Supporting Information

Simple Unprecedented Conversion of Phosphine Oxides and Sulfides to Phosphine Boranes using Sodium Borohydride

Kamalraj V. Rajendran and Declan G. Gilheany*

Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

Contents

Table of contents01
General Experimental02
Synthesis of phosphine oxides and sulfides05
General Procedure for Reduction of Achiral Racemic Tertiary and10 Secondary phosphine oxide and sulfides using oxalyl chloride and sodium borohydride
Table A. Reduction of achiral and racemic tertiary phosphine oxides10 and sulfides.
Table B. Reduction of racemic secondary phosphine oxides and sulfide13
Reduction of Enantioenriched phosphine oxide (Table C.)
General Procedure for the Stereospecific Conversion of23 Enantioenriched Phosphine oxide to phosphine borane
Table D. Stereospecific reduction/boronation of enantioenriched
phosphine oxide.
Determination of absolute configurations of phosphine
NMR spectra and HPLC traces of phosphine boranes29
References91

General Experimental

Melting points were determined on a Reichert Thermovar melting point apparatus and are uncorrected. Elemental analyses were carried out by the Microanalytical Laboratory, University College Dublin. IR spectra were obtained on a Varian 3100 FTIR Excalibur series spectrometer. Routine electrospray mass spectra were obtained on a Micromass Quattro spectrometer. High-resolution mass spectra were run on a Waters Micromass GCT system either in (CI) chemical ionization or (EI) electron ionization mode, also at UCD. The NMR spectra were recorded at 25 °C on Varian VNMRS 300, 400, and 500 MHz spectrometers. ¹³C NMR spectra (³¹P decoupled) were recorded on a VNMRS 600 MHz spectrometer. All NMR samples of potentially air-sensitive compounds were made up under nitrogen by syringing a small amount of a solution into an NMR tube contained in a long Schlenk tube that was charged with an atmosphere of nitrogen, and then adding dry CDCl₃ to dissolve the compound. The NMR tube was then taken out using tweezers. CDCl₃ was purchased from Aldrich, and dried by adding to a Young's flask containing activated molecular sieves (4 Å) under an atmosphere of nitrogen. It was then stored under nitrogen in the Young's flask over the molecular sieves.

High-performance liquid chromatography was performed on a Agilent Technologies 1200 series equipped with a 6 column switching device. HPLC grade solvents, purchased from Aldrich and Lennox Supplies Ireland, were used as supplied. All samples were filtered through an Acrodisc CR 13 mm syringe filter with $0.2 \mu m$ PTFE prior to injection.

Unless otherwise stated all reactions were carried out under N_2 atmosphere in dry glassware using Schlenk-line techniques and all glassware was flame dried prior to use. Air and moisture sensitive liquids and solutions were transferred *via* syringe. All commercially available solvents were used as supplied unless otherwise stated. All "dry" solvents were dried and distilled by standard procedures¹ or were processed through a Grubbs type still, supplied by Innovative Technology Inc. Pure Solv-400-3-MD solvent purification system. Oxygen free nitrogen was obtained from BOC gases and was used without further drying. Thin layer chromatography (TLC) was performed on Merck pre-coated Kieselgel $60F_{254}$ aluminium plates with realization by UV irradiation. Flash column chromatography was performed on Merck silica 9385, particle size 0.040-0.063 mm. Magnesium turnings for Grignard reactions were heated to 180 °C for at least 24 hours prior to use. Further activation was achieved by heating and stirring vigorously under vacuum for approximately 10 minutes immediately prior to reaction. 4Å Molecular sieves were kept stored in an oven at 180 °C at all times. Prior to use sieves were heated to ~ 300 °C, using a heat gun, for 2 minutes while under vacuum. They were allowed to cool to room temperature and this procedure was then repeated.

Oxalyl chloride, triphenylphosphine oxide, triphenylphosphine sulfide, tributylphosphine oxide, BINAP, Meerwein's salts, methyl triflate, methyl tosylate, methyl iodide, sulfuryl chloride, methane sulfuryl chloride, thionyl chloride, NaBH₄ and other reagents were purchased from Sigma-Aldrich, Fluka or Merck & Co., Inc. (\pm)-1,2-ethandiylbis[(*o*-anisylphenyl)phenylphosphine oxide and (\pm)-1,2-ethandiylbis[(*o*-tolylphenyl)phenylphosphine oxide were gifted by Celtic Catalysts Ltd. BINAPO was made from BINAP by oxidation with hydrogen peroxide.²

Enatioenriched methylphenyl-*o*-tolylphosphine oxide 93% ee (S), *o*-Anisylmethylphenylphosphine oxide 95 % ee (R) were gifted by Celtic Catalysts Ltd. (2-Biphenyl)methylphenylphosphine oxide 81 % ee (S), *tert*-Butylmethylphenylphosphine oxide 46 % ee (S); 53 % ee (R), methylphenyl(mesityl)phosphine oxide 44 % ee (R) were synthesied by aysmmetric Appel reaction.^{2,3}

A number of the required phosphines, phosphine oxides, and phosphine sulfides were synthesised previously by us as follows.

Compound	Reference
Methylphenyl-o-tolylphosphine oxide	2
o-Anisylmethylphenylphosphine oxide	2
Methylphenyl-(2-trifluoromethyl)phenylphosphine oxide	3
(2-Biphenyl)methylphenylphosphine oxide	3
(4-Fluoro-2-methylphenyl)methylphenylphosphine oxide:	3
(2,4-Dimethylphenyl)methylphenylphosphine oxide	3
Methylphenyl(2- <i>i</i> -propylphenyl)phosphine oxide:	2
(±)-Methyl-(1-naphthyl)phenylphosphine oxide	3

<i>tert</i> -Butylmethylphenylphosphine oxide	2
Cyclohexylmethylphenylphosphine oxide	Made by the same method. Data given below

(±)-Cyclohexylmethylphenylphosphine oxide: From Phosphine (2 g, 9.7 mmol), in a yield of (1.8 g, 84%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.71-7.46 (m, 5H, Ar) 1.68 (d, ²*J*_{PH} = 12.4 Hz, 3H, PCH₃), 1.69-1.16 (m, 11H, *c*-Hexyl) ppm. ³¹P NMR (CDCl₃, 300 MHz): δ = 40.6 ppm (Lit.⁴ -33.1 ppm).

P-phenyldibenzophosphole oxide: From P-phenyl dibenzophosphole⁵ (2 g, 7.7 mmol), by oxidation with hydrogen peroxide² gave *P*-phenyldibenzophosphole oxide (1.82 g, 86%) ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.80-7.29$ (m, 13H, Ar) ppm. ³¹P NMR (CDCl₃, 300 MHz): $\delta = 33.5$ ppm (lit.⁵ 33.8)

Methylphenyl(mesityl)phosphine oxide⁶: From methylphenyl (mesityl)phosphine⁷ (1g, 4.1 mmol) by oxidation with hydrogen peroxide gave methylphenyl(mesityl)phosphine oxide (0.86 g, 81%); ¹H NMR (CDCl₃, 300 MHz): δ = 7.64-7.46 (m, 2H, Ar), 7.50-7.38 (m, 3H, Ar), 6.90-6.89 (m, 2H, Ar), 2.41 (s, 6H, *o*-Me), 2.30 (s, 3H, *p*-Me), 1.21 (d, ²*J*_{PH} = 6.0

Hz, 3H, PCH₃); ³¹P NMR (CDCl₃, 300 MHz): δ = 34.6 ppm.

Synthesis of Required Secondary Phosphine oxides

Exemplar: Synthesis of *o*-tolylphenylphosphine oxide:⁸ A dry 100 mL two-necked round bottom flask fitted with reflux condenser, nitrogen inlet and outlet and septum was charged with magnesium turnings (0.5 g, 18.7 mmol, 1.1 equiv). 2-Bromotoluene (3.0 g, 17 mmol, 1 equiv) was dissolved in THF (10 mL), and approx. 2 mL of this solution was added to the flask via syringe. The mixture was heated to reflux with vigorous stirring until the reaction initiated, at which point the remainder of the solution was added over approximately 30 minutes, also via syringe. After this time the reaction was refluxed for a further 2 hours. The reaction was allowed to cool to room temperature and, it was then transferred through a syringe into a pressure-equalized dropping funnel attached to a flame dried and degassed 100 mL round bottom flask, which had been charged previously with dichlorophenylphosphine (3.0 g, 17 mmol, 1 equiv) and anhydrous THF (10 mL). This solution was cooled to -78 °C using dry ice-acetone mixture and the Grignard solution was added dropwise over 1 hour. The flask was allowed to warm to room temperature and was then stirred for an hour. A 10% aqueous solution of H₂SO₄ (100 mL) was added dropwise to the reaction mixture at 0 °C and the reaction was allowed stirred for an hour. The solvent was removed in vacuo, and extracted with dichloromethane (3 ×100 mL), which had been stored over anhydrous magnesium sulfate for 30 min under a nitrogen atmosphere. The extracts were filtered through a sintered funnel under nitrogen, the solvent removed in vacuo, phosphine oxide was isolated as colourless oil.

(±)-*o*-tolylphenylphosphine oxide: (3.35 g, 88 %) ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.13$ (d, $J_{HP} = 483.8$ Hz, 1H), 7.75-7.21 (m, 9H, Ar), 2.35 (s, 3H, ArCH₃). ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): $\delta = 141.4$, 132.8, 132.3, 132.2, 131.42, 131.41, 130.8, 129.5, 128.9, 126.0, 20.2. ³¹P NMR (CDCl₃, 121 MHz): $\delta = 21.6$ (lit⁸ 21.9) ppm. HRMS (CI) Calc. 216.0704;

found: 216.0701. HPLC (CHIRALCEL[®] IA column, 90:10 Heptane - EtOH, 1 mL/min R_t: 18.4 min, 19.9 min.

(±)-*tert*-Butyphenylphosphine oxide: From PhPCl₂ (3.0 g, 17 mmol, 1 equiv) and ^tBuMgBr (17 mL 1.0 M in THF 1 equiv) by the procedure above gave (±)-*tert*-Butyphenylphosphine oxide (2.65 g, 85 %) ¹H NMR (CDCl₃, 300 MHz): δ = 7.68-7.38 (m, 5H, Ar), 7.08 (d, J_{HP} = 458.9 Hz, 1H), 1.15(d, J_{HP} = 16.5 Hz, 9H) ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): δ = 132.6, 130.9,

128.4, 127.7, 23.7, 23.6. ³¹P NMR (CDCl₃, 121 MHz): δ =47.4 (lit⁸ 47.6) ppm. HRMS (CI) Calc. 182.0861; found: 182.0857. HPLC (CHIRALCEL[®] IA column, 90:10 Heptane - EtOH, 1 mL/min R_t: 18.4 min, 19.9 min.

(±)-*tert*-Butyphenylphosphine sulfide: From PhPCl₂ (3.0 g, 17 mmol, 1 equiv), ¹BuMgBr (17 mL 1.0 M in THF 1 equiv), LiAlH₄(8.5 mL 2.0 M in THF 1 equiv.) and sulphur (0.65 g, 1.2 equiv, 20.4 mmol) by the procedure above gave (±)-*tert*-Butyphenylphosphine sulphide as solid (2.64 g, 78%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.48-7.18 (m, 5H, Ar), 6.83 (d, *J*_{HP} = 458.9

Hz, 1H), 0.9 (d, J_{HP} = 16.5 Hz, 9H) ³¹P NMR (CDCl₃, 121 MHz): δ =54.0 (lit⁹ 54.0)

Synthesis of methylphenylphosphine oxide⁴

Synthesis of dimethylphenylphosphonite: A 500 mL 2 necked round bottom flask equipped with a pressure equalised dropping funnel attached to a Schlenk line was charged with anhydrous pyridine (80 mL, 0.9 mol), dichlorophenylphosphine (84 g, 0.46 mol) and degassed pentane (250 mL).

The stirred solution was cooled to 0 °C and anhydrous methanol (38 mL, 0.93 mol) in degassed pentane (25 mL) was added over a period of 2 hours. The pyridine hydrochloride salt was filtered off under N₂ and the filtrate was concentrated under reduced pressure. The crude grainy colourless liquid product was carried onto the next step without further purification. (38 g, 47 %) ³¹P NMR (CDCl₃, 121 MHz): δ =165.09 ppm.

Synthesis of methyl-methylphenylphosphinate : A 3-neck 250 mL round bottom flask was fitted with a thermometer and two condensers, one of which was connected to a pressure equalised dropping funnel which in turn was connected to a Schlenk lin via a stop-cock adaptor. The flask was charged with

a small amount of dimethylphenylphosphonite (3 mL) and a few drops of methyl iodide. The orange mixture was stirred and warmed carefully under a N₂ atmosphere until a very vigorous exothermic reaction began. The phosphonite (35 g, 0.21 mol) was added at a rate sufficient to keep the temperature at roughly 70 °C. It was necessary to periodically add small amount of methyl iodide to maintain a constant reaction. After completer addition the red mixture was stirred at room temperature overnight. Distillation under reduced pressure (98°C @ 0.4 mm Hg) yielded a colourless oil (27.2 g 78%). ³¹P NMR (CDCl₃, 121 MHz): δ =48.7 ppm.

Synthesis of methylphenylphosphine: To a stirred solution of $LiAlH_4$ (1 M soln. In THF 50 mL, 50 mmol) in dry THF (25 mL) at -78 °C was added a solution of a methylphenylphophinate (5.0 g, 29.4 mmol) in dry THF (75 mL) over 1 hour. After warming to room temperature the solution was then refluxed

for 4 hours. After removal of THF under reduced pressure, degassed H₂O (20 mL) was added very slowly, followed by degassed aqueous NaOH (20% 20 mL) and finally degassed H₂O (20 mL). The product was extracted into degassed DCM (2 x 100 mL), dried over MgSO₄ and the solvent removed under reduced pressure. ³¹P NMR (CDCl₃, 121 MHz): δ = -76.4 ppm.

methylphenylphosphine oxide: The phosphine from previous reaction was opened to air and left for 3 days for complete conversion to oxide. (2.9 g 70 %) ¹H NMR (CDCl₃, 300 MHz): δ = 7.80-7.42 (m, 5H, Ar), 7.64 (d, *J*_{HP} = 484.4 Hz, 1H), 1.81 (d, *J*_{HP}= 11 Hz, 3H) ³¹P NMR (CDCl₃, 121 MHz): δ

=21.2 (lit⁸ 20.3).

Synthesis of Required Phosphine Sulfides

Exemplar Synthesis of (\pm)-*o*-anisylmethylphenylphosphine sulfide: To a stirred solution of phosphine (0.5 g, 2.1 mmol, 1 equiv) in DCM (30 mL, degassed) at 0 °C (ice bath) sulphur (74 mg, 1.2 equiv) was added through powder funnel. After the addition was complete the suspension was stirred for 2 hrs. Excess sulphur was filtered off and the solvent was removed in

vacuo to yield light yellow solid. (0.5 g 90%) ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.20-8.13$ (m, 1H, Ar), 7.68-7.63 (m, 2H, Ar), 7.45-7.19 (m, 4H, Ar), 7.07-7.04 (m, 1H, Ar), 6.81-6.78 (m, 1H, Ar), 3.59 (s, 3H, OCH₃), 2.29 (d, ²*J*_{PH} = 14.4 Hz, 3H, CH₃,); ³¹P NMR (CDCl₃, 121 MHz): $\delta = 35.2$ (lit¹⁰ 35.9) ppm.

(±)-*o*-tolylmethylphenylphosphine sulfide: From phosphine² (2 g, 9.3 mmol), in a yield of (1.9 g, 82%) ¹H NMR (CDCl₃, 300 MHz): δ = 8.48-8.40 (m, 3H, Ar), 8.32-8.24 (m, 4H, Ar), 7.92-7.521 (m, 2H, Ar), 2.75 (s, 3H, ArCH₃), 2.32 (d, ²*J*_{PH} = 14.1 Hz, 3H, CH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 34.7 (lit¹¹ 34.4) ppm.

(±)-(2-Biphenyl)methylphenylphosphine sulfide : From phosphine³ (2 g, 7.2 mmol), in a yield of (1.8 g, 81%) ¹H NMR (CDCl₃, 300 MHz) : δ = 8.60-724 (m, 14H, Ar), 2.29 (d, ²*J*_{PH} = 14.1 Hz, 3H, CH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 37.2 ppm. ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): δ = 136.5, 132.8, 132.2, 131.5, 130.4, 129.7, 129.3, 128.8, 127.9, 127.7, 127.3,

126.3, 125.3, 121.1, 23.2 ppm. IR: v^{\sim} =3185, 2468, 1621, 1342, 1292, 585 (P=S) cm⁻¹. HRMS (EI): C₁₉ H₁₇ PS Calculated: 308.0788 Found: 308.0781.

(±)Methylphenyl(2-trifluoromethylphenyl)phosphine sulfide : From phosphine³ (1 g, 5.5 mmol), in a yield of (0.55 g, 87%) ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.01$ -7.42 (m, 9H, Ar), 2.4 (d, ²J_{PH} = 12.2, Hz, 3H, PCH₃) ppm.³¹P NMR (CDCl₃, 121 MHz): $\delta = 40.6$ ppm. ¹³C NMR {¹H,³¹P} (CDCl₃, 151 MHz): $\delta = 136.9$, 135.4, 133.1, 132.9, 132.7, 131.8, 131.4,

130.0, 129.4, 127.4, 123.5 (q, J = 273.2 Hz), 17.6 ppm. IR: $v^{\sim} = 3213$, 1649, 1521, 1474, 1232, 595 (P=S) cm⁻¹. HRMS (EI): C₁₄ H₁₂ F₃PS Calculated: 300.0349 Found: 300.0342.

(±)-Methylphenyl(2-*i*-propylphenyl)phosphine sulfide : From phosphine² 2 g, 8.2 mmol), in a yield of (1.81 g, 80%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.62-7.12 (m, 9H, Ar) 3.24 (quintet, J = 6.7 Hz, 1H, CH,), 2.21 (d, ² J_{PH} = 14.0 Hz, 3H, PCH₃,), 1.34 (d, J = 6.8 Hz 3H, *i*-Pr-Me), 0.92 ³¹P NMR (CDCl₃, 121 MHz): δ = 37.3 ppm. ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): δ

= 154.3, 136.2, 134.9, 132.9, 131.4, 130.2, 129.2, 128.3, 127.4, 125.5, 32.5, 23.4. 17.6 ppm. IR: v^{\sim} =3385, 2868, 1521,1592, 1474, 1364, 580 (P=S) cm⁻¹. HRMS (EI): C₁₆ H₁₉ PS Calculated: 274.0945 Found: 274.0939.

General Procedure for Reduction of Achiral Racemic Tertiary and Secondary phosphine oxide and sulfides using oxalyl chloride and sodium borohydride.

To a stirred solution of phosphine oxide/sulfide (1.0 mmol) in toluene (2 mL) was added oxalyl chloride (1.0 mmol) dissolved in toluene (2 mL) dropwise at room temperature under a nitrogen atmosphere. At this point ³¹P-NMR of the reaction mixture shows full conversion to chlorophosphosphonium salt (CPS). After 30 min, sodium borohydride (2.1 mmol) dissolved in diglyme (~3 mL) was added dropwise to the reaction mixture. This mixture was stirred for 1 h, where ³¹P shows full completion of CPS to phosphine borane. The reaction mixture was washed with deionised water (5 mL) and the isolated organic layer was dried over anhydrous MgSO4. The drying agent was removed by filtration, and the solvent was removed *in vacuo* to give colourless oil, which was eluted through a silica plug with 50:50 cyclohexane/ethylacetate. Solvent removal *in vacuo* yielded the pure phosphine borane.

	$ \begin{array}{c} X \\ II \\ P \\ R^{1} \\ R^{2} \\ R^{3} \\ room temp. \end{array} $	CI ⊕	$ \begin{array}{c} BH_3 \\ H_3 \\ $	
	X = O, S	CPS	> 95 % conversion	
		³¹ P-NM	R Chemical Shift (ppm)	
Entry	Starting material	PX ^a	CPS ^b	PB ^c
1	X II Ph ² Ph	X = O 25.2	64.4 ²³	21.5
	Ph	X = S 42.1		
	ХL	X= O 32.5	71.0	10.2
2	Ph-	X= S 34.7		

3	Ph ⁻	X= O 28.5 X= S 35.2	70.5	8.4
4	Ph-P Ph OMe	32.4	73.8	18.4
5	Ph-P Ph	34.8	72.1	18.8
6	O II PPh ₂ II O	23.0	62.6	21.4
7		33.5	57.6	25.0
	~ Х рь	X= O 26.9		
8	Ph Ph	X= S 37.2	67.1	13.3
	X	X= O 32.2		
9	Ph	X = S 37.3	70.8	9.1
	X CF.	X =O 31.6		
10	Ph	X = S 40.6	66.8	18.4
11	Ph	33.1	70.2	13.3
12	Ph	31.7	71.0	10.5 ^d
13	Ph ^O F	31.0	70.4	10.2 ^d

^a : PX: phosphine oxide or sulfide; ^b: CPS: shift assigned as chlorophosphonium salt; ^c : PB phosphine borane, isolated yield > 85%. No other material was apparent in the ³¹P NMR of the crude reaction mixture. Unless otherwise noted, these are known compounds - literature references given in ESI; ^d : this work.

Table B. Reduction of racemic secondary phosphine oxides and sulfide.

	$R_{R^{2}}^{1} R^{3} room temp.$	CI $\oplus P$ $R^{1''} R^3$ room te R^2	$\stackrel{4}{}_{mp.} R^{1} \stackrel{P}{_{R^2}}$	³ `R ³
	X = O, S	CPS	> 95 % conv	version
Enters	Ctarting restarial	³¹ P-NN	MR Chemical Sh	nift (ppm)
Entry	Starting material	PX ^a	CPS ^b	PB ^c
1	Ph ^H H	21.6	78.4	-6.3
2	O II Ph V H	21.2	100.9	-13.5
2	X	X = O 47.4	107.7	31.0
2	Ph / H	X = S 54.0		

^a PX: phosphine oxide or sulfide ; ^b CPS: shift assigned as chlorophosphonium salt; ^c PB: phosphine borane, isolated yield > 85%. No other material was apparent in the ³¹P nmr of the crude reaction mixture. These are known compounds - literature references given in SI.

Triphenylphosphine borane : From triphenylphosphine oxide (0.27 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave triphenylphosphine borane. (0.24 g, 88%) ¹H NMR (CDCl₃,

300 MHz): δ = 7.61–7.40 (m, 15H, Ph-H), 1.74–0.83 (br, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ =21.5 (lit.¹²) 20.6 ppm.

Triphenylphosphine borane : From triphenylphosphine sulfide (0.29 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave triphenylphosphine borane. (0.25 g, 92%) ³¹P NMR (CDCl₃, 121 MHz): δ =21.5 (lit.¹² above) 20.6 ppm.

Methylphenyl(*o*-tolyl)phosphine borane : From methylphenyl(*o*-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(*o*-tolyl)phosphine borane (0.20 g, 87%) ¹H NMR (CDCl₃,

300 MHz): δ =7.72–7.14 (m,9 H, Ar), 2.17 (s, 3 H, ArCH₃), 1.82 (d, ²*J*_{PH} = 9.8 Hz, 3 H, CH₃) 1.61–0.72 (br, 3H, BH₃) ppm ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 10.2 (lit¹³ 10.9) ppm

Methylphenyl(*o*-tolyl)phosphine borane : From methylphenyl(*o*-tolyl)phosphine sulfide (0.24 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(*o*-tolyl)phosphine borane (0.21 g, 91%) ³¹P NMR (CDCl₃, 121 MHz): $\delta = 10.5$ (lit¹³ 10.9) ppm

Methylphenyl(*o*-anisyl)phosphine borane : From methylphenyl(*o*-anisyl)phosphine oxide (0.24 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(*o*-anisyl)phosphine borane. (0.22 g, 91%) ¹H NMR

(CDCl₃, 300 MHz): δ =7.90–6.77 (m,9 H, Ar), 3.68 (s, 3 H, Ar-OCH3), 1.94 (d, ²*J*_{PH} = 10.2 Hz, 3H, CH3) 1.43–0.50 (br, 3H, BH₃) ppm ³¹P NMR (CDCl₃, 121 MHz): δ = 8.4(lit¹⁴ 9.2) ppm.

Methylphenyl(*o*-anisyl)**phosphine borane :** From methylphenyl(*o*-anisyl)**phosphine sulfide (0.26** g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(*o*-anisyl)**phosphine borane. (0.21 g, 87%)** ³¹P NMR (CDCl₃, 121 MHz): $\delta = 8.7$ (lit¹⁴ 9.2) ppm

(±)-1,2-Ethandiylbis[(*o*-anisylphenyl)phenylphosphine borane: From 1,2-ethandiylbis[(*o*-anisylphenyl)phenylphosphine oxide (0.49 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.2 mL, 2.0 mmol, 2 equiv.) followed by the treatment with NaBH₄ in diglyme (6.9 mL, 0.6 M, 4.2 mmol, 4.2 equiv) gave 1,2-

ethandiylbis[(*o*-anisylphenyl)phenylphosphine borane (0.42 g, 87%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.90-7.83 (m, 2H, Ar), 7.69-7.64 (m, 4H, Ar), 7.49-7.36 (m, 8H, Ar), 7.05-7.00 (m, 2H, Ar), 6.83-6.80(m, 2H, Ar), 3.62 (s, 6H, OCH₃), 1.87 (m, 4H, P-CH₂), 1.22–0.90 (br, 6H, BH₃) ppm. ³¹P NMR (CDCl₃, 300 MHz): δ = 18.5 ppm (lit¹⁵ 18.8 ppm).

(±)-1,2-Ethandiylbis[(*o*-tolylphenyl)phenylphosphine borane : From 1,2-ethandiylbis[(*o*-tolylphenyl)phenylphosphine (0.46 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.2 mL, 2.0 mmol, 2 equiv.) followed by the treatment with NaBH₄ in diglyme (6.9 mL, 0.6 M, 4.2 mmol, 4.2 equiv) gave 1,2-ethandiylbis[(*o*-

tolylphenylphenylphosphine borane. (0.43 g, 88%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.66-7.60 (m, 2H, Ar), 7.52-7.37 (m, 8H, Ar), 7.30-7.26 (m, 2H, Ar), 7.20-7.18(m, 6H, Ar), 2.14 (s, 6H, CH₃), 2.48 (m, 4H, P-CH₂), 1.26–0.88 (br, 6H, BH₃) ppm. ³¹P NMR (CDCl₃, 300 MHz): δ = 18.5 ppm (lit.¹³ 19.1 ppm)

1,1'-Binaphthalene-2,2'-diyl)bis(diphenylphosphineborane):From (1,1'Binaphthalene-2,2'-diyl)bis

(diphenylphosphine oxide) (0.33 g, 0.5 mmol, 1 equiv) treated with oxalyl chloride (0.2 mL, 1.0 mmol, 2 equiv.) followed by the treatment with NaBH₄ in diglyme (6.9 mL, 0.6 M, 2.1 mmol, 4.2 equiv) gave 1,1'-Binaphthalene-2,2'-diyl)bis(diphenylphosphine borane) (0.29 g, 87%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.94 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 8.2 Hz, 2H), 7.82 (dd, *J* = 8.5 Hz, *J* = 2.2Hz, 2H), 7.74-7.52 (m, 20H),

7.41 (m, 2H), 7.39 (m, 2H), 7.36 (d, J = 8.5 Hz, 2H). 1.69–0.72 (br, 6H, BH₃) ³¹P NMR (CDCl₃, 300 MHz): $\delta = 23.0$ (lit¹⁶ 23.0) ppm.

P-Phenyldibenzophosphole borane: From *P*-phenyldibenzophosphole oxide (0.28 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave *P*-phenyldibenzophosphole borane. (0.25 g, 93%); ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.90-7.29$ (m,

13H, Ar), 0.90-1.43 (b, m, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): $\delta = 25.0$ ppm. ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): $\delta = 142.3$, 132.7, 132.1, 131.0, 130.9, 129.4, 127.9, 127.1, 126.6, 120.3 ppm. ¹¹B NMR (128 MHz, CDCl₃) $\delta = -39.6$ ppm. IR (KBr, cm⁻¹) v: 3053, 2395 (BH₃), 1636, 1593, 1438, 1294, 1164, 1027, 766. HRMS (M –BH₃ + H) ⁺ C₁₈H₁₄P Calculated: 261.0833 Found: 261.0828.

(±)-(2-Biphenylyl)methylphenylphosphine borane : From (±)-(2-Biphenyl)methylphenylphosphine oxide (0.29 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave (2-Biphenylyl)methylphenylphosphine borane. (0.26 g, 89%) ¹H

NMR (CDCl₃, 300 MHz): δ =7.89-7.82 (m, 5H, Ar), 7.70–7.19 (m, 9 H, Ar), 1.41 (d, ²*J*_{PH} = 10.1 Hz, 3 H, CH3), 1.56–0.73 (br, 3H, BH₃) ppm. ³¹P NMR (CDCl3, 121 MHz): δ = 13.3 (lit.¹⁷ 14.4) ppm.

(\pm)-(2-Biphenyl)methylphenylphosphine borane : From (\pm)-(2-Biphenyl)methylphenylphosphine sulfide (0.31 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.)

followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave (2-Biphenyl)methylphenylphosphine borane. (0.24 g, 85%) . ³¹P NMR (CDCl3, 121 MHz): δ = 13.8 (lit.¹⁷ 14.4) ppm.

(±)-Methylphenyl(2-*iso*-propylphenyl)phosphine borane: From methylphenyl -(2-*iso*-propylphenyl)phosphine oxide (0.26 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(2-*iso*-propylphenyl)phosphine borane. (0.24 g,

92%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.67-7.26 (m, 9H, Ar) 3.18 (quintet, *J* = 6.7 Hz, 1H, CH,), 1.86 (d, ²*J*_{PH} = 10.0 Hz, 3H, PCH₃,), 1.08 (d, *J* = 6.8 Hz 3H, *i*-Pr-Me), 0.73 (d, *J* = 7.4 Hz, 3H, *i*-Pr-Me,); 1.62–0.51 (br, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 300 MHz) : δ = 9.0 ppm (lit¹³ 9.7ppm).

(±)-Methylphenyl(2-*iso*-propylphenyl)phosphine borane: From methylphenyl -(2-*iso*-propylphenyl)phosphine sulfide (0.27 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl(2-*iso*-propylphenyl)phosphine borane. (0.22 g, 86%) ³¹P NMR (CDCl₃, 300 MHz) : $\delta = 9.3$ ppm (lit¹³ 9.7ppm).

(±)-Methylphenyl (2-trifluoromethylphenyl)phosphine borane¹⁸ : From methylphenyl (2-trifluoromethylphenyl)phosphine oxide (0.28 g, 1.0 mmol, 1 equiv) reated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenyl (2-

trifluoromethylphenyl)phosphine borane. (0.26 g, 92%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.70-7.02 (m, 9H, Ar), 1.91 (d, ²*J*_{PH} = 9.9 Hz, 3H, PCH₃), 0.65-1.53 (br, m, 3H) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 18.3. (lit¹⁸ 18.7)

(±)-Methylphenyl (2-trifluoromethylphenyl)phosphine borane : From methylphenyl (2-trifluoromethylphenyl)phosphine sulfide (0.30 g, 1.0 mmol, 1 equiv) reated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1

mmol, 2.1 equiv) gave methylphenyl (2-trifluoromethylphenyl)phosphine borane. (0.23 g, 88%) 31 P NMR (CDCl₃, 121 MHz): δ = 18.5. (lit¹⁸ 18.7)

(±)-Methyl(1-naphthyl)phenylphosphine borane: From (±)-methyl(1-naphthyl)phenylphosphine oxide (0.26 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methyl(1-naphthyl)phenylphosphine borane. (0.24 g, 91%) ¹H NMR

(CDCl₃, 300 MHz): δ = 8.22 (d, *J* = 8.4 Hz, 1H, Ar), 8.00 (d, *J* = 8.4 Hz, 1H, Ar), 7.91-7.37 (m, 10H, Ar), 2.23 (d, ²*J*_{PH} = 10.2 Hz, 3H, CH₃) 1.53- 0.62 (br, m, 3H) ppm.³¹P NMR (CDCl₃, 121 MHz): δ = . 13.3 ppm (Lit.¹⁷ 14.4 ppm).

(±)-(2,4-Dimethylphenyl)methylphenylphosphine borane : From (±)-2,4-dimethylphenyl)methylphenylphosphine oxide (0.26 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave (±)-2,4-dimethylphenylphenylphosphine

borane. (0.24 g, 92%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.64-7.09 (m, 8H, Ar), 2.55 (s, 3H, ArCH₃), 2.33 (s, 3H, ArCH₃), 1.99 (d, ²*J*_{PH} = 9.8 Hz, 3H, PCH₃) 0.62-1.67 (b, m, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 10.5 ppm.¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): δ = 142.8, 140.6, 138.7, 134.6, 132.6, 133.3, 131.4, 130.7, 128.4, 126.9, 21.3, 21.3, 12.8 ppm. ¹¹B NMR (128 MHz, CDCl₃) δ = -36.5 ppm) IR (KBr, cm⁻¹) v: 3120, 2385 (BH₃), 1626, 1583, 1438, 1320, 1236, 1145, 725. HRMS (M –BH₃ + H) ⁺ C₁₅ H₁₈P Calculated: 229.1146 Found: 229.1138; HPLC (CHIRALPAK[®] ASH column, 98:2 heptane: EtOH, 1 mL/min) R_t: 8.0 min, 10.2 min.

 (\pm) -(4-Fluoro-2-methylphenyl)methylphenylphosphineborane: (\pm) -(4-fluoro-2-methylphenyl)methylphenylphosphineoxide(0.26 g,1.0 mmol<1 convint)</td>tracted with enclud chloride<math>(0.1 mL<10 mmol<1)

1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6

M, 2.1 mmol, 2.1 equiv) gave (±)-(4-fluoro-2-methylphenyl)methylphenylphosphine borane. (0.22 g, 84%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.74-6.89 (m, 8H, Ar), 2.18 (s, 3H, ArCH₃), 1.84 (d, ²*J*_{PH} = 9.9 Hz, 3H, CH₃), 0.90-1.57 (br, m, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = 10.2 ppm. ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): δ = 163.11 (d, ¹*J*_{PF =} 249.3 Hz), 145.3, 137.7, 134.8, 131.2, 129.1, 127.9, 125.3, 118.4, 112.9, 21.7, 12.6 ppm. ¹¹B NMR (128 MHz, CDCl₃) δ = -35.7 ppm. IR (KBr, cm⁻¹) v: 3020, 2345 (BH₃), 1650, 1493, 1332, 1294, 1121, 1012, 742. HRMS (M –BH₃ + H) ⁺ C₁₄H₁₅PF Calculated: 233.0895 Found: 233.0887 HPLC (CHIRALPAK[®] ASH column, 98:2 heptane: EtOH, 1 mL/min) R_i: 9.0 min, 11.0 min.

(±)-Methylphenyl(mesityl)phosphine borane: From (±)methylphenyl(mesityl)phosphine oxide (0.26 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave (±)-methylphenyl(mesityl)phosphine borane. (0.21 g, 84%)

¹H NMR (CDCl₃, 300 MHz): $\delta = 7.49-7.42$ (m, 2H, Ar), 7.36-7.08 (m, 3H, Ar), 6.84-6.78 (m, 2H, Ar), 2.23 (s, 6H, *o*-Me), 2.20 (s, 3H, *p*-Me), 1.86 (d, ²*J*_{PH} = 9.6 Hz, 3H, PCH₃); 1.38-0.82 (b, m, 3H, BH₃) ppm. ³¹P NMR (CDCl₃, 121 MHz): $\delta = 11.6$ ppm. ¹³C NMR {¹H, ³¹P} (CDCl₃, 151 MHz): $\delta = 142.5$, 140.0, 134.4, 133.6, 129.9, 129.4, 129.1, 127.7, 127.1, 124.2, 22.9, 19.8, 16.0 ppm. ¹¹B NMR (128 MHz, CDCl₃) $\delta = -32.5$ ppm); IR (KBr, cm⁻¹) v: 3010, 2356(BH₃), 1746, 1623, 1336, 1320, 1136, 765.

(±)-Cyclohexylmethylphenylphosphine borane: From (±)-(2-Cyclohexylmethylphenylphosphine oxide (0.23 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv)

gave (±)-cyclohexylmethylphenylphosphine borane. (0.20 g, 90%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.73-7.46 (m, 4H, Ar) 1.68 (d, ²*J*_{PH} = 10.4 Hz, 3H, PCH₃), 1.69-1.16 (m, 11H, *c*-Hexyl); 1.46-0.38 (br, m, 3H) ppm ³¹P NMR (CDCl₃, 300 MHz): δ = 17.1 ppm (Lit.¹⁷ 16.2 ppm).

(\pm)-*tert*-Butylmethylphenylphosphine borane: From (\pm)-*tert*-Butylmethylphenylphosphine oxide (0.20 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave (\pm)-*tert*-

Butylmethylphenylphosphine borane. (0.17 g, 89%) ¹H NMR (CDCl₃, 300 MHz): δ = 7.68-7.38 (m, 5H, Ar), 1.45 (d, *J*_{HP}= 10.2 Hz, 3H), 1.09(d, *J*_{HP}= 16.5 Hz, 9H), 1.12-0.88 (br, m, 3H) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ =25.8 (lit.¹⁹ 25.3) ppm.

Tri-n-butylphosphine borane : From tri-n-butylphosphine oxide (0.21 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave tri-n-butylphosphine borane. (0.19 g, 86%) ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.55$ -1.47 (m, 6H), 1.45-1.32 (m, 12H), 0.85

(t, J_{HP} = 7.5 Hz, 9H), 0.55-0.15(br, m, 3H) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ =14.1 (lit.²⁰ 14.7) ppm.

Phenyl(*o*-tolyl)phosphine borane : From methylphenyl(*o*-tolyl)phosphine oxide (0.15 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave phenyl(*o*-tolyl)phosphine borane. (0.13 g, 87%) %) ¹H NMR (CDCl₃, 300 MHz): δ

= 7.82-7.30 (m, 9H, Ar), 6.58 (d, $J_{\rm HP}$ = 385 Hz, 1H), 2.46(s, 3H), 1.65-0.45 (br, m, 3H) ppm. ³¹P NMR (CDCl3, 121 MHz): δ = -6.3 (lit²¹ -3.8) ppm

Methylphenylphosphine borane: From Methylphenylphosphine oxide (0.14 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave methylphenylphosphine borane. (0.12 g, 86%)¹H NMR (CDCl₃, 300

MHz): δ = 7.75-7.44 (m, 9H, Ar), 5.35 (d, J_{HP} = 375 Hz, 1H), 1.67 (d, ${}^{2}J_{PH}$ = 12.1 Hz, 3H), 0.68-0.45 (br, m, 3H) ppm. ³¹P NMR (CDCl₃, 121 MHz): δ = -13.5 (lit.²² -14.6).

(±)-*tert*-Butylphenylphosphine borane: From *tert*-butylphenylphosphine oxide (0.18 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave *tert*-butylphenylphosphine borane. (0.16 g, 88%) ¹H NMR

(CDCl₃, 300 MHz): δ 7.80 -7.45 (m, 5H, Ph), 5.25 (q, J_{HP} = 375 Hz, 1H), 1.21 (d, J_{HP} = 15.2 Hz, *t*-Bu, 9H) 1.58-0.32 (m, 3H, BH₃). ³¹P NMR (CDCl₃, 121 MHz): δ =31.0 (lit¹⁹ 32.0) ppm.

(±)-*tert*-Butylphenylphosphine borane: From *tert*-butylphenylphosphine sulfide (0.20 g, 1.0 mmol, 1 equiv) treated with oxalyl chloride (0.1 mL, 1.0 mmol, 1 equiv.) followed by the treatment with NaBH₄ in diglyme (3.4 mL, 0.6 M, 2.1 mmol, 2.1 equiv) gave *tert*-butylphenylphosphine borane. (0.15 g, 86%) ³¹P NMR (CDCl₃, 121 MHz): δ =31.4 (lit¹⁹ 31.9) ppm.

Reduction of Enantioenriched phosphine oxide

Using electrophilic chlorides (*S*)-methylphenyl-*o*-tolylphosphine oxide of 93% ee was subject to the general procedure for reduction with oxalyl chloride and sodium borohydride described above. The results are shown in Table 1.

Table C Reduction of enantiomerically enriched phosphine oxide with electrophilic chlorides under various conditions.

Ph		electrophilic chlorides P	CI CI Ph P -	NaBH ₄ Ph
ļ	93% <i>ee</i>		CPS	0 % ee
	Entry ^a	Electrophilic Chlorides	c solvent	PB % ee ^b
	1	(COCl) ₂	Neat	0
	2	$(COCl)_2$	Toluene	0
	3	(COCl) ₂	DME^{d}	0
	$4^{\rm c}$	(COCl) ₂	Toluene	0
	5	(COCl) ₂	DCM	0
	6	(COCl) ₂	IL ^e	0
	7	SO_2Cl_2	Toluene	0
	8	MeSO ₂ Cl ₂	Toluene	0
	9	SOCl ₂	DCM	0
	10	(COCl) ₂	diethylethe	r O

^a = Both steps in the reaction was done at -78 °C for entries 2-10, r.t. for entry 1.; CPS (by ³¹P NMR) was same for entries 1-9; for entry 10 CPS was observed at -31 and 71 ppm which found to be covalent and ionic form respectively.^{23 b} = (PB) phosphine borane; % ee was determined by CSP HPLC; yield > 95% except for entry 8 which was 65% (by ³¹P NMR). ^c = Very slow addition addition of both oxalyl chloride and NaBH₄; ^d = DME: dimethoxy ethane ^e =(IL) Ionic liquid (1-methyl-3-octylimidazolium tetrafluroborate;

General Procedure for the Stereospecific Conversion of Enantioenriched Phosphine oxide to phosphine borane

To a stirred solution of alkylating agent (1.2 mmol) in DCM or DME (2 mL) phosphine oxide (1.0 mmol) disolved in DCM or DME (2 mL) was added dropwise at room temperature under a nitrogen atmosphere. The reaction mixture was refluxed gently for 2 hrs at which point ³¹P NMR showed the complete conversion of phosphine oxide to the alkoxyphosphonium salt. After cooling to room temperature, sodium borohydride (3 mmol) dissolved in diglyme (5 mL) was added dropwise to the reaction mixture. This mixture was refluxed gently for 2 h. Once the ³¹P NMR showed the full conversion of salt to phosphine borane the reaction mixture was washed with deionised water (5 mL), and the isolated organic layer was dried over anhydrous MgSO₄. The drying agent was removed by filtration, and the solvent was removed *in vacuo* to give colourless oil, which was eluted through a silica plug using 50:50 cyclohexane/ethylacetate as eluting solvent. Solvent removal *in vacuo* yielded the pure phosphine borane.

0 R ^{1 / V / R³ R²}	1. alkyating agent	$R^{1} \xrightarrow{P', ''}_{R^{2}} R^{3} \xrightarrow{2. \text{ NaBH}_{4}}$	$R^{1} \overset{BH_{3}}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{$
		R= Me or Et	
		$X = BF_4$ or OTf	

Entry	Phosphine oxide	Alkyl. agent	Yield $(\%)^{b}$	% ee ^c (config)
1 ^{d,e}	Ph P	MeOTf	62	93 (<i>S</i>)
2 ^e	Ph 93% ee (S)	MeOTf	73	93 (<i>S</i>)
3 ^f	Ph 93% ee (S)	[Et ₃ O]BF ₄	76	93 (<i>S</i>)

4	Ph P.	[Me ₃ O]BF ₄	71	93 (<i>S</i>)
5. ^g	93% ee (S) O Ph 95% ee (R)	[Et ₃ O]BF ₄	67	95 (<i>R</i>)
6. ^h	Ph OMe	[Me ₃ O]BF ₄	71	95 (<i>R</i>)
7. ⁱ		[Et ₃ O]BF ₄	68	81 (<i>S</i>)
8. ^j	Ph Ph	[Et ₃ O]BF ₄	67	44 ^k
9. ¹	Ph Ph Ee (<i>R</i>)	[Et ₃ O]BF ₄	63	53 (<i>R</i>)
10.	Ph Ph, "''' <	[Et ₃ O]BF ₄	68	46 (<i>S</i>)

^a Unless otherwise specified the addition of alkylating agent (in DCM) and NaBH₄ (in diglyme) was carried at room temperature followed by refluxing; ^b isolated yield; ^c by CSP HPLC, configuration determined as described below; ^d NaBH₄ was added at -78 °C; ^e in DME solvent, methoxyphosphonium salt was observed at δ 75.9 ppm in ³¹P NMR; ^f ethoxyphosphonium salt was observed at δ 70.3 ppm in ³¹P NMR; ^h methoxyphosphonium salt was observed at δ 73.8 ppm in ³¹P NMR; ⁱ ethoxyphosphonium salt was observed at δ 78.3 ppm in ³¹P NMR; ^k % ee of phosphine oxide,obtained by converting scalemic phosphine borane to scalemic phosphine oxide using DABCO and H₂O₂; config remains to be assigned; ¹ ethoxyphosphonium salt was observed at δ 89.8 ppm in ³¹P NMR.

Table D

Entry 1: (*S*)-Methylphenyl(*o*-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 1 equiv) was treated with methyl triflate (0.13 mL, 1.2 mmol, 1.2 equiv.) in DME solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave methylphenyl(*o*-tolyl)phosphine borane (0.14 g, 62%, 93 % ee (*S*))

Entry 2: (*S*)-Methylphenyl(*o*-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 1 equiv) was treated with methyl triflate (0.13 mL, 1.2 mmol, 1.2 equiv.) in DME solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave (*S*)-methylphenyl(*o*-tolyl)phosphine borane (0.16 g, 73%, 93 % ee (*S*))

Entry 3: (S)-Methylphenyl(o-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 1.0 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (0.22 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave methylphenyl(o-tolyl)phosphine borane (0.17 g, 76%; 93 % ee (S))

Entry 4: (*S*)-Methylphenyl(*o*-tolyl)phosphine oxide (0.23 g, 1.0 mmol, 1.0 equiv) was treated with (trimethyloxonium tetrafluoroborate) [Me₃O]BF₄ (0.17 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave methylphenyl(*o*-tolyl)phosphine borane (0.16 g, 71%; 93 % ee (*S*))

Entry 5: (*R*)-Methylphenyl(anisyl)phosphine oxide (0.25 g, 1.0 mmol, 1.0 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (0.22 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave methylphenyl(anisyl)phosphine borane (0.16 g, 67%; 95 % ee (*R*))

Entry 6: (*R*)-Methylphenyl(anisyl)phosphine oxide (0.25 g, 1.0 mmol, 1 equiv) was treated with (trimethyloxonium tetrafluoroborate) [Me₃O]BF₄ (0.17 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave methylphenyl(anisyl)phosphine borane (0.17 g, 71%; 95 % ee (*R*))

Entry 7: (*S*)-Methylphenyl(biphenyl)phosphine oxide (0.14 g, 0.5 mmol, 1 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (0.11 g, 0.6 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (3 mL, 0.5 M, 1.5 mmol, 3.0 equiv) gave methylphenyl(biphenyl)phosphine borane (95 mg, 68%; 81 % ee (*S*))

Entry 8: (*R*)-Methylphenyl(mesityl)phosphine oxide (85 mg, 0.3 mmol, 1 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (73 mg, 0.4 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (2 mL, 0.5 M, 1.0 mmol, 3.0 equiv) gave methylphenyl(mesityl)phosphine borane (52 mg, 67%). For HPLC analysis methylphenyl(mesityl)phosphine borane was treated with DABCO (1.2 equiv) followed by hydrogen peroxide (1.2 equiv) to give (*S*)-Methylphenyl(mesityl)phosphine oxide 44 % ee.

Entry 9: (*R*)- *tert*-Butylmethylphenylphosphine oxide (0.19 g, 1.0 mmol, 1 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (0.22 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave *tert*-Butylmethylphenylphosphine borane (0.12 g, 63%; 53 % ee (*R*)

Entry10: (*S*)- *tert*-Butylmethylphenylphosphine oxide (0.19 g, 1.0 mmol, 1 equiv) was treated with (triethyloxonium tetrafluoroborate) [Et₃O]BF₄ (0.22 g, 1.2 mmol, 1.2 equiv.) in DCM solvent followed by the treatment with NaBH₄ in diglyme (6 mL, 0.5 M, 3.0 mmol, 3.0 equiv) gave *tert*-Butylmethylphenylphosphine borane (0.13 g, 68%; 46 % ee (*S*)

Determination of absolute configurations of phosphine oxide and borane

These were assigned according to the literature reported data. Thus 93% (*S*)-methylphenyl*o*-tolyl phosphine oxide and 95 % (*R*)-methylphenylanisylphosphine oxide obtained from Celtic Catalysts Ltd. was confirmed as the (*S*) and (*R*) enantiomer respectively by HPLC comparison with the phosphine oxide obtained from an asymmetric Appel reaction on racemic methylphenyl*o*-tolylphosphine with (+)-menthol and HCA, which gave (*S*)-enantiomer of phosphine oxide,²⁴ reaction on racemic methylphenylanisylphosphine with (-)-menthol and HCA, which gave (*R*)-enantiomer of phosphine oxide.²⁵

The Absolute configuration of phosphine oxide and phosphine borane were assigned by comparison with the literature reported (cited near the entry no.) HPLC data.

Entry	Phosphine oxide and Phosphine borane	Column	Condition	t1 (min)	t2 (min)
1.24	O H Me	Chiralpak IA	Heptane/Et-OH = 80/20 1 mL/min	7.4 (<i>S</i>)	8.4 (<i>R</i>)
2. 13	BH ₃ P Me	Chiralpak AS-H	Heptane/Et-OH = 98/02 1 mL/min	10.1 (<i>R</i>)	12.5 (<i>S</i>)
3.25		Chiralpak IA	Heptane/Et-OH = 90/10 1 mL/min	14.6(<i>R</i>)	15.9(<i>S</i>)
4. ¹⁴	BH ₃ OMe P Me	Chiralpak AS-H	Heptane/Et-OH = 98/02 1 mL/min	12.3(<i>R</i>)	13.1(<i>S</i>)

5.25	O Ph P Me	Chiralpak AS-H	Heptane/Et-OH = 90/10 1 mL/min	8.1(<i>R</i>)	10.2(S)
6. ²⁵	BH ₃ Ph P Me	Chiralpak AS-H	Heptane/Et-OH = 98/02 1 mL/min	11.6 (<i>R</i>)	13.1 (<i>S</i>)
7. ²⁶	O I I I I I I I I I I I I I I I I I I I	Chiralpak IA	Heptane/Et-OH = 90/10 1 mL/min	8.9	10.3
8.27		Chiralpak IA	Heptane/Et-OH = 90/10 1 mL/min	8.0 (<i>S</i>)	10.2 (<i>R</i>)
9.27	BH ₃ P	Chiralpak OJH	Heptane/Et-OH = 70/30 1 mL/min	9.0 (<i>S</i>)	10.2 (<i>R</i>)

NMR spectra and HPLC traces of phosphine boranes.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

#

Supporting HPLC Traces

Entry 2 in Table A

Racemic methylphenylo-tolylphosphine oxide

```
_____
Acq. Operator : General sequence
                                         Seq. Line : 4
Acq. Instrument : Kev HPLC 1
                                          Location : Vial 2
Injection Date : 3/13/2010 6:22:51 PM
                                              Inj: 1
                                        Inj Volume : 5 µl
            : C:\Chem32\1\DATA\AOB4-3-10 2010-03-13 17-07-41\ISO_80_20_30MIN_1MLMIN.M
Acq. Method
Last changed : 3/13/2010 6:22:39 PM by General sequence
               (modified after loading)
Analysis Method : C:\CHEM32\1\DATA\AOB4-3-10 2010-03-13 17-07-41\002-0401.D\DA.M (ISO_80_20_
               30MIN_1MLMIN.M)
             : 7/8/2009 9:49:45 AM by General sequence
Last changed
Method Info
            : Isocratic at 80/20 heptane/EtOH for 30min at 1ml/min
```

1	Area	Percent	Report	
				=

Sorted By		:	Sign	nal	
Multiplier		:	1.00	000	
Dilution		:	1.00	000	
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Entry 1-4 in Table D

Scalemic methylphenylo-tolylphosphine oxide used as starting material

Entry 2 in Table A

Racemic methylphenylo-tolylphosphine phosphine borane

Entry 1 and 2 in Table D

Scalemic methylphenyl*o*-tolylphosphine borane obtained by using MeOTF as alkylating agent and NaBH₄ as reductant

Entry 3 in Table D

Scalemic methylphenyl*o*-tolylphosphine borane obtained by using [Et₃O] ⁺BF4⁻ as alkylating agent and NaBH₄ as reductant

Entry 4 in Table D

Scalemic methylphenyl*o*-tolylphosphine borane obtained by using Me₃O]⁺BF₄ as alkylating agent and NaBH₄ as reductant

Entry 3 in Table A

Entry 5-6 in Table D

Scalemic anisylmethylphenylphosphine oxide 95.7 % ee (R)

```
Acq. Operator : DGG
                                                 Seq. Line : 8
Acq. Instrument : HFLC1
                                                 Location : Vial 92
Injection Date : 8/10/2011 8:05:12 FM
                                                      Inj : 1
                                               Inj Volume : 5.000 µl
             : C:\CHEM32\1\DATA\AA GENERAL SEQUENCE 2011-08-10 18-06-36\ISO_90_10_30MIN_
Acq. Method
                 IMLMIN.M
Last changed : 9/25/2010 3:52:29 FM by General sequence
Analysis Method : C:\CHEM32\1\METHOCS\10_FICH 0,5 MLMIN METHOCS\ISO_99_01_15MIN_0_5MLMIN.M
Last changed : 9/7/2011 12:36:50 FM by DGG
                 (modified after loading)
Nethod Info
             : Isocratic at 99/01 heptane/EtOH for 15min at 0.5ml/min
Additional Info : Feak(s) manually integrated

DADIC, Sp-210.8 Rev350,100 (AA GENERAL SEQUENCE 2011-08-10 18-08-361022-0801.0)
   nau 1
   2500 -
   2000
   1500+
   1000-
    500 -
                                                       15,000
     ٥
                                                                                  ż
                        Area Percent Report
Sorted By
                            Signal
                      :
                                    1.0000
Multiplier:
                             .
Dilution:
                              :
                                    1.0000
Use Multiplier & Dilution Factor with ISTOS
Signal 1: DAD1 C, Sig=210,8 Ref=360,100
Feak RetTime Type Width
                          Area
                                     Reight
                                                Area
                  [min] [mA0*s]
  (min)
                                     [=AU]
                                                  .
 1 14.405 VV 0.4367 9.93322#4 2951.40723 97.8821
2 15.996 VB 0.3938 2149.28979 82.53716 2.1179
                         1.01481.5 3033.94438
Totals :
-----
                                                -----
                         *** End of Report ***
```

Entry 3 in Table A

Racemic (±)anisylmethylphenylphosphine borane

Entry 5 and 6 in Table D

Scalemic anisylmethylphenylphosphine borane 95.6 % ee

Acq. Operato	r :	DGG			Seq. Lin	ie : 3		
Acq. Instrum	ent :	HPLC1			Locatio	on : Vial 22		
Injection Da	te :	9/10/20	11 2:00:49 F	PM .	Ir	ıj : 1		
1000					Inj Volum	ne : 5.000 µl		
Acq. Method		C:\CHEM	32\1\DATA\AA	GENERAL SE	QUENCE 20	011-09-10 13-47-15\IS	0 98 02 30MIN	
20		IMLMIN.	4					
Last changed	t changed : 2/25/2011 9:47:10 AM by KV							
Analysis Met	alysis Method : C:\CHEM32\1\METHODS\10 FLOW 0,5 MLMIN METHODS\180 99 01 15MIN 0 5MLMIN.M							
Last changed		9/7/201	1 12:36:50 F	M by DGG				
-		(modifie	ad after los	ding)				
Method Info		Isocrat:	ic at 99/01	heptane/Et0	H for 15m	nin at 0.5ml/min		
Additional I	nfo :	Peak(s)	manually in	tegrated				
DAD1 0	D, Sig=230	.8 Ref=360,1	00 (AA GENERAL	SEQUENCE 2011-	09-10 13-47-15	022-0301.D)		
mAU	10/10/10/10				8	*		
					1	all the second s		
400-						et a		
1					÷.			
350-								
1								
300-								
1								
250-								
1					- 11			
200-					- 11			
1					- 11			
150					- 11			
					- 11			
100-					- 11			
					- 11			
50-		1			- 11	8		
						S set		
0		lh				YA		
1								
L		5		10	15	20	25 min	
			Area Percent	Report				
Sorted By		÷	Signal					
Multiplier:			:	1.0000				
Dilution:			:	1.0000				
Use Multipli	er 6 1	ilution	Factor with	ISTDS				
Signal 1: DA	D1 D,	\$ig=230,	8 Ref=360,1	00				
	_							
Feak RetTime	Type	Width	Area	Height	Area			
# [min]		[min]	[mAU*s]	[#AU]	ŝ			
1 15.755	MM	0.3171	8158.71533	428.82748	97.7888			
2 16.720	MM	0.4489	184.48784	6.84908	2.2112			
Totals :			8343.20317	435.67657				

*** End of Report ***
Entry 7 in Table D

Scalemic (2-Biphenyl)methylphenylphosphine oxide 81 % ee (S)

```
Acq. Operator : DGG
                                           Seq. Line : 3
Acq. Instrument : HPLC1
                                            Location : Vial 13
Injection Date : 9/10/2011 11:30:59 AM
                                                Inj :
                                                        1
                                          Inj Volume : 5.000 µl
           : C:\CHEM32\1\DATA\AA GENERAL SEQUENCE 2011-09-10 11-17-26\ISO_80_20_30MIN_
Acq. Method
               IMLMIN.M
Last changed : 4/1/2011 10:02:37 AM by K
Analysis Method : C:\CHEM32\1\METHOD$\10_FLOW 0,5 MLMIN METHOD$\180_99_01_15MIN_0_5MLMIN.M
Last changed : 9/7/2011 12:36:50 PM by DGG
                (modified after loading)
Method Info
           : Isocratic at 99/01 heptane/EtOH for 15min at 0.5ml/min
Additional Info : Peak(s) manually integrated
       DAD1 A, SIg=254,8 Ref=360,100 (AA GENERAL SEQUENCE 2011-09-10 11-17-29/013-0301.D)
                                    $2127
   mAU 1
   175
                                                                       Ph
   150 -
   125-
                                                             P,
   100-
                                                             Me
    75-
    50-
                               đ
    25
    0.
    .25
                       -----
                      Area Percent Report
_____
Sorted By
                         Signal
                   .
Multiplier:
                                1.0000
                          :
Dilution:
                          :
                                1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=254,8 Ref=360,100
Peak RetTime Type Width
                         Area
                                  Height
                                            Area
                                 [mAU]
                [min] [mAU*s]
 # [min]
                                             .
 --- | ----- | ----- | ------ | ------ | -
                                         -1-
  1 8.170 MM 0.2664 438.40555 27.42945 9.4238
  2 10.290 MM 0.3307 4213.71143 212.37991 90.5762
Totals :
                       4652.11697 239.80936
_____
                      *** End of Report ***
```

Entry 8 in Table A

Racemic (±)-(2-Biphenyl)methylphenylphosphine borane

_____ Acq. Operator : General sequence Seq. Line : 6 Acq. Instrument : Kev HPLC 1 Location : Vial 2 Injection Date : 6/2/2010 10:34:56 PM Inj : 1 Inj Volume : 5 µl : C:\Chem32\1\DATA\RUN QUEUE 2010-04-21 18-10-30\RUN QUEUE 2010-06-02 20-48-Acq. Method 45\ISO_98_02_30MIN_1MLMIN.M Last changed : 6/2/2010 10:34:46 PM by General sequence (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\03_QUICKSTART 1 MLMIN METHODS\ISO_98_02_30MIN_1MLMIN.M Last changed : 5/20/2010 11:50:38 AM by General sequence Method Info : Isocratic at 98/02 heptane/EtOH for 30min at 1ml/min DAD1 D, Sig=230,8 Ref=360,100 (C:\CHEM32\1\DATA\DGG\RUN QUEUE 2010-06-02 20-48-45\002-0601.D) mAU 3500 BH₃ Ph 3000 2500 8.746 10.063 2000 Me 1500 1000 500 0 10 15 20 25 mir Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	8.746	VB	0.2174	3.00823e4	2148.21655	49.6276
2	10.063	BB	0.2695	3.05337e4	1767.96008	50.3724

Entry 7 in Table D

\$calemic (2-Biphenyl)methylphenylphosphine borane 81 % ee(\$)

1 C				
Acd. Uperator	: DGG		Seq. Line	: 5
Acq. Instrument	: HPLC1		Location	: Vial 12
Injection Date	: 9/10/2011 12:12:2	9 PM	Inj	: 1
			Inj Volume	: 5.000 µl
Acc. Method	: C:\CHEM32\1\DATA\/	AA GENERAL SE	OUENCE 2011	-09-10 11-17-26\ISO 98 02 30MIN
•	1MLMIN.M		-	
last changed	· 2/25/2011 9·47·10	AM by KV		
Analysis Method	C:\CHEM32\1\METHO	DS\10 FLOW 0.	5 MIMTN MET	HODS\TSO 99 01 15MTN 0 5MLMIN M
Last changed	. 9/7/2011 12:36:50	PM by DGG		
and changes	(redified after)	adias)		
Verhad tota	. Tecentic at 00/01	bading) 1. bestere (Ref)		0 E-1/-/-
Method Into	: isocracic at 99/0.	i neptane/200	A IOI ISMIN	ac o.smi/min
Additional Info	: Feak(s) manually :	Integrated		0101 01
UADT D, Sig	#230,8 Her=360,100 (AA GENERA	L SEQUENCE 20114	09-1011-1/-281012	40601.D)
men 1		ŝ		DU
		Ť		рп ₃ ры
1400-				I I,II
1200-				
1			[]	
1000-			11	J Me L //
			Ľ,	
800-				\sim
-000 T				
400-		8		
		2		
200-1		<u>ī</u> [
		N 1		
° —				
	5	10	15	20 25
	Ares Berge	at Report		
	Ales felles	ne nepore		
forted By	. ŝianal			
Sorted By	: Signal	1 0000		
Sorted By Multiplier:	: Signal :	1.0000		
Sorted By Multiplier: Dilution:	: ŝignal : :	1.0000		
Sorted By Multiplier: Dilution: Use Multiplier	: ŝignal : : S Dilution Factor wit	1.0000 1.0000 th ISTDs		
Sorted By Multiplier: Dilution: Use Multiplier	: Signal : : 5 Dilution Factor wit	1.0000 1.0000 th ISTDs		
Sorted By Multiplier: Dilution: Use Multiplier	: Signal : : 5 Dilution Factor wit	1.0000 1.0000 th ISTDs		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1	: Signal : 5 Dilution Factor win D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1	: Signal : : & Dilution Factor wit D, Sig=230,8 Ref=360,	1.0000 1.0000 th ISTDs ,100		
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI	: Signal : : & Dilution Factor wit D, Sig=230,9 Ref=360, Width Area	1.0000 1.0000 th ISTDs ,100 Height	Area	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI Signal 1: DADI	: Signal : : S Dilution Factor wit D, Sig=230,8 Ref=360, Width Area [min] [=AU*s]	1.0000 1.0000 th ISTDs ,100 Height [mAU]	Area %	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1 sk RetTime Type # [min]	: Signal : : 5 Dilution Factor wit D, Sig=230,8 Ref=360, Width Area [min] [mAU*s]	1.0000 1.0000 th ISTDs ,100 Height [mAU]	Area t	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1 sk RetTime Type # [min] 	: Signal : : 5 Dilution Factor wit D, Sig=230,8 Ref=360, Width Area [min] [mAU*s] 0.2372 3552.69263	1.0000 1.0000 th ISTDs ,100 Height [mAU] 231.29472	Area % 9.5416	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1 signal 1: DAD1 # [min] 	: Signal : : 5 Dilution Factor with D, Sig=230, 9 Ref=360, Width Area [min] [=AU*s] 	1.0000 1.0000 th ISTDs ,100 Height [mAU] 	Area % 	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DADI signal 1: DADI * [min] 	: Signal : : 5 Dilution Factor wit D, Sig=230,8 Ref=360, Width Area [min] [mAU*s] 	1.0000 1.0000 th ISTDs ,100 Height [mAU] 	Area % 	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1 Signal 1: DAD1 ak RetTime Type # [min] 1 11.625 BV 2 13.121 VV	: Signal : 5 Dilution Factor with D, Sig=230,8 Ref=360, Width Area [min] [mAU*s] 0.2372 3552.69263 0.3252 3.36810e4	1.0000 1.0000 th ISTDs ,100 Height [mAU] 	Area % 	
Sorted By Multiplier: Dilution: Use Multiplier Signal 1: DAD1 Signal 1: DAD1 (min) 1 11.625 BV 2 13.121 VV	: Signal : 5 Dilution Factor with D, Sig=230,8 Ref=360, Width Area [min] [mAU*s] 	1.0000 1.0000 th ISTDs ,100 Height [mAU] 	Area % 	

*** End of Report ***

Entry 14 in Table A

Racemic methylphenyl(mesityl)phosphine oxide

+	[min]	- 12-	[min]	[mAU*s]	[mAU]	4
1 2	15.561 17.194	мм мм	0.3886	1.52327e4 1.28543e4	653.39349 486.17926	54.2340 45.7660
Total	ls :			2.80870 e4	1139.57275	

Entry 8 in Table D

Scalemic methylphenyl(mesityl)phosphine oxide 44 % ee (R)

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Peak •	RetTime [min]	туре	Width [min]	Area (mAU*a)	Height [mAD]	Area B
1 2	15.536	NM NM	0.4578 0.4630	5.44125e4 2.05552e4	1981.13867 739.92205	72.5803
Total				7.49588#4	2721.05073	

Entry 8 in Table D

Scalemic methylphenyl(mesityl)phosphine oxide 44 % ee (S)

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Feak +	RetTime [min]	туре	Width [min]	Area (mAUNa)	Height [mAU]	Area B
	18 691		0.1804	1. 1.2141-4		22.8083
2	17.146	MK	0.4912	4.02051.4	1364.27258	72.4917
Total				5.54616+4	2032.30963	

Entry 16 in Table A

Racemic - tert-Butylmethylphenylphosphine oxide

```
Instrument Conditions : At Start
                                              At Stop
Column Temp. (left) : 20.3
Column Temp. (right) : 29.3
                                               28.4 °C
                                                29.4
                                                       °C
                              70.1
Pressure
                       .
                                                 71.1
                                                       bar
                               1.000
Flow
                        :
                                                  1.000 ml/min
                              5
Valve 1 Position
                                                  5
                       :
Detector Lamp Burn Times: Current On-Time Accumulated On-Time
DAD 1, UV Lamp
                     :
                              4.88
                                             1156.3 h
DAD 1, Visible Lamp :
                                                11.2 h
                             OFF
Solvent Description
                        :
FMF1 , Solvent A
                       : Heptane
                    : EtOH
PMP1 , Solvent B
       DAD1 D, Sig=230,8 Ref=350,100 (C1CHEM32(1)DATA\RUN QUEUE 2010-07-21 11-21-13(013-1201.D)
                                                    0
                              10
   mAU 1
                                                    P
    800
                                     10219
    600
    400
    200
     ٥
                                    10
```

Feak ‡	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.017	VB	0.1821	1.09237e4	923.13629	48.4947
2	10.219	88	0.2665	1.16018e4	661.75677	51.5053
Total	ls :			2.25255e4	1584.89307	

79

Entry 9 in Table D

Scalemic (R)-tert-Butylmethylphenylphosphine oxide 53 % ee

```
Detector Lamp Burn Times: Current On-Time Accumulated On-Time
DAD 1, UV Lamp
                                   3.66
                                                     1155.1 h
                           :
DAD 1, Visible Lamp
                                                      11.2 h
                                   OFF
                           :
Solvent Description
                           :
FMP1 , Solvent A
                           : Heptane
FMF1 , Solvent B
                           : EtOH
         DAD1 D, Sig=230,8 Ref=350,100 (C1CHEM32(1)DATA\RUN QUEUE 2010-07-21 11-21-13(012-0901.D)
   mAU -
                                                                                    0
                                                       Į
                                                                                    -
P.,,,,,,,
    350 -
    300 -
    250-
                                                 2379
    200 -
    150 -
    100 -
     50
      ٥
```

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Feak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.379	ev	0.4211	5409.17627	188.34335	23.2056
2	14.111	Ve	0.6644	1.79007 e 4	398.26746	76.7944
Total	ls :			2.33098e4	586.61081	

80

Entry 10 in Table D

Scalemic (S)-tert-Butylmethylphenylphosphine oxide 46 % ee

```
Seq. Line : 3
Acq. Operator : DGG
Acq. Instrument : HPLC1
                                             Location : Vial 2
Injection Date : 9/9/2011 9:32:41 PM
                                                  Inj : 1
                                            Inj Volume : 5.000 µl
Acq. Method : C:\CHEM32\1\DATA\AA GENERAL SEQUENCE 2011-09-09 21-19-08\ISO_90_10_30MIN_
               1MLMIN.M
Last changed : 9/25/2010 3:52:29 PM by General sequence
Analysis Method : C:\CHEM32\1\METHODS\10_FLOW 0,5 MLMIN METHODS\ISO_99_01_15MIN_0_5MLMIN.M
            : 9/7/2011 12:36:50 PM by DGG
Last changed
                (modified after loading)
Method Info : Isocratic at 99/01 heptane/EtOH for 15min at 0.5ml/min
Additional Info : Peak(s) manually integrated
       DAD1 D, Sig=230,8 Ref=380,100 (AA GENERAL SEQUENCE 2011-09-09 21-19-08/002-0301.D)
                                aner?
   mAU 1
   400 -
   350 -
   300 -
   250 -
                                 100 2435
   200 -
   150 -
   100-
    50 -
     0
                      Area Percent Report
Conted Bu
                   .
                         signal
Peak RetTime Type Width
                          Area
                                    Height
                                                Area
  [min] [min] [mAU*s]
                                     [mAU]
                                                 1 8.401 MM 0.2253 6078.11670 449.64005 73.0401
      9.212 MM 0.2347 2243.49780 159.30034 26.9599
   2
                         8321.61450 608.94038
Totals :
                         *** End of Report ***
```

Entry 16 in Table A

Racemic - tert-Butylmethylphenylphosphine borane

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Feak	RetTime	Туре	Width	Area	Height	Area
‡	[min]		[min]	[mAU*s]	[mAU]	%
1	8.017	VB	0.1821	1.09237e4	923.13629	48.4947
2	10.219	BB	0.2665	1.16018e4	661.75677	51.5053
Total	ls :			2.25255e4	1584.89307	

Entry 9 in Table D

Scalemic (R)-tert-Butylmethylphenylphosphine borane 53 % ee

Signal 1: DAD1 A, Sig=254,8 Ref=360,100

Feak ‡	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	0 164		0.2163	5451 20450	A25 51162	22 4226
2	10.557	MM	0.2992	1.84749e4	1028.95654	76.5764
Total	ls:			2.41261e4	1464.46817	

83

Entry 10 in Table D

Scalemic (S)-tert-Butylmethylphenylphosphine borane 46 % ee

.....

Acc. Compater :		Sec. Line : 21
Acc. Instrument : Nev 1	IPLC 1	Location : Vial 31
Indection Date : 9/13/	2011 5:34:20 PM	Int: 1
		Inf Volume : 5 ul
Acc. Method : C:\Ch		E 2011-09-13 10-58-41\150_70_30_30MIN_1MLMIN.M
Last changed : 9/13/	2011 5:34:09 PM	
(modi	fied after loading)	
Analysis Method : C:\C	IEM32\1\METHODS\14_OTHER	METHODS\GARY\RI 98_2_30MIN_1MLMIN.M
Last changed : 9/14/	2011 10:48:10 PM	
(modi	fied after loading)	
Method Info : 98/03	for 30 min at 1m1/min	
RI de	tector on	
		the Filmer
Column Tann (lade)	74.0	24.1 47
Column Term (rishe)	24.1	28.2 40
Seasone (Languar)		75.8 her
Flow	1.000	1.000 ml/min
Valve 1 Position		
Detector Lang Burn Time	a: Current Cn-Time Accu	mulated On-Time
DAD 1, UV Lamp	: 6.60	3107.4 h
DAD 1, Visible Lamp	: 077	87.5 h
Solvent Description	:	
PMP1 , Solvent A	: Heptane	
PMP1 , Solvent B	: 2:08	
DAD1 D, Sig-230,8 Per-2	SECTOR CHEMBER CATALOGIC PUNC	DUEUE 2011-09-13 10-58-41/031-2101 D
-AU-	2	
1 1 1	and the second s	1
250-	and the second se	BH _a I
200 d		
		P. /
		$\sim 2 $
250-	/	
1	<u>ا</u>	
200-]	8 II	
	ני	
192.4		\checkmark
1 1	8 15	
	Sust	
100 1	Λ	1
1 1	(A	
50-		
1		
1 1	 	
7/8 10	44 4	ಗೂ ಪರಿ ಮತಿ ಪೇ ಪತಿ _{ಗಳಿ}
Sorted By	: Signal	
Multiplier	: 1.0000	
Dilution	: 1.0000	
Use Multiplier & Dilu	tion Factor with ISIDs	

Signal 1: DAD1 D, Sig=230,8 Ref=360,100

Feak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.367	мм	0.2521	5906.56689	390.52283	73.2867
2	13.972	MM	0.3639	2152.96362	98.60745	26.7133
Total	ls :			8059.53052	489.13028	

Entry 9 in Table A

Racemic (±)-methylphenyl(2-i-propylphenyl)phosphine borane

Entry 1 in Table B

Racemic (±)methyl(o-tolyl)phosphine borane

Entry 15 in Table A

Racemic(±)-Cyclohexymethylphenylphosphine borane

				==	
Acq. Operator	:	General sequence	Seq. Line	:	3
Acq. Instrument	:	Kev HPLC 1	Location	:	Vial 11
Injection Date	:	12/19/2009 12:54:02 PM	Inj	:	1
			Inj Volume	:	5 µl
Acq. Method	:	C:\Chem32\1\DATA\RUN QUEUE 20	09-12-19 12-	39	9-51\ISO_96_04_15MIN_1MLMIN.M
Last changed	:	12/19/2009 12:53:52 PM by Gen	eral sequence	е	
		(modified after loading)			
Analysis Method	:	C:\CHEM32\1\DATA\RUN QUEUE 20	09-12-19 12-	39	9-51\011-0301.D\DA.M (ISO_96_04_
		15MIN_1MLMIN.M)			
Last changed	:	12/19/2009 3:45:55 PM by Gene	ral sequence		
Method Info	:	Isocratic at 95/04 heptane/Et	OH for 15min	ā	at 1ml/min

Sample Info : ASH 96 4 pen ethan

Entry 13 in Table A

Racemic(±)-(4-Fluoro-2-methylphenyl)methylphenylphosphine borane

Entry 12 in Table A

Racemic(±)-(4-methyl-2-methylphenyl)methylphenylphosphine borane

Entry 11 in Table A

Racemic(±)-(±)-methyl-(1-naphthyl)phenylphosphine borane

References

- L. M. Harwood, C. J. Moody, J. M. Percy, *Experimental Organic Chemistry* 2nd ed. 1999, Blackwell Science Ltd. Oxford.
- Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G., J. Am. Chem. Soc. 2007, 129, 9566-9567
- 3. Rajendran, K. V.; Kennedy, L.; Gilheany, D. G., Eur. J. Org. Chem. 2010, 5642-5649.
- 4. Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. J. Am. Chem. Soc. 1968, 90, 4842-4846;
- 5. Dalton, C. T.; Ryan, K. M.; Langan, I. J.; Coyne, É. J.; Gilheany, D. G., *J. Mol. Catal. A: (Chem.)*2002, *187*, 179-187.
- 6. Imamoto, T.; Sato, K.; Johnson, C. R. Tetrahedron Lett. 1985, 26, 783-786.
- Blank, N. F.; Moncarz, J. R.; Brunker, T. J.; Scriban, C.; Anderson, B. J.; Amir, O.; Glueck, D. S.; Zakharov, L. N.; Golen, J. A.; Incarvito, C.D.; Rheingoldb, A. L.; *J. Am. Chem. Soc.* 2007, 129, 6847-6858.
- 8. Xu, Q.; Zhao, C.-Q.; Han, L.-B., J. Am. Chem. Soc. 2008, 130, 12648-12655.
- 9. Stankiewicz, M.; Nycz, J.; Rachon, J., Heteroatom Chem. 2002, 13, 330-339.
- 10. Corey, E. J.; Chen, Z.; Tanoury, G. J., J. Am. Chem. Soc. 1993, 115, 11000-11001;
- 11. Perlikowska, W.; Gouygou, M.; Daran, J.-C.; G. B.; Mikołajczyka, M., *Tetrahedron Lett.* **2001** *42*, 7841-7845.
- 12. Overschelde, M. V.; Vervecken, E.; Modha, S. G.; Cogen, S.; Eycken, E. V. D.; Eycken, J. V. D., *Tetrahedron* **2009**, *65*, 6410-6415.
- 13. Wada, Y.; Imamoto, T.; Tsuruta, H.; Yamaguchi, K.; Gridnev, I. D., *Adv. Synth. Catal.* **2004**, *346*, 777-788;
- 14. Kaloun, E. B.; Merdés, R.; Genet, J.-P.; Uziel, J.; Jugé, S., J. Organomet. Chem. **1997**, 529, 455-463.
- (a) Juge, S.; Stephan, M.; Laffitte, J. A.; Genet, J. P.*Tetrahedron Lett.* **1990**, *31*, 6357-6300;
 (b)McKinstry, L.; Livinghouse, T. *Tetrahedron Lett.* **1994**, *35*, 9319-9322.
- (a).Shimada, T.; Kurushima, H.; Cho, Y.-H.; Hayashi, T., J. Org. Chem. 2001, 66, 8854-8858;
 (b).Imamoto, T.; Kikuchi, S.; Miura, T.; Wada, Y., Org. Lett. 2000, 3, 87-90.
- 17. Bauduin, C.; Moulin, D.; Kaloun, E. B.; Darcel, C.; Juge, S., *J. Org. Chem.* **2003**, *68*, 4293-4301.
- 18. Al-Masum, M.; Kumaraswamy, G.; Livinghouse, T., J. Org. Chem. 2000, 65, 4776-4778.

- 19. Stankevic, M.; Pietrusiewicz, K. M., Tetrahedron Lett. 2009, 50, 7093-7095.
- 20. Busacca, C. A.; Raju, R.; Grinberg, N.; Haddad, N.; James-Jones, P.; Lee, H.; Lorenz, J. C.; Saha, A.; Senanayake, C. H., *J. Org. Chem.* **2008**, *73* 1524-1531
- 21. Stankevic, M.; Pietrusiewicz, K. M., Synlett 2003, 1012-1016.
- 22. Lebel, H.; Morin, S.; Paquet, V., Org. Lett. 2003, 5, 2347-2349.
- 23. (a) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M., *Chem. Commun.* 1996, 2521-2522; (b) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M., *Chem. Commun.* 1998, 921-922; (c) Godfrey, S. M.; Hinchliffe, A.; Mkadmh, A., *J Mol Struc Theochem* 2005, 719, 85-88.
- 24. King, G.; Bergin, E.; Muller-Bunz, H.; Gilheany, D. G., Acta Cryst. 2007, E63, o3278.
- 25. King, G.; Gilheany, D. G.; Cumming, G. R. 2010, Patent WO 2010004278 A1 20100114.
- 26. Configuration remains to be assigned.
- 27. D. Gatineau, L. Laurent Giordano, G. Buono, J. Am. Chem. Soc. 2011, 133, 10728;