Supporting Information

$Gold (I) \hbox{-} Catalyzed \ Intramolecular \ Oxidation \hbox{-} Cyclopropanation \ Sequence \ of \ Enynes:$

A Convenient Access to [n.1.0]Bicycloalkanes

Deyun Qian, ^{*a*} Junliang Zhang^{**a,b*}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N, Zhongshan Road, Shanghai 200062 (P. R. China), Fax: (+86) 21-6223-5039; E-mail: jlzhang@chem.ecnu.edu.cn

^b State key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

Fax:(+86)-021-6223-5039; e-mail : jlzhang@chem.ecnu.edu.cn

Content

1.	General
2.	Experimental Procedures and Characterization Data
2.1	Optimization of Reaction Conditions
2.2	The Control Experiments Regarding Acid Stability
2.3	3 General Procedure for Synthesis of Enyne Substrates 1 6
2.3	.1 Preparation of Enyne Substrates 1b to 1i
2.3	.2 Preparation of Enyne Substrates 1j and 1k7
2.3	.3 Preparation of Enyne Substrates 11 to 1n
2.3	.4 Preparation of Enyne Substrates 10 to 1q10
2.4 Sec	General Procedure for Gold(I)-Catalyzed Intramolecular Oxidation-Cyclopropanation quence of Enynes 1
Ge	neral Procedure A
Ge	neral Procedure B
2.5	Gold(I)-Catalyzed Reaction of Enyne 1a
2.6	Gold(I)-Catalyzed Reaction of Enyne 1r
2.7	Crystal Structure of Bicyclo [3.1.0]hexan-2one 3f
3.	References
4. ¹	H and ¹³ C NMR Spectra for New Compounds

1. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H NMR, ¹³C NMR spectra were measured at 400 MHz and 100 MHz in CDCl₃. Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm). Tetrahydrofuran, benzene and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane and 1,2-dichloroethane (DCE) was distilled from CaH₂ prior to use.

2. Experimental Procedures and Characterization Data

2.1 Optimization of Reaction Conditions:

Table S1 Optimization of Reaction Conditions^a

	Ph	+ N	5 mol% catalyst additive 60 °C		
	O ^r N Ts	Ó	solvent	TsN	
	16	(2.0 eq.)		3b	4
Entry	Catalyst	R	Additive	Solvent/	Yield
			(eq.)	Time (h)	$(3b/1b/4\%)^b$
1	[Ph ₃ PACl]/[AgNTf ₂]	Н	-	DCE/12	13/88/0
2	[Ph ₃ PACl]/[AgNTf ₂]	Н	MsOH (1.2)	DCE/12	22/83/0
3 ^c	[IPrACl]/[AgNTf ₂]	Н	MsOH (1.2)	DCE/12	complicated mixture
4	[IPrACl]/[AgNTf ₂]	2-Br	-	DCE/21	60/30/5
5	[IPrACl]/[AgNTf ₂]	2-Br	MsOH (1.2)	DCE/21	67/14/5
6	[IPrACl]/[AgNTf ₂]	2-Br	HNTf ₂ (1.2)	DCE/21	68/11/10
7	[IPrACl]/[AgNTf ₂]	2-Br	MsOH (1.2)	DCE/36	59/13/ 9
8 ^d	[L1AuCl] /[AgNTf ₂]	2-Br	MsOH (1.2)	DCE/21	35/19/30
9 ^e	[L2AuCl] /[AgNTf ₂]	2-Br	MsOH (1.2)	DCE/21	31/22/31
10	[IPrACl]/[AgNTf ₂]	4-Ac	MsOH (1.2)	DCE/21	63/30/0
11	[IPrACl]/[AgSbF ₆]	4-Ac	MsOH (1.2)	DCE/21	52/24/0
12	[IPrACl]/[AgNTf ₂]	4-Ac	HNTf ₂ (1.2)	DCE/21	64/32/0
13	[IPrACl]/[AgNTf ₂]	4-Ac	HOAc (1 mL)	DCE/28	63/29/0
14^{f}	[IPrACl]/[AgNTf ₂]	4-Ac	HNTf ₂ (1.2)	DCE/21	62/20/0
15 ^g	[IPrACl]/[AgNTf ₂]	4-Ac	HNTf ₂ (1.2)	DCE/36	73/26/0
16^h	[IPrACl]/[AgNTf ₂]	4-Ac	HNTf ₂ (1.2)	DCE/36	81/12/0
17 ⁱ	[IPrACl]/[AgNTf ₂]	4-Ac	HNTf ₂ (1.2)	DCE/36	66/31/0
18	[IPrACl]/[AgNTf ₂]	4-Ac	MsOH (1.2)	THF/21	41/53/0
19	[IPrACl]/[AgNTf ₂]	4-Ac	MsOH (1.2)	CH ₃ CN/21	45/51/0
20	-	4-Ac	MsOH (1.2)	DCE/21	nr
21	[AgNTf ₂]	4-Ac	MsOH (1.2)	DCE/21	23/74/0
22	Rh ₂ (OAc) ₄	2-Br	-	toluene/21	12/53/32
23	PtCl ₂	2-Br	-	DCE/21	nr
24	Pd(OAc) ₂	4-Ac	MsOH (1.2)	DCE/21	nr

^{*a*} The reaction was performed with 0.2 mmol of **1a** and 5 mol% of catalyst in 2.0 mL DCE at 60 °C, Au/AgNTf₂ = 1:1. ^{*b*} Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference. ^{*c*} IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene. ^{*d*} L**1** = X-phos. ^{*e*} L**2** = P(*t*Bu)₂(*o*-biphenyl). ^{*f*} 1.2 eq. of oxidant. ^{*g*} 71% isolated yield. ^{*h*} 10 mol% of catalyst. ^{*i*} 3.0 eq. of oxidant.

2.2 The Control Experiments Regarding Acid Stability:

(1)

MeO Ns 3d	Entry Acid		3d (mmol) t = 0 h	The yield of $3d (\%)^a$ t = 2 h	
acid (1.2 eq.)	Α	-	0.1	96	
DCE, 60 °C, 2 h	В	MsOH	0.1	46	
A B C	С	HNTf ₂	0.1	0	

^{*a*} Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference.

In three dried glass tube, the corresponding acid (1.2 eq.) in DCE (0.5 mL) was added respectively to a solution of **3d** (0.1 mmol) in DCE (0.5 mL) at room temperature under nitrogen. The reaction mixture was stirred at 60 °C in the same oil and the progress of the reaction was monitored by TLC. After 2h, the reaction was treated with saturated aqueous NaHCO₃ (5 mL), and the resulting mixture was extracted with DCM (3×5 mL). The combined organic layers were dried with anhydrous Na₂SO₄. The mixture was concentrated and the crude yield was determined by ¹H NMR.

(2)

^a Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference.

2. 3 General Procedure for Synthesis of Enyne Substrates 1:

2.3.1 Preparation of Enyne Substrates 1b to 1i:

In a flame dried round-bottom flask, the corresponding carboxylic acid (5.0 mmol) was dissolved in dry THF (0.5 M) under argon and tosyl isocyanate (1.0 equiv) was added to the solution. After being stirred at rt for 10 mins under the inter N₂ was disconnected and Et₃N (1.0 equiv) was added drop-wise to the open flask, allowing the release of the formed CO₂. After being stirredg for 1h at rt, allyl bromide (3.0 equiv) and extra Et₃N (3.0 equiv) were sequentially added and the mixture was stirred overnight. After the starting material was consumpted completely, the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (hexanes/EtOAc = 5:1) to afford the corresponding enyne products. The spectra of $1b^1$, $1c^3$, $1f^4$ and $1i^1$ are consistened with the literatures.

Substrate 1d

¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.48-7.46 (m, 2H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.00-5.94 (m, 1H), 5.42 (d, *J* = 17.2 Hz, 1H), 5.31 (d, *J* = 10.0 Hz, 1H), 4.69 (d, *J* = 3.6 Hz, 2H), 3.83 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.8, 152.8, 145.0, 136.0, 134.7, 132.6, 129.4, 128.7, 118.8, 114.4, 111.1, 94.0, 81.2, 55.4, 49.4, 21.6; MS (EI): m/z (%) = 369 (M⁺, 6.54), 159 (100); HRMS (EI): calculated for [C₂₀H₁₉NO₄S]⁺ 369.1035, found: 369.1033.

Substrate 1e

¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 7.6 Hz, 1H), 7.95 (d, *J* = 6.4 Hz, 3H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.59 (t, *J* = 8.8 Hz, 2H), 7.47-7.44 (m, 1H), 7.28 (d, J = 7.6 Hz, 2H), 6.04-6.00 (m, 1H), 5.46 (d, *J* = 16.8 Hz, 1H), 5.35 (d, *J* = 10.0 Hz, 1H), 4.77 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 145.1, 135.9, 133.5, 133.0, 132.9, 131.7, 129.5, 128.7, 128.5, 127.8, 127.0, 127.9, 125.7, 125.1, 118.9, 117.0, 91.8, 86.0, 49.4, 21.6; MS (EI): m/z (%) = 389 (M⁺, 2.44), 179 (100); HRMS (EI): calculated for [C₂₃H₁₉NO₃S]⁺ 389.1086, found: 389.1086.

Substrate 1g

 $E/Z = 4.2:1; {}^{1}$ H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 6.8 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.48-7.45 (m, 1H), 7.40-7.37 (m, 2H), 7.30-7.27 (m, 2H), 5.90-5.88 (m, 0.8H), 5.75-5.72 (m, 0.2H), 5.64-5.60 (m, 0.8H), 5.55-5.49 (m, 0.2H), 4.76 (d, J = 6.0 Hz, 0.3H), 4.63 (d, J = 6.0 Hz, 1.6H), 2.42 (s, 3H), 1.82 (d, J = 6.8 Hz, 0.5H), 1.74 (d, J = 6.0 Hz, 2.4H); 13 C NMR (100 MHz, CDCl₃): δ 152.5, 144.9, 136.1, 134.7, 132.6, 131.0, 130.9, 129.4, 129.3, 128.6, 128.5, 125.3, 125.0, 119.5, 92.8, 81.6, 48.9, 44.2, 21.6, 17.6, 13.1. The spectroscopic data match well with those in the literature.⁴

Substrate 1h

The enyne substrate **1h** was synthesized according to literature procedure reported by Lu.⁵ The spectrum of substrate **1h** was consistened with the literature.³

2.3.2 Preparation of Enyne Substrates 1j and 1k:

Substrates 1j and 1k were synthesized following a published literature procedure.⁶

To a solution of allylamine (1.8 mL, 24.0 mmol) in a solvent mixture[MeOH (2 mL) + H₂O (2 mL)] was slowly added the corresponding propynoate (1.68 g, 20.0 mmol) at -20 °C to -30 °C with stirring. After addition of the propynoate, the stirring was continued for 5 minutes. The solvent was evaporated and column chromatography on silica gel (hexanes/EtOAc = 3:1) afforded the 2-alkynamides of primary allylic amines. To a solution of 2-alkynamides of primary allylic amines (2.0 mmol) in THF (8 mL) was added NaH (128 mg, 60% in oil, 3.2 mmol) and CH₃I (0.2 mL, 3.2 mmol). The mixture was stirred for 30 min then poured into ice water (40 mL), extracted with CH₂Cl₂ (3 x 20 mL), washed (brine), dried (Na₂SO₄) and evaporated the solvent. The residue was purified by column chromatography on silica gel (hexanes) to afford corresponding enyne products. The spectrum of substrates **1j** was consistened with the literature.²

Substrate 1k

¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 2H), 6.88-6.86 (m, 2H), 5.87-5.71 (m, 1H), 5.27-5.18 (m, 2H), 4.25-4.23 (m, 1.2H), 4.07-4.06 (m, 0.8H), 3.82 (m, 3H), 3.21 (s, 1.2H), 2.97 (m, 1.8H); ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 154.9, 154.7, 134.1, 132.7, 132.1, 118.0, 117.8, 114.2, 112.4, 90.9, 90.3, 80.9, 80.7, 55.3, 53.7, 48.9, 35.8, 32.0; IR (neat): *v* 3405, 3324, 3050, 2991, 2204, 1668, 1353, 1324, 1169, 1139, 1083, 928, 770 cm⁻¹; HRMS (EI): calculated for [C₁₄H_{15N}O₂]⁺ 229.1103, found: 229.1102.

2.3.3 Preparation of Enyne Substrates 11 to 1n:

Substrates 11, 1m and 1n were synthesized following a published literature procedure.⁷

$$Ar \longrightarrow + \begin{array}{c} O \\ R \end{array} \xrightarrow{O} \\ R \end{array} \xrightarrow{O} \\ OEt \end{array} \xrightarrow{a) n-BuLi} \\ THF, -78 \ ^{\circ}C, 40 \text{ min} \\ b) BF_3 \cdot Et_2 O \\ THF, -78 \ ^{\circ}C, 1 \text{ h} \end{array} \xrightarrow{O} \\ \begin{array}{c} R \\ R \end{array} \xrightarrow{O} \\ R \end{array}$$

In a flame dried double Schlenk flask, a solution of the corresponding alkyne (20.0 mmol) in anhydrous THF (20 mL) was cooled to -78 °C under an argon atmosphere and n-BuLi (2.5 M in hexane, 8.0 mL, 20.0 mmol) was added dropwise. The solution was stirred for 40 min, and then a solution of boron trifluoride diethyl etherate (3.1 mL, 25.0 mmol) and ethyl pent-4-enoate (10.0 mmol) in anhydrous THF (5.0 mL) was added. The slightly yellow reaction mixture was stirred for 30 min and the cooling device was removed. A saturated aqueous solution of ammonium chloride (30 mL) was added and the aqueous layer was extracted with diethyl ether (3 x 30 mL). The combined organic phases were washed with brine (50 mL) and dried over Na₂SO₄. Removal of the solvent under reduced pressure led to a brown oil, which was subjected to flash column chromatography on silica (hexanes/EtOAc = 50:1 to 20: 1). The spectrum of substrates **11** was consistened with the literature.⁷

Substrate 1m

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 7.6 Hz, 2H), 5.90-5.80 (m, 1H), 5.11-5.01(m, 2H), 3.83 (s, 3H), 2.77 (t, *J* = 7.6 Hz, 2H), 2.50-2.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 187.1, 161.6, 136.4, 135.4, 135.1, 115.6, 114.3, 111.7, 92.1, 87.6, 55.4, 44.4, 28.1; MS (EI): m/z (%) = 214 (M⁺, 14.08), 159 (100); HRMS (EI): calculated for [C₁₄H₁₄O₂]⁺ 214.0994, found: 214.0945. **Substrate 1n**

1n' was synthesized following the procedure of the literature 8.

1n, ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.77 (s, 1H), 4.73 (s, 1H), 3.84 (s, 3H), 2.80 (t, *J* = 7.2 Hz, 2H), 2.44 (t, *J* = 7.2 Hz, 2H), 1.77 (m, 3H); ¹³C NMR (100 MHz, CDCl3): δ 187.4, 161.6, 143.8, 135.1, 114.3, 111.7, 110.6, 92.1, 87.6, 55.4, 43.5, 31.8, 22.6; MS (EI): m/z (%) = 228 (M⁺, 6.76), 159 (100); HRMS (EI): calculated for [C₁₅H₁₆O₂]⁺ 228.1150, found: 228.1149.

2.3.4 Preparation of Enyne Substrates 10 to 1q:

Substrate 10

10', prepared by a procedure reported by Kim.⁹ Weinreb amide **10''**, prepared according to the literature.¹⁰

n-BuLi (2.5 M in hexane, 7.2 mL, 18.0 mmol) was added dropwise to a solution of 4-Ethynylanisole (2.4 g, 18.0 mmol) in THF (10 mL) at -78 °C. The mixture was stirred for 30 min. The above solution was transferred via cannula to the Weinreb amide **10''** (2.1 g, 9.0 mmol) in THF (10 mL) at -78 °C, stirred for 1 h and let warm up to room temperature. Then, 1 N HCl was added dropwise until disappearance of the white precipitate. The reaction mixture was extracted with Et₂O (3 x 20 mL) and

the combined organic layers were washed with brine (30 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by FC (hexanes/EtOAc = 20:1) to afford **1o** (1.9 g, 70%). Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.30-7.26 (m, 2H), 7.20-7.18 (m, 3H), 6.90 (d, *J* = 8.4 Hz, 2H), 5.84-5.74 (m, 1H), 5.13-5.06 (m, 2H), 3.84 (s, 3H), 3.16-3.11 (m, 1H), 3.05-2.99 (m, 1H), 2.88-2.83 (m, 1H), 2.57-2.50 (m, 1H), 2.43-2.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.1, 161.7, 138.9, 135.1, 134.8, 129.1, 128.5, 128.4, 128.3, 126.4, 117.5, 114.3, 111.7, 93.3, 87.3, 55.6, 55.4, 36.7, 35.1; MS (EI): m/z (%) = 304 (M⁺, 3.42), 159 (100); HRMS (EI): calculated for [C₂₁H₂₀O₂]⁺ 304.1463, found: 304.1461.

Substrate 1p

1p, prepared by a modification of a produce reported by Narasaka.¹¹

1p', prepared according to the literature.¹² A solution of 2-heptynal¹³ (1.10 g, 10.0 mmol) in THF was added to a solution of but-3-enylmagnesium bromide (1M in THF, 15.0 mmol) at 0 °C and stirring was continued for 1 h. The reaction was carefully quenched with water at 0 °C and the aqueous layer was extracted with methyl *tert*-butyl ether. The combined organic phases were dried over Na₂SO₄ before they were filtered and evaporated. This material was not purified, but rather used as a mixture in the subsequent step.

In a dry flask under argon, to a dichloromethane solution (100 ml) of 1p, was added pyridinium dichromate (5.6 g, 15.0 mmol). The reaction mixture was stirred at rt for 48 h and filtered through Celite. The filtrate was concentrated in vacuo and purification by flash column chromatography gave the title compound 1p (1.10 g; 67% yield).

¹H NMR (400 MHz, CDCl₃): δ 5.85-5.75 (m, 1H), 5.06-4.98 (m, 2H), 2.64 (t, *J* = 7.2 Hz, 2H), 2.42-2.34 (m, 4H), 1.59-1.52 (m, 2H), 1.45-1.40 (m, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz,

CDCl3): δ 187.4, 136.4, 115.5, 94.6, 80.7, 44.5, 29.7, 28.0, 21.9, 18.6, 13.4; HRMS (EI): calculated for $[C_{11}H_{16}O]^+$ 164.1201, found: 164.1199.

Substrate 1q

To a solution of 3-phenylpropiolic acid (0.75 g, 5.0 mmol) in CH_2Cl_2 (10 mL), was added dropwise a solution of DCC (1.03 g, 5.0 mmol) and DMAP (61.1 mg, 0.5 mmol) in CH_2Cl_2 (10 mL) at -20 °C. N-benzylbut-3-en-1-amine¹⁴ (0.74 g, 4.6 mmol) in CH_2Cl_2 (5 mL) was then added and the mixture was stirred for 20 h at room temperature. The solid was filtered off and the filtrate was washed with 0.1 N HCI (10 mL) and dried (Na₂SO₄). After removal of the solvent, column chromatograph (hexanes/EtOAc = 5: 1) gave the oily product **1q** (1.20 g, 90 %).

¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.35-7.24 (m, 8H), 5.82-5.73 (m, 1H), 5.11-5.03 (m, 2H), 4.87 (s, 1H), 4.69 (s, 1H), 3.65 (t, J = 7.2 Hz, 1H), 3.45 (t, J = 7.2 Hz, 1H), 2.42-2.37 (m, 1H), 2.33-2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.9, 154.7, 136.6, 136.4, 134.9, 134.3, 132.38, 132.35, 130.04, 130.00, 128.8, 128.7, 128.5, 128.4, 128.1, 127.9, 127.6, 127.5, 110.5, 120.4, 117.5, 117.0, 90.3, 90.1, 81.8, 81.7, 52.9, 47.8, 47.6, 43.8, 33.0, 31.6; MS (EI): m/z (%) = 289 (M⁺, 1.43), 129 (100); HRMS (EI): calculated for [C₂₀H₁₉NO]⁺ 289.1467, found: 289.1467.

2.4 General Procedure for Gold(I)-Catalyzed Intramolecular Oxidation-Cyclopropanation Sequence of Enynes 1:

General Procedure A:

In a dried glass tube, a mixture of IPrAuCl (6.2 mg, 0.01 mmol, 5 mol %) and AgNTf₂ (3.8 mg, 0.01 mmol, 5 mol %) in DCE (1 mL) was stirred at room temperature under nitrogen for 30 min to generate the gold catalyst. 4-acetylpyridine *N*-oxide (54.8 mg, 0.4 mmol), MsOH (0.24 mmol) and the premixed catalyst solution was added sequentially to a solution of enynes **1** (0.2 mmol) in DCE (1 mL) at room temperature under nitrogen. After stirring at 60 °C for 1 – 72 h, the reaction was treated with saturated aqueous NaHCO₃ (5 mL), and the resulting mixture was extracted with DCM (3 × 5 mL). The combined organic layers were dried with anhydrous Na₂SO₄. The mixture was concentrated and the residue was purified by column chromatography on silica gel (hexanes/EtOAc = 5:1 to 7:3) to afford the desired product **3**.

1-benzoyl-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3b).

White solid, m. p. = $159-161 \degree C$, 71% yield (hexanes/ethyl acetate = 7:3).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.2 Hz, 2H), 7.70 (d, *J* = 7.2 Hz, 2H), 7.55-7.52 (m, 1H), 7.34-7.33 (m, 4H), 4.09-4.02 (m, 2H), 2.55-2.53 (m, 1H), 2.46 (s, 3H), 2.00-1.97 (m, 1H), 1.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 192.2, 169.3, 145.4, 135.5, 134.5, 133.6, 129.8, 129.2, 128.3, 128.2, 47.3, 38.6, 21.7, 21.4, 19.2. The spectroscopic data match well with those in the literature.¹

1-(4-methylbenzoyl)-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3c).

White solid, m. p. = 128-137 °C, 73% yield (hexanes/ethyl acetate = 7:3). m. p. = ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 7.2 Hz, 2H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.33 (d, *J* = 7.2 Hz, 2H), 7.12 (d, *J* = 7.2 Hz, 2H), 4.08-4.05 (m, 2H), 2.51 (s, 1H), 2.45 (s, 3H), 2.37 (s, 3H), 1.95 (s, 1H), 1.33 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 191.6, 169.4, 145.4, 144.5, 134.4, 132.9, 129.7, 129.4, 129.0, 128.1, 47.3, 38.5, 21.7, 21.6, 21.2, 19.0; IR (neat): *v* 3091, 2960, 2855, 1731, 1672, 1604, 1357, 1171, 1105, 1084, 1002, 960, 810, 763, 713 cm⁻¹; HRMS (ESI): calculated for [C₂₀H₁₉NNaO₄S]⁺ 392.09270, found:392.09233.

1-(4-methoxybenzoyl)-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3d).

White solid, m. p. = 168-170 °C, 81% yield (hexanes/ethyl acetate = 7:3). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 6.83 (d, *J* = 7.6 Hz, 2H), 4.08-3.99 (m, 2H), 3.86 (s, 3H), 2.53-2.50 (m, 1H), 2.45 (s, 3H), 1.90 (t, *J* = 5.8 Hz, 1H), 1.35-1.34 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.1, 169.5, 164.0, 145.4, 134.5, 131.8, 129.8, 128.3, 128.2, 113.7, 55.5, 47.3, 38.4, 21.7, 20.6, 19.2; IR (neat): *v* 3101, 3017, 2935, 2903, 2838, 1723, 1670, 1596, 1379, 1350, 1258, 1162, 1115, 1094, 1028, 838, 808, 755 cm⁻¹; HRMS (ESI): calculated for [C₂₀H₁₉NNaO₅S]⁺ 386.10567, found: 386.10567.

1-(1-naphthoyl)-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3e).

White solid, m. p. = 143-145 °C, 40% yield (hexanes/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃): δ 8.27-8.26 (m, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 3H), 7.59 (d, *J* = 6.8 Hz, 2H), 7.47-4.45 (m, 2H), 7.33-7.25 (m, 3H), 4.07 (s, 1H), 2.70 (s, 1H), 2.42 (s, 3H), 2.22 (s, 1H), 1.40 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.5, 168.8, 145.3, 134.5, 133.84, 133.78, 133.0, 130.2, 129.8, 128.60, 128.55, 128.0, 127.9, 126.5, 125.0, 124.1, 47.1, 40.1, 24.1, 21.7, 21.1; IR (neat): *v* 3096, 2919, 1727, 1672, 1623, 1357, 1303, 1172, 1118, 1099, 900, 813, 801, 768, 662 cm⁻¹; HRMS (ESI): calculated for [C₂₃H₁₉NNaO₄S]⁺ 428.09270, found: 428.09245.

1-benzoyl-5-methyl-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3f).

White solid, m. p. = 147-150 °C, 59% yield (hexanes/ethyl acetate = 7:3).

¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7.2 Hz, 2H), 7.51-7.48 (m, 1H), 7.42 (d, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 7.2 Hz, 2H), 7.27-7.23 (m, 2H), 4.16 (d, *J* = 10.4 Hz, 2H), 3.92 (d, *J* = 10.4 Hz, 2H), 2.48 (s, 3H), 2.08 (s, 1H), 1.24 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 191.8, 170.5, 145.5, 136.4, 134.6, 133.3, 129.8, 128.6, 128.5, 128.2, 52.9, 43.4, 31.4, 22.7, 21.8, 15.7; IR (neat): *v* 3077, 2956, 2927, 1727, 1678, 1597, 1484, 1450, 1353, 1171, 1105, 1084, 1002, 960, 810, 763, 713 cm⁻¹; HRMS (ESI): calculated for [C₂₀H₁₉NNaO₄S]⁺ 392.09270, found:392.09162.

1-benzoyl-6-methyl-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3g).

1:4.2 mixture of two isomers, 67% ¹H NMR yield. *Minor isomer*, white solid, 11% isolated yield (hexanes/ethyl acetate = 1:3): ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 7.2 Hz, 2H), δ 7.75 (d, *J* = 7.2 Hz, 2H), 7.56-7.52 (m, 1H), 7.40-7.31 (m, 4H), 4.12-4.08 (m, 1H), 3.96 (d, *J* = 10.8 Hz, 1H), 4.12-4.08 (m, 1H), 2.44 (s, 3H), 2.10-2.03 (m, 1H), 1.22 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.1, 167.4, 145.4, 135.7, 134.9, 133.5, 129.7, 129.4, 128.3, 128.2, 44.0, 43.6, 25.5, 25.3, 21.7, 7.0; *Major isomer*, white solid, 50% isolated yield (hexanes/ethyl acetate = 1:3): ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 7.2 Hz, 2H), δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.61-7.57 (m, 1H), 7.48-7.45 (m, 2H), 7.30-7.28 (m, 2H), 4.06 (d, *J* = 10.4 Hz, 1H), 3.84-3.80 (m, 1H), 2.44 (s, 3H), 2.41 (s, 4H), 1.97-1.94 (m, 1H), 1.04 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 191.9, 168.7, 145.3, 136.2, 134.6, 134.0, 130.2, 129.7, 128.4, 128.2, 47.0, 43.9, 29.2, 23.5, 21.6, 12.5; MS (EI): m/z (%) = 369 (M⁺, 1.73), 135 (100); HRMS (EI): calculated for [C₂₀H₁₀NO₄S]⁺ 369.1035, found: 369.1036.

General Procedure B:

In a dried glass tube, a mixture of IPrAuCl (6.2 mg, 0.01 mmol, 5 mol %) and AgNTf₂ (3.8 mg, 0.01 mmol, 5 mol %) in DCE (1 mL) was stirred at room temperature under nitrogen for 30 min to generate the gold catalyst. 8-methylquinoline *N*-oxide (63.7 mg, 0.4 mmol) and the premixed catalyst solution was added sequentially to a solution of enynes **1** (0.2 mmol) in DCE (1 mL) at room temperature under nitrogen. After stirred at rt for 12 h, the mixture was concentrated and the residue was purified by column chromatography on silica gel (hexanes/EtOAc = 10:1 to 3:7) to afford the desired product **3**.

1-benzoyl-3-benzyl-3-azabicyclo[3.1.0]hexan-2-one (3h).

White solid, m. p. = 100-102 °C, 53% yield (hexanes/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.2 Hz, 2H), 7.58-7.55 (m, 1H), 7.46-7.42 (m, 2H), 7.37-7.32 (m, 3H), 7.27-7.26 (m, 2H), 4.54 (d, J = 14.4 Hz, 1H), 4.26 (d, J = 14.4 Hz, 1H), 3.66-3.62 (m, 1H), 3.30 (d, J = 10.8 Hz, 1H), 2.36-2.35 (m, 1H), 2.03-2.02 (m, 1H), 1.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.7, 171.3, 136.6, 136.4, 133.1, 129.0, 128.8, 128.4, 128.3, 127.9, 47.1, 46.6, 38.6, 22.3, 18.7; IR (neat): v 3068, 3028, 2926, 2884, 1599, 1580, 1489, 1446, 1423, 1355, 1296, 1269, 1225, 1065, 1026, 1001, 783, 756, 712, 697 cm⁻¹; MS (EI): m/z (%) = 291 (M⁺, 11.08), 91 (100); HRMS (EI): calculated for [C₁₉H₁₇NO₂]⁺ 291.1259, found: 291.1255.

1-pentanoyl-3-tosyl-3-azabicyclo[3.1.0]hexan-2-one (3i).

Yellow oil, 65% yield (hexanes/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ : 7.89 (d, *J* = 7.8 Hz, 2H), 7.35(d, *J* = 7.8 Hz, 2H), 3.89 (s, 2H), 3.02-2.94 (m, 1H), 2.79-2.71 (m, 1H), 2.48-2.47 (m, 1H), 2.44 (s, 3H), 1.91-1.89 (m, 1H), 1.51-1.41 (m, 2H), 1.28-1.22 (m, 2H), 1.12 (s, 1H), 0.86 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 203.1, 169.4, 145.4, 134.6, 129.8, 128.0, 46.8, 41.5, 38.7, 25.4, 24.0, 23.7, 22.1, 21.7, 13.8. The spectroscopic data match well with those in the literature.¹

1-benzoyl-3-methyl-3-azabicyclo[3.1.0]hexan-2-one (3j).

Yellow oil, 56% yield (hexanes/ethyl acetate = 3:7).

¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, 2H, *J* = 7.6 Hz), 7.54-7.52 (m, 1H), 7.46-7.42 (m, 2H), 3.80-3.76 (m, 1H), 3.39 (d, 1H, *J* = 10.4 Hz), 2.84 (s, 3H), 2.43-2.41 (m, 1H), 2.01-1.99 (m, 1H), 1.14 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 194.7, 171.4, 136.5, 133.1, 129.0, 128.3, 49.9, 38.5, 29.7, 22.1, 19.3. The spectroscopic data match well with those in the literature.²

1-(4-methoxybenzoyl)-3-methyl-3-azabicyclo[3.1.0]hexan-2-one (3k).

White solid, m. p. = 115-118 °C, 62% yield (hexanes/ethyl acetate = 3:7).

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, 2H, *J* = 8.0 Hz), 6.91 (d, 2H, *J* = 8.0 Hz), 3.83 (s, 3H), 3.76-3.72 (m, 1H), 3.37 (d, 1H, *J* = 10.8 Hz), 2.82 (s, 3H), 2.37-2.36 (m, 1H), 1.92-1.90 (m, 1H), 1.09-1.08 (m, 1H); ¹³C NMR (100 MHz, CDCl3): δ 192.6, 171.6, 163.5, 131.5, 129.3, 113.5, 55.4, 49.9, 38.3, 29.7, 21.3, 19.0; IR (neat): *v* 3086, 3060, 3014, 2964, 2922, 2841, 1676, 1657, 1600, 1576, 1510, 1454, 1428, 1400, 1366, 1315, 1287, 1255, 1175, 1020, 836; MS (EI): m/z (%) = 245 (M⁺, 6.82), 42 (100); HRMS (EI): calculated for [C₁₄H₁₅NO₃]⁺ 245.1052, found:245.1051.

1-benzoylbicyclo[3.1.0]hexan-2-one (3l).

Yellow oil, 75% yield (hexanes/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, 2H, *J* = 7.2 Hz), 7.57 (m, 1H), 7.44 (t, 2H, *J* = 7.2 Hz), 2.68-2.63 (m, 1H), 2.50-2.30 (m, 3H), 2.20-2.12 (m, 1H), 2.07-2.06 (m, 1H), 1.48-1.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 209.7, 195.1, 136.3, 133.1, 129.0, 128.3, 45.1, 33.1, 31.7, 21.6, 19.9; IR (neat): *v* 3061, 2947, 2881, 1720, 1666, 1598, 1580, 1449, 1415, 1370, 1318, 1297, 1266, 1208, 1176, 1096, 1066, 1031, 770, 696 cm⁻¹; MS (EI): m/z (%) = 200 (M⁺, 4.53), 105 (100); HRMS (EI): calculated for [C₁₃H₁₂O₂]⁺ 200.0837, found: 200.0838.

1-(4-methoxybenzoyl)bicyclo[3.1.0]hexan-2-one (3m).

Yellow oil, 85% yield (hexanes/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 2H, *J* = 8.4 Hz), 6.92 (d, 1H, *J* = 8.4 Hz), 3.86 (s, 3H), 2.65-2.60 (m, 1H), 2.45-2.32 (m, 3H), 2.20-2.10 (m, 1H), 2.05-1.95 (m, 1H), 1.48-1.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 209.9, 193.0, 163.6, 131.5, 129.1, 113.6, 55.4, 44.9, 33.1, 30.8, 21.5, 19.7; IR (neat): *v* 3006, 2943, 2841, 1720, 1658, 1597, 1575, 1510, 1458, 1419, 1369, 1309, 1255, 1213, 1166, 1095, 1028, 839, 811, 737 cm⁻¹; MS (EI): m/z (%) = 230 (M⁺, 22.06), 135 (100); HRMS (EI): calculated for [C₁₃H₁₂O₂]⁺ 230.0943, found: 230.0944.

1-(4-methoxybenzoyl)-5-methylbicyclo[3.1.0]hexan-2-one (3n).

Yellow oil, 60% yield (hexanes/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, 2H, *J* = 8.4 Hz), 6.92 (d, 2H, *J* = 8.0 Hz), 3.85 (s, 3H), 2.44-2.18 (m, 4H), 2.07-2.03 (m, 1H), 1.48-1.45 (m, 1H), 1.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ

210.8, 193.2, 163.5, 131.1, 129.9, 113.8, 55.4, 50.7, 40.8, 34.2, 28.9, 23.8, 18.5; IR (neat): v 3075, 3004, 2954, 2935, 2871, 1721, 1657, 1598, 1574, 1510, 1449, 1419, 1357, 1341, 1310, 1252, 1210, 1167, 1114, 1064, 1026, 843, 823 cm⁻¹; MS (EI): m/z (%) = 244 (M⁺, 11.84), 135 (100); HRMS (EI): calculated for $[C_{15}H_{10}O_3]^+$ 244.1099, found: 244.1100.

3-benzyl-1-(4-methoxybenzoyl)bicyclo[3.1.0]hexan-2-one (30).

Yellow oil, a mixture of diastereomer (1: 1.5), 78% yield (hexanes/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 1.2H, *J* = 7.2 Hz), 7.69 (d, 0.8H, *J* = 7.2 Hz), 7.31-7.15 (m, 5H), 6.93 (d, 1.2H, *J* = 7.6 Hz), 6.89 (d, 0.8H, *J* = 7.6 Hz), 3.86 (s, 3H), 3.19-2.99 (m, 1.6H), 2.742.45 (m, 3.2H), 2.22-2.14 (m, 0.8H), 1.92-1.85 (m, 1.6H), 1.52-1.51 (m, 0.4H), 1.35 (s, 0.4H), 1.26-1.22 (m, 0.8H), 0.88-0.87 (m, 0.8H); ¹³C NMR (100 MHz, CDCl₃): δ 210.9, 209.6, 193.3, 192.9, 163.58, 163.56, 139.1, 139.0, 131.54, 131.52, 129.3, 129.20, 129.15, 128.5, 126.6, 126.4, 113.63, 113.59, 55.5, 49.7, 46.4, 44.9, 44.4, 38.4, 35.5, 29.3, 29.0, 28.4, 26.9, 21.2, 19.4; IR (neat): *v* 3028, 3005, 2934, 2873, 1718, 1658, 1598, 1575, 1510, 1454, 1420, 1310, 1254, 1211, 1165, 1115, 1023, 839, 746, 702 cm⁻¹; MS (EI): m/z (%) = 320 (M⁺, 15.51), 135 (100); HRMS (EI): calculated for [C₂₁H₂₀O₃]⁺ 320.1412, found: 320.1413.

1-pentanoylbicyclo[3.1.0]hexan-2-one (3p).

Yellow oil, hexanes/ethyl acetate = 10:1, 78% yield.

¹H NMR (300 MHz, CDCl₃) δ : 3.08-2.97 (m, 1H), 2.85-2.74 (m, 1H), 2.64-2.58 (m, 1H), 2.30-2.24 (m, 2H), 2.20-1.95 (m, 3H), 1.59-1.48 (m, 2H), 1.43-1.40 (m, 1H), 1.35-1.33 (m, 2H), 0.90 (t, *J* = 9.6 Hz,

3H); ¹³C NMR (CDCl3, 75 MHz) δ : 209.6, 204.7, 45.2, 41.8, 35.6, 34.2, 25.7, 25.2, 20.9, 13.9; IR (neat): *v* 2958, 2935, 2874, 1723, 1689, 1458, 1382, 1304, 1257, 1091, 1034 cm⁻¹; MS (EI): m/z (%) = 180 (M⁺, 1.77), 55 (100); HRMS (EI): calculated for [C₁₁H₁₆O₂]⁺ 180.1150, found: 180.1151.

1-benzoyl-3-benzyl-3-azabicyclo[4.1.0]heptan-2-one (3q).

White solid, m. p. = 126-128 °C, 41% yield (hexanes/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.35-7.24 (m, 5H), 4.69 (d, *J* = 14.4 Hz, 1H), 4.30 (d, *J* = 14.4 Hz, 1H), 3.27-3.23 (m, 1H), 3.19-3.12 (m, 1H), 2.31-2.24 (m, 1H), 2.14-2.06 (m, 2H), 2.04 (s, 1H), 1.50 (t, *J* = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 195.6, 168.7, 137.12, 137.06, 132.6, 128.7, 128.3, 128.2, 128.1, 127.6, 50.1, 42.2, 34.6, 24.7, 20.4, 12.2; IR (neat): *v* 3086, 3029, 2927, 2863, 1679, 1622, 1496, 1444, 1393, 1324, 1278, 1216, 1186, 1108, 1073, 1002, 740, 695 cm⁻¹; MS (EI): m/z (%) = 305 (M⁺, 32.29), 91 (100); HRMS (EI): calculated for [C₂₀H₁₉NO₂]⁺ 305.1416, found: 305.1417.

2.5 Gold(I)-Catalyzed Reaction of Enyne 1a:

In a dried glass tube, a mixture of IPrAuCl (6.2 mg, 0.01 mmol, 5 mol %) and AgNTf₂ (3.8 mg, 0.01 mmol, 5 mol %) in DCE (1 mL) was stirred at room temperature under nitrogen for 30 min to generate the gold catalyst. The mixture of 2-4 equiv. of pyridine *N*-oxide and **1a** in DCE (1 mL) was treated with the premixed gold catalyst and stirred at room temperature for 12 h. The mixture was concentrated and

the residue was purified by column chromatography on silica gel (hexanes/EtOAc = 3:1) to afford **2a** in 30% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J* = 13.2 Hz, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 7.2 Hz, 2H), 7.55-7.51 (m, 1H), 7.46-7.42 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.23 (d, *J* = 13.6 Hz, 1H), 5.71-5.63 (m, 1H), 5.26-5.22 (m, 2H), 4.22-4.21 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.4, 145.0, 142.5, 138.5, 135.3, 134.2, 134.1, 132.4, 130.2, 129.3, 129.2, 128.5, 128.0, 127.4, 118.7, 103.6, 48.8, 21.6.

2.6 Gold(I)-Catalyzed Reaction of Enyne 1r:

^{*a* ¹}H NMR yield. ^{*b*} Isolated yield. ^{*c*} 2-bromopydine N-oxide (2.0 eq.).

MeO-DTBM-BIPHEP(AuCl)₂ (15.6 mg, 0.010 mmol) was added to a suspension of AgSbF₆ (6.8 mg, 0.020 mmol) in DCM (1 mL) at room temperature under nitrogen for 30 min to generate the gold catalyst. 2-bromopydine *N*-oxide (41.8 mg, 0.24 mmol), MsOH (0.12 mmol) and the premixed catalyst solution was added sequentially to a solution of enynes **1r** (0.2 mmol) in DCE (1 mL) at room temperature under nitrogen. After stirred for 24 h, the reaction was treated with saturated aqueous NaHCO₃ (5 mL), and the resulting solution was extracted with DCM (3 \times 5 mL). The combined organic layers were dried with anhydrous Na₂SO₄. The mixture was concentrated and the residue was

purified by column chromatography on silica gel (hexanes/EtOAc = 5:1) to afford **5** in 53% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 7.6 Hz, 2H), 7.67-7.65 (m, 1H), 7.53-7.50 (m, 2H), 6.26 (s, 1H), 5.87-5.77 (m, 1H), 5.29-5.22 (m, 2H), 4.72-4.71 (m, 2H), 3.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.9, 164.3, 134.7, 134.4, 130.4, 129.4, 129.0, 119.6, 67.2, 39.7.

2.7 Crystal Structure of Bicyclo [3.1.0]hexan-2one 3f:

Bond precisio	C-C = 0	C-C = 0.0035 A		Wavelength=0.71073			
Cell: a=7.0007(8)) b=10.4		842(8) c=12.884		5(12)	
alpha=103.4		153(8) beta=95.091(3)		5.091(3)	gamma=9	95.585(3)	
Temperature:	173 K						
		Calculate	d			Reported	
Volume		909.29(15	5)			909.29(15)	
Space group		P -1				P-1	
Hall group		-P 1			?		
Moiety formu	ıla	C20 H19 N O4 S			?		
Sum formula		C20 H19 N O4 S			C20 H19 N O4 S		
Mr		369.43			369.42		
Dx,g cm-3		1.349				1.349	
Z		2				2	
Mu (mm-1)		0.203				0.203	
F000		388.0				388.0	
F000'		388.43					
h,k,lmax		8,12,15				8,12,15	
Nref		3221				3187	
Tmin,Tmax		0.943,0.9	64			0.900,0.964	
Tmin'		0.898					
Correction method= MULTI-SCAN							
Data completeness= 0.989 Theta(max)= 25.000							
R(reflections)= 0.0471(2919)				wR2(reflections)= 0.1329(3187)			
S = 1.088		Npar	= 235				

3. References:

- 1. X. Tong, M. Beller and M. K. Tse, J. Am. Chem. Soc. 2007, 129, 4906.
- 2. L. L. Welbes, T. W. Lyons, K. A. Cychosz and M. S. Sanford, J. Am. Chem. Soc. 2007, 129, 5836.
- 3. H. Peng and G. Liu, Org. Lett., 2011, 13, 772.
- 4. T. L.Young, K. C. Young and K. K. Youn, J. Org. Chem. 2009, 74, 7922.
- 5. H. Jiang, S. Ma, G. Zhu and X. Lu, Tetrahedron 1996, 52, 10945.
- 6. X. Xie, X. Lu and Y. Liu, J. Org. Chem. 2001, 66, 6545.
- M. Schelwies, R. Moser, A. L. Dempwolff, F. Rominger and G. Helmchen, *Chem. Eur. J.* 2009, 15, 10888.
- 8. P. Kraft, and A. Bruneau, Eur. J. Org. Chem. 2007, 2257.

9. D. H. Kim and S. Chung, Tetrahedron: Asymmetry 1999, 10, 3769.

- W. E. Brenzovich, D. Jr. Benitez , A. D. Lackner, H. P. Shunatona, E. Tkatchouk, W. A., III Goddard, and F. D. Toste, *Angew. Chem., Int. Ed.* 2010, 49, 5519
- 11. T. Kobayashi, Y. Koga and K. Narasaka, J. Organomet. Chem. 2001, 624, 73.
- 12. V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654
- 13. H. Kuroda, E. Hanakia, H. Izawaa, M. Kanoa and H. Itahashia, Tetrahedron 2004, 60, 1913.
- 14. C. Taillier, T. Hameury, V. Bellosta and J. Cossy Tetrahedron 2007, 63, 4472.

4. ¹H and ¹³C NMR Spectra for New Compounds

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

0²

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

000	00	$\sim \infty$	\leftarrow	000000	4 00
0 H 7	$\bigcirc \infty$	2 1	4	1 の て ら 々 こ	H 0
N U U	O) 00	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	00	4447	6 7
• • •	• •	• •	•		• •
\square	00	44	\sim	$\square \square $	\leftarrow
\searrow	\bigvee	\backslash			

--0.006
4	\sim	\sim	0	0 1 7					
4	9	∞	0	6 7 3	V 4 7 0 8	0	\sim	\sim	\sim
•	•	•	•	• • •	00 M 00	4	S	∞	9
	, - 1	\sim	Ы	410	• • • • •	•	•	•	•
00	9	4	\sim		6 1 1 7 2	ы	\sim	\leftarrow	\sim
\leftarrow	, - 1	\leftarrow	\leftarrow	$\leftarrow \leftarrow \leftarrow$	6 8 7 7 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	വ	4	\sim	\sim
				$\langle \rangle \rangle$					

H O D O 4 O 4 O		<u> </u>	
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	UUU4000 MM	
00777777	ササササのの	$\neg \neg $	

--0.001

7.919 7.919 7.919 7.901 7.561 7.5542 7.339 7.3327 7.33277 7.33277 7.33277 7.332777 7.33277777	4.121 4.095 4.079 3.976 3.949	2.630 2.630 2.595 2.440 2.098 2.098 2.098 2.032 1.256 1.256 1.256

7.979 7.979 7.979 7.971 7.979 7.570 7.570 7.570 7.570 7.570 7.570 7.570 7.570 7.298 7.298 7.279		4.075 4.049 3.837 3.821 3.799	2.411	1.969 1.955 1.941 1.635	√1.050 √1.035
	Ph ~ // ⁰				

Б	\sim	0H04000U			
9	\sim	ら す 107 3 2 8	$\sim \sim $	4 7 7 4	5
•	•		0 O M	U U H	7 5
4	\leftarrow	$\neg 0000000$	• • •	• • •	• •
0	L	N N N N N N N M M M	6 1 1	8 0 7	$\sim \infty$
\leftarrow	\leftarrow	$\leftarrow \vdash \leftarrow \vdash$		9 7 7 7	Ч Г
				\bigvee	
	I	I 1 III		II I	1 1

Ŋ	9	4	0 U V			
0	\sim	4	9 7 0	$\sim 0 \sim$	r 0 €	00000
•	•	•	• • •	0 O M	ト 4 ト	40008
\sim	5	S	4 O L	• • •	• • •	
0	9	4	N N M	でての	ю Н 0	040040
\sim	, - 1	\leftarrow	\dashv \dashv \dashv	ファフ	4 7 M	$H \wedge \wedge \wedge \wedge \wedge$
			$ \rangle /$			

ого та стала и та стал	9	00 4 0 0 4 0	9
700780	\sim	001100	\sim
8 て て 内 st S	∞	44006	\leftarrow
	•		•
$(\mathcal{M},\mathcal{M},\mathcal{M},\mathcal{M},\mathcal{M},\mathcal{M},\mathcal{M},\mathcal{M},$	\sim	$\square \square \square \square \square$	\leftarrow
		$\bigvee \bigvee $	

\sim	\leftarrow	0	オエ	∞						
9	9	С	ഗവ	4	000		0	∞	Ъ	0 0
•	•	•	• •	•	0 O M	m	00	\sim	9	мО
\sim	\leftarrow	\sim	н о	\sim	• • •	•	•	•	•	• •
0		9	MΝ	\leftarrow	6 1 1	ப	0	∞	0	10
\leftarrow	\leftarrow	\leftarrow		\leftarrow	トフレ	Сl	4	\sim	\sim	H 72
			\backslash							\backslash

0.069

0	9	0 0 0 0 0				
9	0	0 - 0	$\sim 0 $	9	ヤマ	2
•	•		0 0 M	0	1 1	ഗര
0	S	0 M O M O	• • •	•	• •	• •
0	0	N N N N	0 1 1	ப	ЧЭ	10
\sim	\leftarrow		フフフ	4	m m	H 7
			くしノ	1		
					\setminus /	\setminus /
1		1 1 1	Ж	I	11	1.1

4	\sim	0	00	00					
0	0	С	6 0	Ъ	$\sim \sim \sim$	\leftarrow	∞	0 0	04
•	•	•	• •	•	0 M	4	00	\sim -1	4
0	\sim	\sim	Ч O	\sim	• • •	•	•	• •	• •
0	0	9	$\sim \sim$	\leftarrow	0 1 1	D	4	мО	0 1
\sim	\vdash	\leftarrow	\leftarrow	\leftarrow		С	4	$\infty \infty$	7 7
			\backslash					\backslash	\backslash

9	∞		с 1 б	∞							
	\leftarrow	4	\sim 1-1	L_	$\sim \sim \sim$	4 N	\sim	\sim	\sim	ப	\leftarrow
•	•	•	• •	•	0 O M	4	∞	\leftarrow	0	∞	ഹ
0	\sim	\sim	Ч О	\sim	• • •	• •	•	•	•	•	•
\leftarrow	0	9	$\sim \sim$	\leftarrow	6 1 1	0 U	0	4	∞	\sim	∞
\sim	\leftarrow	, - 1	\leftarrow	\leftarrow	フフフ	വവ	4	\sim	\sim	\sim	H
			\backslash								

0 1		
9 1	$\infty \odot \infty$	∇ H D N D
• •	4 O U	000000000000000000000000000000000000
6 7		
0 0	0 1 1	\square
\circ \circ	フレフ	44332221

Ph

