Supplementary Information

Protic ionic liquids based on phosphonium cations: comparison with ammonium analogues

⁵ Usman Ali Rana,*^a R. Vijayaraghavan^b, Mareike Walther^c, Jiazeng Sun^{a,b}, Angel A.J. Torriero^d, Maria Forsyth^d and Douglas R. MacFarlane^b

Sample preparation

Synthesis of Protic Phosphonium cation based ILs

Tributyl phosphonium bis(trifluoromethane sulphonyl) amide $(P_{444H}NTf_2)$ was synthesized via reaction scheme 1.

Scheme 1

15

A typical procedure for synthesis of $P_{444H}NTf_2$ is as follows: 6.0 g (0.021 mol) LiNTf₂ (3M, all chemicals were used as received,

- 20 except as otherwise specified) was dissolved in 5 ml distilled water, 5.0 g (0.021 mol) tri-isobutyl phosphonium chloride (Cytec) was dissolved in 20 ml distilled water, these two solutions were mixed and the mixture was stirred at room temperature for about 3 hrs; P_{444H}NTf₂ was deposited as white 25 solid from the solution, separated by filtering and washed with
- distilled water for three times; the product was dried by vacuum at ~70 °C; 9 g of $P_{444H}NTf_2$ was obtained with a yield of 92 %. Electrospray mass spectroscopy (cone ±35V), m/z (relative intensity, %): ES⁺, 203.3 ([C₄H₉]₃HP⁺, 100); ES⁻, 279.9
- ³⁰ ([CF₃SO₂]₂N⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ /ppm relative to TMS): 6.67-5.10 (2 sets of multiple peaks, 1H, J_{P-H} = 462 Hz, it was reported¹ that the coupling constant between phosphorus and the directly bound proton (J_{P-H}) is 475Hz for (n-C₄H₉)₃PH-Br in ¹H-NMR), 2.25-2.19 (m, 6H), 2.13-2.02 (m, 35 3H,), 1.14-1.12 (m, 18H).

Tributyl phosphonium trifluoromethane sulphonate ($P_{444H}SO_3CF_3$) was synthesized with the same method as $P_{444H}NTf_2$, using NaSO₃CF₃ instead of LiNTf₂. Electrospray ⁴⁰ mass spectroscopy (cone ±35V), *m/z* (relative intensity, %): ES⁺, 203.3 ([C₄H₉]₃HP⁺, 100); ES⁻, 149.1 (CF₃O₂SO⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ /ppm relative to TMS): 6.77-5.61 (2 sets of multiple peaks, 1H, J_{P-H} = 464 Hz), 2.34-2.27 (m, 6H), 2.14-2.01 (m, 3H,), 1.15-1.13 (m, 18H).

45

Tributyl phosphonium methane sulphonate

(P_{444H}SO₃CH₃) was synthesized via reaction scheme 2.

50 Scheme 2

A typical procedure for synthesis of $P_{444H}SO_3CH_3$ is as follows: 3.67 g (0.018 mol) AgSO₃CH₃ (Aldrich) was dissolved in 20 ml distilled water, 4.29 g (0.018 mol) tri-isobutyl phosphonium ⁵⁵ chloride (Cytec) was added and the mixture was stirred at room temperature for overnight; AgCl was deposited from the solution, removed by filtering and the product was obtained by rotatordistillation; the product was dried by vacuum at ~70 °C; 3.1 g of P_{444H}SO₃CH₃ was obtained with a yield of 58 %. Electrospray ⁶⁰ mass spectroscopy (cone ±35V), *m/z* (relative intensity, %): ES⁺, 203.2 ([C₄H₉]₃HP⁺, 100); ES⁻, 95.0 (CH₃O₂SO⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ /ppm relative to TMS): 10.79-10.76 (m, 1H,) 6.96-5.78 (2 sets of multiple peaks, 1H, J_{P-H} = 471 Hz), 2.91 (s, 3H), 2.34-2.28 (m, 6H), 2.14-2.05 (m, 3H,), 1.17-1.11 (m, ⁶⁵ 18H).

Tributyl phosphonium nitrate ($P_{444H}NO_3$) was synthesized via the same method as $P_{444H}SO_3CH_3$, using AgNO₃ instead of AgSO₃CH₃. Electrospray mass spectroscopy (cone ±35V), *m/z* 70 (relative intensity, %): ES⁺, 203.1 ([C₄H₉]₃HP⁺, 100); ES⁻, 62.0 (O₂NO⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ /ppm relative to TMS): 12.16 (s, 1H) 7.25-6.07 (2 single peaks, 1H, J_{P-H} = 473 Hz), 2.34-2.30 (m, 6H), 2.16-2.03 (m, 3H,), 1.15-1.10 (m, 18H).

75 Synthesis of Protic Ammonium cation based Ionic Liquids

The synthesis of protic ionic liquids based on tributylammonium cation was made by using proton transfer reaction. In the ⁸⁰ literature, some of the tributylammonium based protic ionic liquids such as *tributylammonium triflate*, *Tributylammonium methane sulphonate* have been reported²; however *tributylammonium bis(trifluoromethane sulphonyl) amide and tributylammonium nitrate* have not been reported and the ⁸⁵ procedure for the synthesis is given below.

Tributyl ammonium bis(trifluoromethane sulphonyl) amide (N_{444H}NTf₂) was made by stirring the aqueous solutions of tributyl amine (Sigma, 99% pure) and HTFSA (99% pure)for 2 ⁹⁰ hours. Typically the reaction involves a slow addition of aqueous solution of HTFSA (6.02 g, 0.021 moles) to the aqueous solution of tributyl amine (3.97 g, 0.021 moles) kept in an ice bath. After 2 hours of stirring, the hydrophobic product separates out from the mixture. The product in the organic layer was separated out, ⁹⁵ washed with water to remove the impurities. Then the product was dissolved in dichloromethane and the solvent was removed by distillation. The final product was dried under vacuum at 60 °C for two days and the yield of pale yellow crystalline product was found to be 96%. Electrospray mass spectroscopy (cone ±35V), m/z (relative intensity, %): ES⁺, 186.2 ([C₄H₉]₃HN⁺, 100); ES⁻, 279.9 ([CF₃SO₂]₂N⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ /ppm relative to TMS): 7.17 (s, 1H), 3.10-3.05 (m, 6H), 1.71-1.37 (m, 12H), 1.00-0.94 (m, 9H,).¹⁹F NMR shows a strong s signal for the fluorine atom of *bis(trifluoromethane sulphonyl) amide* anion, noticed at -78.8ppm.

Tributyl ammonium nitrate ($N_{444H}NO_3$) was synthesized by a slow addition of aqueous solution of nitric acid (2.53 g, based on 10 100 % nitric acid, 0.040 moles) to aqueous solution of

- tributylamine (7.46 g, 0.040 moles) in an ice bath. The reaction mixture was stirred for about an hour and water was rotoevaporated at 70°C under reduced pressure. The product obtained (pale yellowish orange liquid) is dried under vacuum at
- ¹⁵ 60° C for two days and the yield was calculated to be 98%. Electrospray mass spectroscopy (cone ±35V), *m/z* (relative intensity, %): ES⁺, 186.2 ([C₄H₉]₃HN⁺, 100); ES⁻, 62.0 (O₂NO⁻, 100). H¹ NMR (400.13 MHz in CDCl₃, δ/ppm relative to TMS): 10.2 (s, 1H) 3.12-3.08 (m, 6H), 1.73-1.35 (m, 12H), 0.98-0.92 ²⁰ (m, 9H₂).

TGA Measurement

²⁵ The thermal stability and moisture content in materials were investigated by employing Thermogravimetric Analysis (TGA) technique in a flowing dry Argon atmosphere (50 mL min⁻¹) by using a Perkin-Elmer Pyris TG/DTA 6300 1 instrument between a temperature range of 25 to 700 °C at a heating rate of 10 °C ³⁰ min⁻¹.

DSC Measurement

The thermal properties of materials were studied using a TA differential scanning calorimeter (DSC) model Q 100 over a temperature range of -120 to 300 °C at a scanning rate of 10 °C min⁻¹. The samples were sealed in the Aluminium pans under the dry N₂ gas in glove box to avoid any moisture absorption. The entropy changes (Δ S) reported in (**Table S1**) are calculated from

⁴⁰ the enthalpy change (Δ H) occurring at each transition, which is obtained from the area under the DSC transition peaks. The DSC traces were analyzed using the TA instruments universal analysis ¹⁰⁵ 2000 program.

Conductivity Measurement

45

The ionic conductivities of all samples were measured using AC impedance spectroscopy using a frequency response analyzer

- ⁵⁰ (FRA, Solartron, 1296), impedance software version 3.2.0. The conductivities were obtained by measurement of the complex impedance spectra between 10 MHz and 0.01 Hz on a Solartron SI 1296 Dielectric interface and Solartron SI 1270 frequency response analyzer using two shielded BNC connectors. A
- ⁵⁵ Eurotherm 2204e temperature controller under serial control was used to control a 240 V cartridge heater for some experiments. The Eurotherm was under Solatron impedance measurement software control. A 240 V cartridge heater and K type thermocouple, mounted in a brass block, were used to control the
 ⁶⁰ sample temperature.

All sample handling was conducted within a nitrogen filled dry box to avoid any moisture uptake. The temperature range over which the impedance is measured is different for different proton ionic liquids and salts between a temperature range of -30 °C to $_{65}$ 130 °C.

Cyclic Voltammetry

95

100

110

115

120

125

130

- ⁷⁰ All voltammetric experiments were undertaken inside a homemade nitrogen-filled glove-box using an Epsilon electrochemical workstation (Bioanalytical System, West Lafayette, IN). A standard three electrode arrangement was used in voltammetric studies with a glassy carbon (GC) or platinum
 ⁷⁵ (Pt) as working disk electrodes (Cypress Systems, Inc., Lawrence, KS), a Pt wire counter electrode, and a Pt wire, separated from the test solution with a frit, was employed as the quasi-reference electrode (QRE). However, all potentials were initially obtained versus the Fc^{0/+} couple in order to minimize the ⁸⁰ problems associated with potential drift encountered with use of
- the QREs. The voltage axis in the cyclic voltammograms was then rescaled using the known conversion constants between $Fc^{0/+}$ and the Normal Hydrogen Electrode (NHE)¹.
- Prior to each experiment, the working electrodes were polished ⁸⁵ with 0.30 μ m alumina (Buehler, Lake Bluff, IL) on a clean polishing cloth (Buehler), sequentially rinsed with distilled water and acetone, and then dried with lint free tissue paper. Effective electrode area of 7.24×10^{-3} cm² for the GC electrode and 7.34×10^{-3} cm² for the Pt electrode were determined from the peak ⁹⁰ current for the oxidation of a 1.00 mM Ferrocene, Fc, solution in
- CH₃CN (0.10 M Bu₄NPF₆) degassed with N₂ and use of the Randles-Sevcik relationship. A diffusion coefficient of 2.30×10^{-5} cm² s⁻¹ for Fc was used in these calibrations.²

Figures and Tables

5 Table S1. Enthalpy and entropy values for different phase transitions calculated from the peak areas of DSC thermograms pure phosphonium and ammonium Protic Ionic liquids (PILs).

Materials	III>>II ΔH/ kJ mol ⁻¹ (±10%)	II>>I ΔH/ kJ mol ⁻¹ (±10%)	I>>melt ΔH/ kJ mol ⁻¹ (±10%)	III>>II ΔS/ kJ mol ⁻¹ (±10%)	II>>I ΔS/ kJ mol ⁻¹ (±10%)	I>>melt ΔS/ kJ mol ⁻¹ (±10%)
P _{4,4,4,H} N(Tf) ₂		6.1	10.7		20.7	36.3
P _{4,4,4,H} Tf	5.0	2.8	17.6	16.8	9.3	59.5
P4,4,4,H CH3SO3						
P _{4,4,4,H} NO ₃						
N _{4,4,4,H} N(Tf) ₂			3.1			10.5
N _{4,4,4,H} Tf	4.3	3.1	15.3	14.7	10.6	51.5
N _{4,4,4,H} CH ₃ SO ₃	0.7	0.2	1.6	2.3	0.6	5.5
N _{4,4,4,H} NO ₃		3.2	5.5		10.6	18.6

Table S2. Acid/Base pairs used in this work and their corresponding pKa^{aq} values.

Acid/Conjugate base	pK ^{aq *}
$HN(Tf)_2 / N(Tf)_2^{-1}$	~ - 14 [#]
HTf/ Tf ⁻¹	-14
HNO_3/NO_3^{-1}	-1.3
CH ₃ SO ₃ H/ CH ₃ SO ₃ ⁻¹	-2.6
$P_{4,4,4,H}^{+} / P_{4,4,4,H}$	7.9
N _{4,4,4,H} ⁺ / N _{4,4,4,H}	10.9

 $_{10}$ * The pKa^{aq} values of acids from Evan's pKa^{aq} table; pKa^{aq} values for tri n-butylamine and tri-iso-butylphosphine from literature³ # estimated pKa^{aq} value of HN(Tf)₂ based on relatively close pKa^{aq} value of HTf and HN(Tf)₂ measured in acetic acid⁴.

Temperature °C

10

Figure S1. DSC thermograms of (a) tributyl ammonium containing protic ionic liquids and (b) tributyl phosphonium containing protic ionic liquids. The s roman numerals I, II and III indicate different solid phases with phase I being the highest temperature solid phase.

Figure S2. TGA traces of tributyl phosphonium and tributyl ammonium salts

Figure S3. CV obtained at $v = 0.1 \text{ Vs}^{-1}$ with a Pt working electrode for 0.10 M Bu₄PF₆ in acetonitrile (without IL) as supporting electrolyte; The oxidation peak observed around -1 V is not seen if we only scan from 0V positive towards oxidation side. Therefore, it must be related to the reduction products formed during the reverse cycle.

Refernces

5

- 1. V. V. Pavlishchuk and A. W. Addison, Inorganica Chimica Acta, 2000, 298, 97-102.
- A. A. J. Torriero, A. I. Siriwardana, A. M. Bond, I. M. Burgar, N. F. Dunlop, G. B. Deacon and D. R. MacFarlane, *The Journal of Physical Chemistry B*, 2009, **113**, 11222–11231.
- Pka of bases (amines and phosphines) are taken from (a) G. D. Fasman, *Handbook of biochemistry and molecular biology. CRC press cleveland*, 1976, pp. 305-351. (b) W. A. Henderson and C. A. Streuli, *J. Am. Chem. Soc.*, 1960, 82, 5791-5794.b). Whereas, the pka values of acids are taken from evan's table (see http://www2.lsdiv.harvard.edu/labs/evans/.).
- 15 4. C. H. Cheon and H. Yamamoto, Chemical Communications, 2011, 47, 3043-3056.