassware used in the MPGN preparation were washed with aqua regia and rinsed with distilled water. HAuCl₄ is strongly hygroscopic and was weighted within a dry-box.

A solution of HAuCl₄·3H₂O (100 mg, 0.254 mmol) in water (4 mL) was extracted with a solution of tetraoctylammonium bromide (5 g, 9.14 mmol) in N₂ purged toluene (250 mL divided in 3 portions). To the resulting reddish-orange organic solution, dioctylamine (3.36 g, 13.92 mmol) is added (the amount of dioctylamine was calculated² in order to obtain 2 nm nanoparticles). The mixture is vigorously stirred under N₂ for 30 min. During this period of time the color of the mixture fades. A solution of NaBH₄ (93.0 mg, 2.46 mmol) in H₂O (2 mL) is then rapidly added. The color of the solution turns rapidly to black due to nanoparticles formation. After 2 hours of

stirring, the aqueous layer is removed. To the above nanoparticle solution, thiol **1** (0.254 mmol) dissolved in 3 mL of isopropanol is rapidly added.

The reaction mixture is evaporated and the resulting crude is dissolved in methanol and purified by gel permeation chromatography with Sephadex LH-20 resin. **1**-coated nanoparticles are soluble in D_2O and CD_3OD .

TEM analysis of the different samples (one example in Figure S1) yields an average diameter for the MPGN of 1.8±0.5 nm.

General formula is $Au_{180}RS_{67}$, as calculated on the basis of TGA analysis (Figure S2) using the spherical approximation,⁴ where RS indicate the thiol molecules forming the protecting monolayer. This value well compare with that of $Au_{201}RS_{71}$ calculated by Murray and co-workers for 1.74 nm diameter nanoparticles with an ideal truncoctahedron core structure.⁵

Size analysis is confirmed by UV-Vis spectra (one example is in Figure S3), were no plasmonic band is detected as expected for gold nanoparticles with diameter below 3 nm.

NMR analysis (Figure S4) indicates monolayer formation (broadening of all bands), as confirmed by diffusion-filtered experiments (not shown).

Figure S1: Sample TEM image of 1-coated MPGN and size distribution: average diameter = 1.8 nm ($\sigma = 0.5 \text{ nm}$).

Figure S2: TGA analysis of a sample of 1-coated MPGNs under nitrogen atmosphere.

Figure S3: UV-Vis spectrum of a sample of 1-coated MPGN (0.1 mg/mL) at 25°C in water.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S4: ¹H-NMR (300 MHz) spectrum of the **1**-coated MPGN in D₂O.

3. Additional NMRtitrations of MPGNs

Figure S5. ¹H-NMR spectra of a D₂O solution of thiol 1-coated gold nanoparticles recorded upon addition of increasing amounts of an acetonitrile solution of $Tb(CF_3SO_3)_3$. ([1] = 5 mM, the intense signal at 4.6 ppm is residual water).

Figure 6. ¹H-NMR spectra of a D₂O solution of thiol **1**-coated gold nanoparticles recorded upon addition of increasing amounts of an acetonitrile solution of $Yb(CF_3SO_3)_3$. ([**1**] = 5 mM, the intense signal at 4.6 ppm is residual water).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Figure S7. ¹H-NMR spectra of a D₂O solution of **2** recorded upon addition of increasing amounts of an acetonitrile solution of Tb(CF₃SO₃)₃. ([**2**] = 5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S8. ¹H-NMR spectra of a D₂O solution of **2** recorded upon addition of increasing amounts of an acetonitrile solution of Yb(CF₃SO₃)₃. ([**2**] = 5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S9. ¹H-NMR spectra of a D₂O solution of **3** recorded upon addition of increasing amounts of an acetonitrile solution of Tb(CF₃SO₃)₃. ([**3**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S10. ¹H-NMR spectra of 1-coated gold nanoparticles in D_2O ([1] = 5 mM) recorded upon addition of increasing amounts of a CD₃CN solution of Tb(CF₃SO₃)₃ in the presence of **3** ([**3**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

S 8

Figure S11. ¹H-NMR spectra of a D₂O solution of **4** recorded upon addition of increasing amounts of an acetonitrile solution of Tb(CF₃SO₃)₃. ([**4**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S12. ¹H-NMR spectra of 1-coated gold nanoparticles in D_2O ([1] = 5 mM) recorded upon addition of increasing amounts of a CD₃CN solution of Tb(CF₃SO₃)₃ in the presence of 4 ([4] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S13. ¹H-NMR spectra of a D₂O solution of **5** recorded upon addition of increasing amounts of an acetonitrile solution of Tb(CF₃SO₃)₃. ([**5**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, increasing signal at 2.05 ppm is CH₃CN).

Figure S14. ¹H-NMR spectra of 1-coated gold nanoparticles in D_2O ([1] = 5 mM) recorded upon addition of increasing amounts of a CD_3CN solution of $Tb(CF_3SO_3)_3$ in the presence of 5 ([5] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S15. ¹H-NMR spectra of a D₂O solution of **6** recorded upon addition of increasing amounts of an acetonitrile solution of Tb(CF₃SO₃)₃. ([**6**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, increasing signal at 2.05 ppm is CH₃CN).

Figure S16. ¹H-NMR spectra of 1-coated gold nanoparticles in D_2O ([1] = 5 mM) recorded upon addition of increasing amounts of a CD₃CN solution of Tb(CF₃SO₃)₃ in the presence of **6** ([**6**] = 0.5 mM, the intense signal at 4.6 ppm is residual water, the increasing signal at 2.05 ppm is CH₃CN).

Figure S17. Diffusion filtered ¹H-NMR (300 MHz) spectra of a solution of 1-coated gold nanoparticles and **6** in D₂O. [1] = 5 mM, [6] = 0.5 mM, mixing time 0.3 sec, T = 28 °C. Note the complete cancellation of the water peak at 4.6 ppm.

Figure S18. Diffusion filtered ¹H-NMR (300 MHz) spectra of a solution of **6** in D₂O. [**6**] = 0.5 mM, mixing time 0.3 sec, T = 28 °C. Note the complete cancellation of the water peak at 4.6 ppm.

- R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, G. M. Whitesides, *Langmuir* 2001, *17*, 2841-2850
- 2) Manea, F.; Bindoli, C.; Polizzi, S.; Lay, L.; Scrimin, P. Langmuir, 2008, 24, 4120-4124.
- 3) G. Guarino, F. Rastrelli, P.Scrimin and F. Mancin, submitted.
- 4) I. M. Rio-Echevarria, R. Tavano, V. Causin, E. Papini, F. Mancin, A. Moretto, J. Am. Chem. Soc. 2011, 133, 8-11.
- 5) Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W.; *Langmuir* 1998, 14, 17-30.