Electronic Supplementary Information

Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg²⁺

Tao Yuan^{*a,b*}, Zhongyuan Liu^{*a*}, Lianzhe Hu^{*a,b*}, Ling Zhang^{*a,b*}, and Guobao Xu^{*a*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

^b Graduate University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100864, China.

* To whom correspondence should be addressed. Tel/Fax: (+86)-431-85262747; Email: guobaoxu@ciac.jl.cn

Experimental Section

Apparatus:

Electrochemical and electrochemiluminescent measurements were conducted with an MPI-A CE-ECL system jointly produced by Xi'an Remex Electronics (China) and Changchun Institute of Applied Chemistry (Changchun, China), and a conventional three-electrode cell was used, which consisted of a modified Au working electrode, a platinum wire auxiliary electrode, and a Ag/AgCl reference electrode (saturated with 3 M KCl).

Chemicals and materials:

Tripropylamine (TPA), Ethylenediaminetetraacetic acid (EDTA), mercaptohexanol (MCH), dichlorotris(1, 10-phenanthroline) ruthenium hydrate (Ru(phen)₃Cl₂·H₂O), Tris(Hydroxymethyl)aminomethane (Tris), tris(2-carboxyethyl) phosphine hydrochloride (TCEP), were obtained from Sigma-Aldrich. Hg(NO₃)₂, MgCl₂, CaCl₂, Zn(NO₃)₂, Cd(NO₃)₂, Cu(NO₃)₂, Ni(NO₃)₂, MnSO₄, Co(NO₃)₂, Pb(NO₃)₂, FeCl₃ was purchased from Beijing Chemical Works. Three oligonucleotides were synthesized by Sangon Biotech (Shanghai) Co., Ltd, and used as received. The sequences of these oligonucleotides were:

A₁: 5'-HS-TTCT TTCT TCC-3'

A₂: 5'-*CGTT GTGA CTAG* GC**GG TTGT TTGTT-**3' A₃: 5'-*CTAG TCAC AACG* CG**TT CTTT CTTCC-**3'

Supersandwich assay sequences:

5'-HS-TTCT TTCT TCC-3' (A1)

3'-**TTGTTTGTTGG**CG*GATCAGTGTTGC-5*' (A₂) 5'-*CTAG TCAC AACG* CG**TT CTTT CTTCC-**3' (A₃) 3'-**TTGTTTGTTGG**CG*GATCAGTGTTGC-5*' (A₂) 5'-*CTAG TCAC AACG* CG**TT CTTT CTTCC-**3' (A₃)

Three single strand DNA (ssDNA) recorded as A_1 , A_2 , A_3 were used in the proposed supersandwich assay. A_1 was a 11-mer T-rich oligonucleotide, and A_2 was a 25-mer oligonucleotide, which contained a part of 11-mer T-rich sequences (bold) to hybridize with A_1 and A_3 in the presence of Hg²⁺ by formation of T-Hg²⁺-T coordination and a part of 12-mer complementary sequences (italic) to A_3 . Before using, 1 μ M A_2 and A_3 was mixed with equal volume and heated to 90°C and kept for 10 min, then the solution was cooled to room temperature and kept for 1 h. The concentrations of the used ssDNA (A_1 , A_2 , A_3) were 1 μ M.

Fabrication of sensors:

Before using, the gold electrodes (2 mm in diameter) were polished on microcloth with 1 μ m and 0.05 μ m alumina, followed by sonication in water, ethanol and water for 2 min in each. After electrochemically cleaning in 0.5 M H₂SO₄, a droplet of 10 μ L A₁ (1 μ M A₁ in 10 mM Tris-HCl, 1 mM EDTA, 1 mM TCEP, 0.1 M NaCl, pH 7.40) was dropped onto the electrode to incubate for 30 min, then the electrode was rinsed with deionized water and passivated with 10 μ L MCH (1 mM MCH in 10 mM Tris-HCl, pH 7.40) for 30 min. After that, the prepared electrodes were rinsed with water, dried with N₂, and incubated with a mixture of 5 μ L different concentrations of Hg²⁺ and 5 μ L partially hybridized A₂&A₃ (1 μ M A₂&A₃ in 10 mM Tris-HCl, 0.1 M NaCl, pH 7.40) for 30 min. In order to intercalate ECL probe molecules of Ru(phen)₃²⁺, a droplet of 10 μ L 0.2 mM Ru(phen)₃²⁺ was placed on the modified electrode and incubated for 5 h.

Before ECL detection, the electrode was rinsed with deionized water and 0.2 M phosphate buffer solution (PBS, pH 7.4). Both cyclic voltammetry (CV) and ECL experiments were conducted by using the MPI-A CE-ECL system in 0.2 M PBS (pH 7.40) containing 50 mM TPA. The CV was conducted from 0 to 1.3 V (versus Ag/AgCl) with the scan rate of 50 mV/s, and the voltage of the PMT was set at -400 V. Unless otherwise mentioned, the experiment was conducted at room temperature.

Comparison of the relative ECL signal increase (ΔI_R) by different modifications of the gold electrode. Some derivatives of Ru²⁺, for example Ru(phen)₃²⁺, has the capacity to intercalate into the grooves of double-stranded DNA (dsDNA) with high affinity.^[s1] Previous fluorescent experiment indicates that the equilibrium constant between Ru(phen)₃²⁺ and dsDNA was 1.24×10^4 M⁻¹, with a site size of 4.^[s2] Every four base pairs can capture one Ru(phen)₃²⁺ molecules, therefore, the double strand section of the partially hybridized A₂&A₃ (twelve base pairs included) can capture three Ru(phen)₃²⁺ molecules.

The comparison of $\Delta I_{\rm R}$ of the same gold electrode modified by four different processes was displayed in Fig. S1. Column 1 exhibited the lowest $\Delta I_{\rm R}$ because the complementary base pairs between A₁ and A₂ were too limited, and no consecutive four base pairs were existed, thus the intercalation of Ru(phen)₃²⁺ was inhibited. Column 2 and column 3 showed the medium $\Delta I_{\rm R}$ because the T-Hg²⁺-T coordination between A₁ and A₂ inhibited the T-Hg²⁺-T coordination between A₁ and A₂ models and A₂ inhibited the T-Hg²⁺-T coordination between A₁ and A₂&A₃. Column 4 displayed the highest $\Delta I_{\rm R}$ because A₂ and A₃ were hybridized in the same concentration with a ratio of 1:1 before using, thus no dissociative A₂ existed.

Fig. S1 comparison of 1) $A_1/A_2/Hg^{2+}/Ru(phen)_3^{2+}$ (9 µL A_2+1 µL Hg^{2+}); 2) $A_1/A_2\&A_3$ & $A_2/Hg^{2+}/Ru(phen)_3^{2+}$ (5 µL $A_2\&A_3+4$ µL A_2+1 µL Hg^{2+}); 3) $A_1/A_2\&A_3$ & A_2 & $A_3/Hg^{2+}/Ru(phen)_3^{2+}$ (5 µL $A_2\&A_3+2$ µL A_2+2 µL A_3+1 µL Hg^{2+}); 4) $A_1/A_2\&A_3/Hg^{2+}/Ru(phen)_3^{2+}$ (9 µL $A_2\&A_3+1$ µL Hg^{2+}). The concentrations of Hg^{2+} and DNA (A_1 , A_2 , A_3) were 500 nM and 1 µM, respectively. 0.2 M PBS (pH 7.40) containing 50 mM TPA was used for ECL study.

Factors concerning the construction of the supersandwich sensor

Interaction between Hg²⁺ and A₁, A₂&A₃. After the gold electrode was modified with the thioled A₁ and passivated with MCH, a mixture of 10 μ L Hg²⁺ and partially hybridized A₂&A₃ was dipped onto the electrode, and the incubation time for the formation of T-Hg²⁺-T coordination was optimized. As shown in Fig. S2, the ECL intensity increases gradually with increasing incubation time and reaches a platform after 30 min. Therefore, the incubation time of T-Hg²⁺-T coordination was set to 30 min.

Fig. S2 The ECL profiles with the detection of 10 nM Hg^{2+} as a function of incubation time of Hg^{2+} .

Intercalation of Ru(phen)₃²⁺ **into the double-strand DNA**. The intercalation time of Ru(phen)₃²⁺ into the dsDNA among the supersandwich DNA sequences was optimized. With the increase in the incubation time, much more Ru(phen)₃²⁺ can intercalate into the dsDNA, thus a gradual increase of ECL signals from one to five hours was observed in Fig. S3. However, a platform was obtained after five hours. So the incubation time of 5h was used for the intercalation of Ru(phen)₂²⁺ during the experiment

Fig. S3 The effect of the incubation time on intercalation of $Ru(phen)_3^{2+}$.

Fig. S4 The reproducibility of the supersandwich sensor for six parallel detection of 5 $nM Hg^{2+}$ with RSD of 2.86%.

Table S1. Comparison of different methods for Hg^{2+} detection.

Detection technique	Liner range	Detection limit (nM)	reference		
Colorimetry	0.2-6.0 μM	50	3		
Fluorescence	0-66.43 nM	1.33	4		
Electrochemistry	-	10	5		

ECL	5-250 nM	5	6
ECL	5-500 nM	2.3	7
ECL	0.5-2500 nM	0.25	Present work

Supporting References

- (s1) X. H. Xu, H. C. Yang and A. J. Bard, J. Am. Chem. Soc., 1994, 116, 8386-8387.
- (s2) M. T. Carter, A. J. Bard, *Bioconjugate Chem.*, 2007, 70, 228–234
- (s3) Y. Y. Xu, L. Deng, H. Wang, X. Y. Ouyang, J. Zheng, J. S. Li, R. H. Yang, Chem. Commun., 2011, 47, 6039–6041
- (s4) J. Wang, B. Liu, Chem. Commun., 2008, 4759-4761.
- (s5) P. Miao, L. Liu, Y. Li, G. X. Li, Electrochem. Commun. , 2009, 11, 1904–1907.
- (s6) Q. Li, X. M. Zhou, D. Xing. Biosen. Bioelectron., 2010, 26, 859-862
- (s7) X. Zhu, L. F. Chen, Z. Y. Lin, B. Qiu, G. N. Chen. Chem. Commun., 2010, 3149-3151.